
Int. J. Biol. Sci. 2010, 6 
 

 
http://www.biolsci.org 

172

IInntteerrnnaattiioonnaall  JJoouurrnnaall  ooff  BBiioollooggiiccaall  SScciieenncceess  
2010; 6(2):172-186 

© Ivyspring International Publisher. All rights reserved 
Research Paper 

The complete mitochondrial genome of the fall webworm, Hyphantria 
cunea (Lepidoptera: Arctiidae) 
Fang Liao1,2, Lin Wang3, Song Wu4, Yu-Ping Li4, Lei Zhao1, Guo-Ming Huang2, Chun-Jing Niu2, Yan-Qun 
Liu4, , Ming-Gang Li1,  
1. College of Life Sciences, Nankai University, Tianjin 300071, China 
2. Tianjin Entry-Exit Inspection and Quarantine Bureau, Tianjin 300457, China 
3. Beijing Entry-Exit Inspection and Quarantine Bureau, Beijing 101113, China 
4. College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, Shenyang 110866, China  

 Corresponding author: Y. Q. Liu, College of Bioscience and Biotechnology, Shenyang Agricultural University, Liaoning, 
Shenyang 110866, China; Tel: 86-24-88487163; E-mail: liuyanqun@syau.edu.cn. Or to: M. G. Li, College of Life Sciences, 
Nankai University, Tianjin 300071, China; Tel: 86-22-23508237; E-mail: mgl@nankai.edu.cn. 

Received: 2010.02.03; Accepted: 2010.03.26; Published: 2010.03.29 

Abstract 

The complete mitochondrial genome (mitogenome) of the fall webworm, Hyphantria cunea 
(Lepidoptera: Arctiidae) was determined. The genome is a circular molecule 15 481 bp long. 
It presents a typical gene organization and order for completely sequenced lepidopteran 
mitogenomes, but differs from the insect ancestral type for the placement of tRNAMet. The 
nucleotide composition of the genome is also highly A + T biased, accounting for 80.38%, with 
a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found 
in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, 
except for COI, which is tentatively designated by the CGA codon as observed in other le-
pidopterans. Four of 13 PCGs harbor the incomplete termination codon, T or TA. All tRNAs 
have a typical clover-leaf structure of mitochondrial tRNAs, except for tRNASer(AGN), the 
DHU arm of which could not form a stable stem-loop structure. The intergenic spacer se-
quence between tRNASer(AGN) and ND1 also contains the ATACTAA motif, which is con-
served across the Lepidoptera order. The H. cunea A+T-rich region of 357 bp is comprised of 
non-repetitive sequences, but harbors several features common to the Lepidoptera insects, 
including the motif ATAGA followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 
element preceded by the ATTTA motif, an 11 bp poly-A present immediately upstream 
tRNAMet. The phylogenetic analyses support the view that the H. cunea is closerly related to the 
Lymantria dispar than Ochrogaster lunifer, and support the hypothesis that Noctuoidea (H. 
cunea, L. dispar, and O. lunifer) and Geometroidea (Phthonandria atrilineata) are monophyletic. 
However, in the phylogenetic trees based on mitogenome sequences among the lepidopteran 
superfamilies, Papillonoidea (Artogeia melete, Acraea issoria, and Coreana raphaelis) joined ba-
sally within the monophyly of Lepidoptera, which is different to the traditional classification.  

Key words: Fall webworm; Hyphantria cunea; Mitochondrial genome; Lepidoptera; Arctiidae; 
Phylogeny 

1. Introduction 
The fall webworm, Hyphantria cunea Drury (Le-

pidoptera: Arctiidae), is a severe invasive and qua-
rantine pest which has a wide range of habitats. It is a 

polyphagus pest that feeds on about 160 species of 
broad leaf trees. The preferred host plants include 
mulberry, oak, hickory, pecan, walnut, elm, alder, 
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willow, sweetgum, and poplar. This insect has caused 
serious damage to forests throughout its range and 
appears to be continuing to spread. It also damages 
the roadside and garden trees around urban areas. 
The species was introduced from North America to 
Central Europe and Eastern Asia in the early 1940s [1, 
2]. In China, this species was first found in Dandong 
(124°N/40°E) of Liaoning Province in 1979, and now 
has spread southwards to Shanghai (129°N/31°E) and 
westwards to Xianyang (108°N/34°E) of Shanxi 
Province. The southern populations in China may 
complete three generations in one year, while in the 
north the fall webworm completes only one life cycle. 
Many studies have been done on aspects of adapta-
bility, sex pheromones, host preference and natural 
enemies of the fall webworm [3]. As H. cunea is a de-
vastating invasive species, the mitochondrial genome 
(mitogenome) information of the species may provide 
fundamental information for future phylogenetic 
analyses and evolutionary biology. 

