International Journal of Biological Sciences

Impact factor
3.873

ISSN 1449-2288

News feeds of IJBS published articles
My Manuscript
My Account

Journal of Biomedicinenew

Theranostics

International Journal of Medical Sciences

Journal of Cancer

Oncomedicine

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

Journal of Genomics now in PubMed/PubMed Central. Submit manuscript...

PubMed Central Indexed in Journal Impact Factor

Int J Biol Sci 2010; 6(1):1-8. doi:10.7150/ijbs.6.1

Review

Smad4-mediated TGF-β signaling in tumorigenesis

Guan Yang, Xiao Yang

State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, AMMS, Beijing 100071, P.R. China

Abstract

Transforming growth factor-β (TGF-β) family members exert their function via specific type I and type II serine/threonine kinase receptors and intracellular Smad transcription factors, including the common mediator Smad4. The dual effects of TGF-β signaling on tumor initiation and progression are cell-specific and yet to be determined under distinct contexts. A number of genetically manipulated mouse models with alterations in the TGF-β pathway genes, particularly the pivotal Smad4, revealed that these genes play crucial functions in maintaining tissue homeostasis and suppressing tumorigenesis. Loss of Smad4 plays a causal role in initiating squamous cell carcinomas of skin and upper digestive tract as well as adenocarcinomas of gastrointestinal tract. However, for some cancers like pancreatic and cholangiocellular carcinomas, Smad4 deficiency does not initiate the tumorigenesis but acts as a promoter to accelerate or synergize the development and progression of cancers that are started by other oncogenic pathways. Intriguingly, emerging evidences from mouse models have highlighted the important roles of non-cell autonomous effects of Smad4-mediated TGF-β signaling in the inhibition of oncogenesis. All these data have greatly deepened our understanding of molecular mechanisms of cell-autonomous and non-cell autonomous effect of Smad4-mediated TGF-β signaling in suppressing carcinogenesis, which may facilitate the development of successful therapies targeting TGF-β signaling for the treatment of human cancers.

Keywords: TGF-β, Smad4, mouse model, tumorigenesis

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Yang G, Yang X. Smad4-mediated TGF-β signaling in tumorigenesis. Int J Biol Sci 2010; 6(1):1-8. doi:10.7150/ijbs.6.1. Available from http://www.ijbs.com/v06p0001.htm