Int J Biol Sci 2009; 5(3):293-297. doi:10.7150/ijbs.5.293 This issue Cite

Short Research Communication

Characterization of persistent TTX-R Na+ currents in physiological concentration of sodium in rat visceral afferents

Guo-Fen Qiao1, Bai-Yan Li1,2 ✉, Yu-Hong Zhou1, Yan-Jie Lu1, John H. Schild2

1. Department of Pharmacology, Harbin Medical University, Harbin, China
2. Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, USA

Citation:
Qiao GF, Li BY, Zhou YH, Lu YJ, Schild JH. Characterization of persistent TTX-R Na+ currents in physiological concentration of sodium in rat visceral afferents. Int J Biol Sci 2009; 5(3):293-297. doi:10.7150/ijbs.5.293. https://www.ijbs.com/v05p0293.htm
Other styles

File import instruction

Abstract

Persistent tetrodotoxin-resistant (TTX-R) Na+ (Nav1.9/SCN11A) currents are not normally recorded in vagal afferent neurons (VANs) with 50 mM of extracellular Na+ although the functional expression of this current was observed in the presence of PGE2 or forskolin. However, it is uncertain whether this current can be seen under physiological condition (150 mM Na+). Using the whole-cell patch-clamp technique, we showed that persistent TTX-R Na+ currents were expressed in 9 out of 38 VANs bathed in 150 mM Na+. The current density, but not the whole-cell capacitance, was significantly enhanced in the VANs expressing Nav1.9. Persistent TTX-R Na+ channels were activated at a more hyperpolarized membrane potential near -60 mV, compared with TTX-sensitive (TTX-S at -40 mV) and TTX-R Na+ channels (at -20 mV). This indicates that persistent TTX-R Na+ channels provide a wider activation window than TTX-S and TTX-R Na channels to up-regulate neuronal excitability. These results suggest that the persistent TTX-R Na+ currents may be involved in the neuronal excitability by setting a lower pressure-discharge threshold and higher discharge frequency of VANs, especially the unique subset and gender-specific distribution of myelinated Ah-type VANs, including Ah-type aortic baroreceptor neurons, identified in our previous study.

Keywords: Sodium, Ion channel, Tetrodotoxin, Visceral afferent, Patch technique


Citation styles

APA
Qiao, G.F., Li, B.Y., Zhou, Y.H., Lu, Y.J., Schild, J.H. (2009). Characterization of persistent TTX-R Na+ currents in physiological concentration of sodium in rat visceral afferents. International Journal of Biological Sciences, 5(3), 293-297. https://doi.org/10.7150/ijbs.5.293.

ACS
Qiao, G.F.; Li, B.Y.; Zhou, Y.H.; Lu, Y.J.; Schild, J.H. Characterization of persistent TTX-R Na+ currents in physiological concentration of sodium in rat visceral afferents. Int. J. Biol. Sci. 2009, 5 (3), 293-297. DOI: 10.7150/ijbs.5.293.

NLM
Qiao GF, Li BY, Zhou YH, Lu YJ, Schild JH. Characterization of persistent TTX-R Na+ currents in physiological concentration of sodium in rat visceral afferents. Int J Biol Sci 2009; 5(3):293-297. doi:10.7150/ijbs.5.293. https://www.ijbs.com/v05p0293.htm

CSE
Qiao GF, Li BY, Zhou YH, Lu YJ, Schild JH. 2009. Characterization of persistent TTX-R Na+ currents in physiological concentration of sodium in rat visceral afferents. Int J Biol Sci. 5(3):293-297.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
Popup Image