Insect mitochondrial DNA (mtDNA) is a circular 
DNA molecule with 14-20 kb in size and has a re-
markably conserved set of 37 genes, including 13 
protein-coding genes (PCGs; subunits 6 and 8 of the F0 
ATPase [ATP6 and ATP8]; cytochrome oxidase sub-
units 1-3 [COI–III]; cytochrome b [Cytb]; NADH de-
hydrogenase subunits 1-6 and 4L [ND1–6 and ND4L]), 
two ribosomal RNA genes (large and small ribosomal 
RNAs [lrRNA and srRNA]), and 22 tRNA genes [4, 5]. 
It additionally contains a control region of variable 

length, known as the adenine (A) + thymine (T)-rich 
region in insect mtDNA, which is involved in the 
regulation and initiation of mtDNA replication and 
transcription [6]. The mitochondrial genes and ge-
nomes have been widely used as an informative mo-
lecular marker for diverse evolutionary studies of 
animals, including phylogenetics and population ge-
netics [7-9], with the development of long range PCR 
for amplification of partial sequence of mtDNA genes 
and whole mitochondrial genome [10]. 

At present, the complete or nearly complete mi-
togenome sequences from more than 100 species of 
insects have been determined. However, only 19 
complete or nearly complete mitogenomes are cur-
rently available in the GenBank for lepidopteran spe-
cies (Table 1). The Ostrinia sequences each lack the 
sequence information of the A+T-rich region, partial 
tRNAMet and srRNA sequence. The L. chinensis and P. 
xuthus sequences each lack the sequence information 
of the partial srRNA, A+T-rich region, tRNAMet-Ile-Gln, 
and partial ND2. Within the insects, the Lepidoptera 
order accounts for more than 160 000 species. Despite 
this huge taxonomic diversity the existing information 
on lepidopteran mtDNA is very limited and limited to 
six superfamiles among the 45-48 known and to 13 
families of the recognized 120. Newly added lepi-
dopteran mitogenomes can provide further insights 
into our understanding of diversity of lepidopteran 
mitogenomes and evolution.  

 

Table 1 List of the complete mitogenome of Lepidoptera 

Superfamily / Family Species Acc. number Reference 
Noctuoidea    

Arctiidae Hyphantria cunea GU592049 This study 
Lymantriidae Lymantria dispar FJ617240 Zhu et al. unpublished 
Notodontidae Ochrogaster lunifer AM946601 [11]  

Geometroidea    
Geometridae Phthonandria atrilineata EU569764 [12]  

Bombycoidea    
Saturniidae Antheraea pernyi AY242996 [13]  
Saturniidae Antheraea yamamai EU726630 [14] 
Saturniidae Caligula boisduvalii EF622227 [15]  
Saturniidae Eriogyna pyretorum FJ685653 [16]  

Bombycidae Bombyx mori AB070264 [17]  
Bombycidae Chinese Bombyx mandarina AY301620 [18]  
Bombycidae Japanese Bombyx mandarina NC_003395 [17]  
Sphingidae Manduca sexta EU286785 [19] 

Pyraloidea    
Crambidae Diatraea saccharalis FJ240227 Li and Yue, unpublished 
Crambidae Ostrinia furnicalis NC_003368 [20]  
Crambidae Ostrinia nubilalis NC_003367 [20]  

Tortricoidea    
Tortricidae Adoxophyes honmai DQ073916 [21]  

Papilionoidea    
Nymphalidae Acraea issoria NC_013604 [22] 

Pieridae Artogeia melete EU597124 [23]  
Lycaenidae Coreana raphaelis DQ102703 [24]  

Papilionidae Luehdorfia chinensis EU622524 Liu et al. unpublished 
Papilionidae Papilio xuthus EF621724 Feng et al. unpublished 
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The H. cunea mitochondrial COI, COIII and Cytb 
have been utilized for biological identification as 
DNA barcode and phylogenetic studies [25, 26], but 
the genetic information on the complete mtDNA of 
the species remains largely unknown. In this study, 
we describe the complete mitogenome sequence of the 
fall webworm, H. cunea, and compare its sequence 
with other available lepidopteran mitogenomes. Fur-
thermore, the mitogenome sequence of H. cunea was 
used to provide further insight into the phylogenetic 
relationships among lepidopteran superfamilies.  

2. Materials and Methods 
Insect and total DNA extraction 

The H. cunea larvae were collected on the mul-
berry trees on the campus of the Shenyang Agricul-
tural University, Shenyang, China. The larvae were 
then fed on the leaves of mulberry trees in room until 
pupation. The fresh pupae were directly frozen and 
kept in the laboratory at – 80 °C. A single pupa was 
used to extract the total DNA using the TIANamp 
Genomic DNA Kit (TIANGEN, Beijing, China) ac-

cording to the manufacturer’s instruction.  

PCR amplification and sequencing  

The full mitogenome of H. cunea was amplified 
in four overlapping fragments by PCR amplification 
using universal primers and specific primers de-
signed for this study (Fig. 1; Table 2). All PCR reac-
tions were performed in a 50 μl volume with 1 U of 
LA Taq (TaKaRa Co., Dalian, China), 1 μl (about 20 
ng) of DNA, 5 μl 10 × LA Taq buffer (Mg2+ plus), 200 
μM dNTPs, and 10 pmol each primer. Initially, the H. 
cunea COI gene of ~600 bp was amplified using the 
primer set LYQ1/LYQ2 as previously reported [25], 
and the Cytb gene of ~400 bp was amplified using the 
primer set LYQ5/LYQ6 as previously reported [27]. 
The PCR amplification was performed under the fol-
lowing procedure: 2 min at 94 °C, followed by 35 
cycles of 1 min at 94 °C, 30 sec at 50 °C, and 1 min at 72 
°C, with a subsequent 10 min final extension at 72 °C. 
After purification with TIANgel Midi Purification Kit 
(TIANGEN, Beijing, China), the PCR fragments were 
directly sequenced with the PCR primers.  

 
 
 

 

Fig. 1 Linear map of the mitogenome of Hyphantria cunea. The tRNAs are labeled according to the IUPAC-IUB single letter 
amino acid codes above the bar indicating coding sequence on major strand or below the bar showing on minor strand. 
One-letter symbol L, L*, S and S* denote codon tRNALeu(CUN), tRNALeu(UUR), tRNASer(AGN), and tRNASer(UCN), respectively. 
Underlined PCGs or rRNA genes are located on minor strand and PCGs that are not underlined are located on major 
strand. Overlapping lines (F1-F4) under the map denote four overlapping PCR fragments amplified for sequencing. The line 
at the lower left represents the map scale. 

 
 

Table 2 Primers used to amplify the Hyphantria cunea mitogenome 

Primer  Sequence (5’- 3’) Fragment Reference 
LYQ1 GGTCAACAAATCATAAAGATATTGG F1 [25] 
LYQ2 TAAACTTCAGGGTGACCAAAAAATCA 
LYQ5 TATGTACTACCATGAGGACAAATATC  F2 [27]  
LYQ6 ATTACACCTCCTAATTTATTAGGAAT 
LYQ29 CTTTTCTATTACTTCTTTCTCTTCCTGTTTTA F3 This study 
LYQ32 TAAAATAATAAATGGTAATAAAAAATGAAATG 
LYQ30 TAAAACAGGAAGAGAAAGAAGTAATAGAAAAG F4 This study 
LYQ31 CATTTCATTTTTTATTACCATTTATTATTTTA 
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On the basis of the information from the deter-
mined fragments, two new primer pairs 
LYQ29/LYQ32 and LYQ30/LYQ31 were designed to 
amplify the remaining longer fragments of the mito-
genome of H. cunea (F3 and F4 in Fig. 1 and Table 1). 
The two fragments were amplified with denaturation 
at 94 °C for 2 min, followed by 35 cycles of 1 min at 94 
°C, 10 min at 65 °C, with a subsequent 10 min final 
extension at 72 °C. These PCR products were then 
utilized to construct a shotgun sequencing library. In 
brief, DNAs were sheared into 1-3 kb fragments using 
DNase I, and the DNA fractions were collected with a 
Chromaspin TE 1000 column. The DNA fractions 
were then cloned into the pGEM-T easy vector (Pro-
mega, USA), and each of the resultant plasmid DNAs 
was isolated with a Wizard Plus SV Minipreps DNA 
Purification System (Promega, USA). DNA sequenc-
ing was conducted using the ABI PRISM BigDyeTer-
minator v3.1 Cycle Sequencing Kit and the ABI 
PRISMTM 3100 Genetic Analyzer (PE Applied Bio-
systems, USA). All fragments were sequenced from 
both strands. The number of clones sequenced was 
sufficient to fulfill the six times coverage of the mito-
genome. 

Sequence analysis 

The sequence alignment was carried out using 
Clustal X [28]. The PCGs and rRNA genes were de-
termined by BLAST on NCBI Entrez Database and by 
comparing them with homologous regions in other 
lepidopteran mitogenome sequences. The PCG nuc-
leotide sequences were translated on the basis of the 
Invertebrate Mitochondrial Genetic Code. The tRNA 
genes and its secondary structure were predicted us-
ing the tRNAscan-SE Search [29]. The two tRNASer 
secondary structure not found by tRNAscan-SE 
Search was developed using the constraints proposed 
by Steinberg and Cedergren [30]. Composition skew 
analysis was carried out to describe the base compo-
sition of nucleotide sequences, which measures the 
relative number of As to Ts (AT skew=[A–T]/[A+T]) 
and Gs to Cs (GC skew=[G–C]/[G+C]) [31]. Codon 
usage was calculated using the Countcodon program 
version 4 (http://www.kazusa.or.jp/codon/ 
countcodon.html). The entire A+T-rich region was 
subjected to a search for the tandem repeats using 
Tandem Repeats Finder program [32]. The sequence 
data has been deposited in GenBank under accession 
No. GU592049. 

Phylogenetic analysis 

To illustrate the phylogenetic relationship of Le-
pidoptera, the other complete mitogenomes were ob-

tained from GenBank. The L. chinensis and P. xuthus 
sequences lacking more sequence information were 
excluded. The mitogenomes of Drosophila yakuba 
(NC_001322) [33] and Anopheles gambiae (NC_002084) 
[34] were used as outgroups. The alignment of the 
amino acid sequences of each 13 mitochondrial PCGs 
was aligned with Clustal X [28] using default settings 
and concatenated. As for the ND4 genes, the insertion 
of A nucleotide in O. furnacalis (position 8211 bp) and 
O. nubilalis (position 8206 bp) resulted in transcript 
frameshifts [13], the amino acid sequences of which 
were therefore revised for further phylogenetic ana-
lyses. The concatenated set of amino acids sequences 
from the 13 PCGs was used in phylogenetic analyses, 
which was performed using maximum parsimony 
(MP) and Nerghbor-joining (NJ) methods by using 
MEGA ver 4.0 [35].  

3. Results and Discussion 
Genome organization  

The H. cunea mitogenome presents the typical 
gene content observed in metazoan mitogenomes 
(Table 3, Fig. 1): 13 PCGs, 22 tRNA genes, two rRNA 
subunits, and a major non-coding region known as 
the A+T-rich region in insects [5]. The complete mi-
togenome of H. cunea consists of 15 481 bp, which is 
well within the range observed in the completely se-
quenced lepidopteran insects, with size ranging from 
15 140 in A. melete to 15 928 in Japanese B. mandarina 
(Table 4). The gene order and orientation of the H. 
cunea mitogenome are identical to the completely se-
quenced lepidopteran mitogenomes. By the translo-
cation of tRNAMet to a position 5’ upstream of tRNAIle, 
the lepidopteran arrangement differs from that of D. 
yakuba, the hypothesized ancestral gene order of in-
sects [36]. This suggests that the mitochondrial gene 
arrangement in lepidopteran insects evolved inde-
pendently after splitting from its stem lineage [24]. 

Genome composition and skewness 

The genome composition of the major strand of 
the H. cunea mitogenome is heavily biased toward As 
and Ts, accounting for 80.38%: A 40.58%, G 7.55%, T 
39.80% and C 12.07%, as is the case with other insect 
sequences (Table 4). The bias value is similar to the 
completely sequenced lepidopteran insects, with the 
range from 77.84% in O. lunifer to 82.66% in C. raphae-
lis. The A+T content in the sequence of the A+T-rich 
region is 94.96%, also within the range observed in the 
completely sequenced lepidopteran insects, with the 
value from 89.17% in A. melete to 98.25% in P. atrili-
neata.  
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Table 3 Annotation and gene organization of the Hyphantria cunea mitogenome 

Gene Strand Nucleotide no. Size(bp) Anticodon Non OL Start codon Stop codon 
tRNAMet J 1-67 67 CAT     
tRNAIle J 68-136 69 GAT 11    
tRNAGln N 148-216 69 TTG 50    
ND2 J 267-1277 1011  18  ATT TAA 
tRNATrp J 1 296-1 364 69 TCA  8   
tRNACys N 1 357-1 419 63 GCA 4    
tRNATyr N 1 424-1 489 66 GTA 11    
COI J 1 501-3 034 1534    CGA T-tRNA 
tRNALeu(UUR) J 3 035-3 100 66 TAA     
COII J 3 101-3 782 682    ATG T-tRNA 
tRNALys J 3 783-3 853 71 CTT  1   
tRNAAsp J 3 853-3 918 66 GTC     
ATP8 J 3 919-4 080 162   7 ATA TAA 
ATP6 J 4 074-4 750 677  5  ATG TA-COIII  
COIII J 4 756-5 547 792  9  ATG TAA 
tRNAGly J 5 557-5 621 65 TCC     
ND3 J 5 622-5 975 354    ATT TAA 
tRNAAla J 5 976-6 042 67 TGC 7    
tRNAArg J 6 050-6 116 67 TCG 5    
tRNAAsn J 6 122-6 188 67 GTT 9    
tRNASer(AGN) J 6 198-6 263 66 GCT 21    
tRNAGlu J 6 285-6 352 68 TTC  2   
tRNAPhe N 6 351-6 418 68 GAA 3    
ND5 N 6 422-8 167 1746    ATA TAA 
tRNAHis N 8 168-8 235 68 GTG     
ND4 N 8 236-9 574 1339    ATG T-tRNA 
ND4L N 9 575-9 862 288  5  ATG TAA 
tRNAThr J 9 868-9 932 65 TGT     
tRNAPro N 9 933-9 997 65 TGG 7    
ND6 J 10 005-10 535 531  13  ATT TAA 
Cytb J 10 549-11 697 1149  17  ATA TAA 
tRNASer(UCN) J 11 715-11 782 68 TGA 34    
ND1 N 11 817-12 755 939  1  ATG TAA 
tRNALeu(CUN) N 12 757-12 824 68 TAG     
lrRNA N 12 825-14 250 1426      
tRNAVal N 14 251-14 316 66 TAC     
srRNA N 14 317-15 124 808      
A+T-rich region   15 125-15 481 357           

J-strand, majority-coding strand; N-strand, minority-coding strand; Non, non-coding region; OL, overlapping region. 

 

Table 4 Composition and skewness in the major strand of lepidopteran mitogenomes 

Species size (bp) A% G% T% C% A+T % AT 
k  

GC 
k  

Whole genome         
Hyphantria cunea 15 481 40.58 7.55 39.80 12.07 80.38 0.010 –0.230 
Lymantria dispar 15 569 40.58 7.57 39.30 12.55 79.88 0.016 –0.247 

Ochrogaster lunifer 15 593 40.09 7.56 37.75 14.60 77.84 0.030 –0.318 
Phthonandria atrilineata 15 499 40.78 7.67 40.24 11.31 81.02 0.007 –0.192 

Antheraea pernyi 15 566 39.22 7.77 40.94 12.06 80.16 –0.021 –0.216 
Antheraea yamamai 15 338 39.26 7.69 41.04 12.02 80.29 –0.022 –0.219 
Caligula boisduvalii 15 360 39.34 7.58 41.28 11.79 80.62 –0.024 –0.217 
Eriogyna pyretorum 15 327 39.17 7.63 41.65 11.55 80.82 –0.030 –0.204 

Bombyx mori 15 656 43.06 7.31 38.30 11.33 81.36 0.059 –0.216 
Chinese Bombyx mandarina 15 682 43.11 7.40 38.48 11.01 81.59 0.057 –0.196 

Japanese Bombyx mandarina 15 928 43.08 7.21 38.60 11.11 81.68 0.055 –0.213 
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Manduca sexta 15 516 40.67 7.46 41.11 10.76 81.79 –0.005 –0.181 
Diatraea saccharalis 15 490 40.87 7.42 39.15 12.56 80.02 0.021 –0.257 

*Ostrinia nubilalis  14 535 41.36 8.02 38.81 11.82 80.17 0.031 –0.192 
*Ostrinia furnicalis  14 536 41.46 7.91 38.92 11.71 80.37 0.032 –0.194 

Adoxophyes honmai 15 680 40.15 7.88 40.24 11.73 80.39 –0.001 –0.178 
Acraea issoria 15 245 38.94 7.74 40.81 12.50 79.76 –0.023 –0.235 

Artogeia melete 15 140 40.38 7.87 39.41 12.35 79.78 0.012 –0.222 
Coreana raphaelis 15 314 39.37 7.30 43.29 10.04 82.66 –0.047 –0.158 

*Luehdorfia chinensis 13 860 40.07 7.74 40.44 11.75 80.51 –0.005 –0.206 
*Papilio xuthus 13 964 39.53 7.85 40.45 12.17 79.98 –0.012 –0.216 

A+T-rich region         
Hyphantria cunea 357 45.66 1.12 49.30 3.92 94.96 –0.038 –0.556 
Lymantria dispar 435 45.29 1.61 50.50 2.30 96.09 –0.054 –0.176 

Ochrogaster lunifer 319 44.51 1.57 48.90 5.02 93.42 –0.047 –0.524 
Phthonandria atrilineata 457 40.70 0.66 57.55 1.09 98.25 –0.171 –0.246 

Antheraea pernyi 552 41.12 4.17 49.28 5.43 90.40 –0.090 –0.127 
Antheraea yamamai 334 41.62 3.59 47.90 6.89 89.52 –0.070 –0.315 
Caligula boisduvalii 330 42.12 2.12 49.39 6.36 91.52 –0.079 –0.500 
Eriogyna pyretorum 358 42.18 2.51 50.00 5.31 92.18 –0.085 –0.358 

Bombyx mori 494 44.94 1.62 50.61 2.83 95.55 –0.059 –0.272 
Chinese Bombyx mandarina 484 46.49 2.69 47.93 2.89 94.42 –0.015 –0.036 

Japanese Bombyx mandarina 747 45.52 2.41 49.67 2.41 95.18 –0.043 0 
Manduca sexta 324 45.00 1.54 50.31 3.29 95.37 –0.055 –0.334 

Diatraea saccharalis 335 43.28 0.60 51.64 4.48 94.93 –0.088 –0.764 
Adoxophyes honmai 489 48.47 2.86 45.81 2.86 94.27 0.028 0 

Acraea issoria 430 45.81 1.40 50.23 2.56 96.05 –0.046 –0.293 
Artogeia melete 351 43.87 3.13 45.30 7.69 89.17 –0.016 –0.421 

Coreana raphaelis 375 44.27 1.33 49.87 4.53 94.13 –0.059 –0.545 
* partial mitogenome lacking of the A+T-rich region. 

 
 

The lepidopteran AT skewness values vary from 
–0.047 in C. raphaelis to 0.059 in B. mori (Table 4). The 
AT skewness for the major strand of the H. cunea mi-
togenome is slightly positive (0.010), indicating the 
occurrence of more As than Ts. This case is also found 
in L. dispar (0.016), O. lunifer (0.030), P. atrilineata 
(0.007), B. mori (0.059), Japanese B. mandarina (0.055), 
Chinese B. mandarina (0.057), A. melete (0.012), D. sac-
charalis (0.021), O. nubilalis (0.031), and O. furnicalis 
(0.032). In contrast, the AT skews are negative in the 
other lepidopteran mitogenomes. When considering 
the A+T-rich region, however, the bias toward the use 
of Ts over As is more obvious in the analyzed lepi-
dopteran mitogenomes with the H. cunea mitogenome 
exhibiting a slightly value (–0.038). The only one ex-
ception is represented in A. honmai where the 
A+T-rich region exhibits a slightly positive AT 
skewness (0.028).  

In all sequenced lepidopteran mitogenomes, the 
GC skewness values vary from –0.158 in C. raphaelis to 
–0.318 in O. lunifer with the H. cunea mitogenome ex-
hibiting a moderate skewness value (–0.230), referring 
to the occurrence of more Cs than Gs in the lepidop-
teran mitogenomes. 

Protein-coding genes 

All of the PCGs in the H. cunea mitogenome are 
initiated by typical ATN codons (six with ATG, three 
with ATT, and three with ATA), except for COI (Table 
3). The open reading frame of the H. cunea COI gene 
also starts at a CGA codon for arginine as found in all 
lepidopteran insects (Fig. 2). The typical ATN initiator 
for mitochondrial PCGs is also not found at the start 
site for H. cunea COI or near the tRNATyr. The plausible 
translation initiator for H. cunea COI is ATA, located 
within the tRNATyr gene, overlapping 19 bp with the 
tRNATyr; however, a codon following this triplet has a 
TAG-stop codon before the CGA codon. This ATA 
sequence is unlikely to be the start site for H. cunea 
COI, and there are no other probable start codons for 
H. cunea COI. Thus, the COI gene must use an atypical 
start site. In the previous studies, some tetranucleo-
tide (ATAA, TTAA, GTAA and ATTA) and a hex-
anucleotide (ATTTAA) have been proposed as an 
initiator of COI for Diptera insects including mosqui-
toes and Drosophila [34, 37-41]. Among the completely 
sequenced lepidopteran insects, including A. pernyi, 
A. yamamai, B. mori, B. mandarina, and C. raphaelis, the 
TTAG has been designated as an initiator for COI [13, 
14, 17, 18], however, Ostrina species were designated 
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as ATTTAG [20], and A. issoria and C. boisduvalii were 
designated as TTG [15, 22], and six species (A. honmai, 
A. melete, E. pyretorum, M. sexta, P. atrilineata, and O. 
lunifer) were designated as CGA [11, 12, 16, 19, 21, 23]. 
A recent study by analysis of the transcript informa-
tion from the cDNA sequence of the mtDNA-encoded 
protein gene revealed that the translation initiation 
codon for the COI gene is TCG (Serine), rather than 
those atypical and longer codons in Diptera [41] 
Therefore, we tentatively designated the CGA as the 
COI start codon although no mRNA expression data 
for H. cunea are available until now. 

Nine of 13 PCGs in H. cunea harbor the usual 
termination codon TAA, but the remaining four pos-
sess the incomplete termination codons T for COI, 
COII, ND4, and TA for ATP6 (Table 3). The COI, COII, 
and ND4 terminate with T exactly adjacent to tRNAs, 
and ATP6 terminate with TA immediately followed 
by the ATG translation initiation codon of COIII. 
These incomplete stop codons are commonly found in 
metazoan mitochondrial genes [33]. The common in-
terpretation of this phenomenon is that TAA termini 

are created via posttranscriptional polyadenylation 
[42].  

The Relative Synonymous Codon Usage (RSCU) 
in PCGs was investigated and the results are summa-
rized in Table 5. In PCGs of the H. cunea mitogenome, 
the codons CCG, GCG, TGC, CGC, AGC, and AGG 
are not represented. The genome-wise A+T bias is 
also reflected in the codon usage of H. cunea mitoge-
nome. The codons TTA (Leu), ATT (Ile), TTT (Phe), 
and ATA (Met) are the four most frequently used 
codons in the H. cunea mitogenome, accounting for 
39.2%. These codons are all composed of A or T nu-
leotides, thus indicating the biased usage of A and T 
nucleotides in the H. cunea PCGs. These four codons 
were also most frequently used in the sequenced le-
pidopteran insects. Leucine (14.82%), isoleucine 
(11.99%), phenylalanine (9%), and serine (8.52%) are 
the most frequent amino acids in H. cunea mitochon-
drial proteins, accounting for 44.33%. These amino 
acids are also the most frequently represented in other 
insects, averaging 45.08% [43].  

 

 

Fig. 2 Alignment of initiation region for the cytochrome oxidase subunit I (COI) genes of lepidopteran insects. The Diptera 
insect Anopheles funestus was included due to fact that the translation initiation codon for the COI gene was determined by 
analysis of the transcript information analysis [41]. The first four or five codons and their amino acids are shown on the 
right-hand side of the figure. Boxed nucleotides are the presumed translation initiators, which have been postulated as the 
initiation codon for COI in each species. Underlined nucleotides indicate the adjacent partial sequence of tRNATyr. Arrows 
indicate the direction of transcription. 
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Table 5 Codon usage of the protein-coding genes in Hyphantria cunea mitogenome*  

Codon 
(aa) 

n % RSCU Codon (aa) n % RSCU Codon 
(aa) 

n % RSCU 

UUU(F) 332 8.95 1.99 UCU(S) 113 3.05 2.86 UAU(Y) 180 4.85 1.82 
UUC(F) 2 0.59 0.01 UCC(S) 10 0.27 0.25 UAC(Y) 18 0.49 0.18 
UUA(L) 449 0.10 4.85 UCA(S) 81 2.18 2.05 UAA(*) － － － 
UUG(L) 35 0.94 0.38 UCG(S) 2 0.05 0.05 UAG(*) － － － 
CUU(L) 43 1.16 0.47 AGU(S) 28 0.75 0.71 CAU(H) 56 1.51 1.65 
CUC(L) 1 0.03 0.01 AGC(S) 0 0 0 CAC(H) 12 0.32 0.35 
CUA(L) 20 0.54 0.22 AGA(S) 82 2.21 2.08 CAA(Q) 60 1.62 1.97 
CUG(L) 2 0.05 0.02 AGG(S) 0 0 0 CAG(Q) 1 0.03 0.03 
AUU(I) 410 11.05 1.84 ACU(U) 73 1.97 1.93 AAU(N) 215 5.79 1.69 
AUC(I) 35 0.94 0.16 ACC(U) 14 0.38 0.37 AAC(N) 39 1.05 0.31 
AUA(M) 265 7.14 1.91 ACA(U) 62 1.68 1.64 AAA(K) 100 2.69 1.82 
AUG(M) 12 0.32 0.09 ACG(U) 2 0.05 0.05 AAG(K) 10 0.27 0.18 
GUU(V) 90 2.43 2.37 GCU(A) 84 2.26 2.63 GGU(G) 68 1.83 1.35 
GUC(V) 5 0.13 0.13 GCC(A) 6 0.16 0.19 GGC(G) 3 0.08 0.06 
GUA(V) 50 1.35 1.32 GCA(A) 38 1.02 1.19 GGA(G) 108 2.91 2.14 
GUG(V) 7 0.19 0.18 GCG(A) 0 0 0 GGG(G) 23 0.62 0.26 
UGU(C) 28 0.75 2.00 CGU(R) 14 0.38 1.08 CCU(P) 75 2.02 2.36 
UGC(C) 0 0 0 CGC(R) 0 0 0 CCC(P) 11 0.30 0.35 
UGA(W) 92 2.48 1.88 CGA(R) 36 0.97 2.77 CCA(P) 41 1.10 1.29 
UGG(W) 6 0.16 0.12 CGG(R) 2 0.05 0.15 CCG(P) 0 0 0 
GAU(D) 59 1.59 1.84 GAA(E) 66 1.78 1.74     
GAC(D) 5 0.13 0.16 GAG(E) 10 0.27 0.26     

*A total of 3711 codons were analyzed excluding the initiation and termination codons. RSCU, relative sunonymous codon usage. 

 
rRNA genes and tRNA genes 

As in all other insect mitogenome sequences, two 
rRNA genes are present in H. cunea. They are located 
between tRNALeu(CUN) and tRNAVal, and between 
tRNAVal and the A+T-rich region, respectively. The 
length of the H. cunea lrRNA is 1 426 bp, which is the 
longest among the available completely sequenced 
lepidopteran insects, with the size range from1 412 bp 
in D. saccharalis to 1 319 bp in A. melete. The length of 
the H. cunea srRNA is 808 bp, which is well within the 
range observed in the available completely sequenced 
lepidopteran insects, with the size range from 806 bp 
in O. lunifer to 774 bp in C. boisduvalii. 

The H. cunea mitogenome harbors 22 tRNA 
genes, which are scattered around the molecule (Table 
2; Fig. 1). The predicted secondary structure of the H. 
cunea tRNAs are shown in Fig. 3. Twenty tRNA genes 
were identified by tRNAscan Search [29]. These 20 
tRNA genes vary from 63 bp (tRNACys) to 71 bp 
(tRNALys) in size, and present a typical clover-leaf 
secondary structure of previously published mito-
chondrial tRNA genes. The H. cunea tRNASer(AGN) 
and tRNASer(UCN) genes not identified by tRNAs-
can-SE Search were determined to be 66 bp and 68 bp 
in size, respectively. Their sizes were determined by 
comparing the conserved relative genome position 
and sequence similarity with other lepidopteran mi-
togenome sequences. The tRNASer(UCN) also shows a 
typical clover-leaf secondary structure. However, the 
tRNASer(AGN) presents an unusual secondary struc-

ture lacking a stable stem-loop structure in the DHU 
arm, which has been observed in several other meta-
zoan species including insects [4]. The anticodons are 
identical to those observed in other lepidopteran in-
sects. 

A total of 23 unmatched base pairs occurred in 
the H. cunea tRNA genes. Twelve of 22 tRNA genes, 
including tRNAGln, tRNATrp, tRNACys, tRNAPhe, tRNAG-

ly, tRNAAla, tRNALeu(CUN), tRNALeu(UUR), tRNAHis, 
tRNAPro, tRNAThr, and tRNAVal, were found to have 18 
G-U mismatches in their secondary structures, which 
forms a weak bond. Three U-U mismatches were 
found in the amino acid acceptor stem of tRNAAla, 
tRNALeu(CUN), and tRNALeu(UUR). The tRNAThr gene 
was proposed to contain an A-A mismatch in the TψC 
stem, and the tRNASer(AGN) gene contained an A-A 
mismatch in the anticodon stem. Moreover, the 
tRNAHis and tRNALys genes were found to contain an 
extra nucleotide A in the TψC stem, respectively. 
Mismatches observed in tRNAs can be corrected 
through RNA-editing mechanisms that are well 
known for arthropod mtDNA [44]. The number of 
mismatches in the H. cunea is similar to those ob-
served in other available lepidopteran insects: 24 in A. 
pernyi [13], and 24 in E. pyretorum [16]; but lower than 
in O. lunifer where 35 mismatches were found [11]. No 
mechanism, however, has been deduced for such high 
numbers of mismatches in insect mitochondrial 
tRNAs. 
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Fig. 3 Inferred secondary structure of the 22 tRNAs of the Hyphantria cunea mitogenome. +, GT pairs; –, AT/GC pairs. The 
tRNAs are labeled with the abbreviations of their corresponding amino acids. Arms of tRNAs (clockwise from top) are the 
amino acid acceptor arm, the TψC arm, the anticodon arm, and the dihydrouridine arm. 

 
Noncoding and overlapping regions 

The H. cunea mitogenome harbors a total of 230 
bp intergenic spacer sequences, which are spread over 
18 regions ranging in size from 1 to 50 bp (Table 3). 
The largest intergenic spacer sequence is present be-
tween tRNAGln and ND2 gene, with an extreme rich-
ness in A and T nucleotides (92%). This spacer is not 
found in non-lepidopteran insect species [19], but is 
found to be a feature common to the 21 lepidopteran 
mitogenomes which have been sequenced to date. By 
alignment analysis, whilst invariant between each of 
the congeneric species-pairs which have been ex-
amined (O. furnicalis and O. nubilalis; B. mori and B. 
mandarina; A. pernyi and A. yamamai), this region 
showed limited sequence conservation between even 
closely related lepidopteran groups such as within 
Bombycoidea or between bombycoids and other ma-
crolepidopterans [11, 19], indicating it would imply 
no functional significance or might not serve as 
another origin of replication [15].  

Additionally, two other intergenic spacer se-
quences of more than 20 bp are present between 

tRNASer(AGN) and tRNAGlu (21 bp), and between 
tRNASer(AGN) and ND1 (34 bp), respectively. The 
spacer region of 34 bp also contains the ATACTAA 
motif [19], which is conserved across the Lepidoptera 
order (Fig. 4). This 7 bp motif is possibly fundamental 
to site recognition by the transcription termination 
peptide (mtTERM protein) [45]. This region is present 
in most insect mtDNAs even if the nucleotide se-
quence can be quite divergent [19]. 

Eighteen base pairs were identified as overlap-
ping sequences varying from 1 to 8 bp in four regions 
(Table 3). The longest overlap is 8 bp between tRNATrp 
and tRNACys. Similarly sized overlaps are also ob-
served in other sequenced lepidopteran species [14]. 
The 7 bp overlap with the reading frame involving the 
ATP8/ATP6 genes was found. This feature is common 
to other sequenced lepidopteran mitogenomes, and 
was found in many animal mitogenomes [5]. As for 
the two remaining overlaps, one is 1 bp between 
tRNALys and tRNAAsp, the other is 2 bp between 
tRNAGlu and tRNAPhe.  
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Fig. 4 Alignment of the intergenic spacer region between tRNASer(UCN) and ND1 of lepidopteran insects. The shaded 
ATACTAA motif [19] was conserved across the Lepidoptera order. 

 
 
 

A+T- rich region  

The H. cunea A+T-rich region is located between 
the srRNA gene and tRNAMet (Table 3; Fig. 1), which 
includes the origin sites for transcription and replica-
tion [45]. This region was identified to be 357 bp in 
length, which is well within the range observed in the 
completely sequenced lepidopteran insects, with size 
ranging from 319 bp in O. lunifer to 747 bp in Japanese 
B. mandarina (Table 4). The A+T-rich region shows the 
highest A+T content (94.96%) of any region of the H. 
cunea mitogenome. 

The presence of extra tRNA-like structures in the 
A+T-rich region has been reported in the lepidopteran 
insects. In the case of Chinese B. mandarina, one 
tRNASer(TGA)-like sequence is located within the 
A+T-rich region forming a structure with four 
stem-loops and one big loop [18]. In A. yamamai 
A+T-rich region, two tRNA-like structures are 
present: tRNASer(UCN)-like sequence and 
tRNAPhe-like sequence, which possess the proper an-
ticodon and form a clover-leaf structure, indicating 
they may be functional although there are many 
mismatches in both aminoacyl and anticodon stem 
regions [14]. However, no tRNA-like structure was 
detected in the H. cunea A+T-rich region. 

The presence of varying copy numbers of tan-
demly-repeated elements has been reported to be one 
of the characteristics of the insect A+T-rich region [7]. 

Some lepidopteran insects have been observed to 
possess the repeat element in the A+T-rich region. In 
the case of Antheraea, the A. pernyi A+T-rich region 
harbors a repeat element of 38 bp tandemly repeated 
six times [13], whereas the A. roylei A+T-rich region 
has five repeat elements [9, 13]. In Japanese B. manda-
rina, the A+T-rich region harbors a tandem triplica-
tion of a 126 bp repeat unit, whereas in B. mori and 
Chinese B. mandarina the A+T-rich region has only 
one repeat element [17, 18]. It has also been reported 
that Arethusana arethusa (Nymphalidae: Satyrinae), 
Leptidea sinapis (Pieridae), and Parnassius apollo (Papi-
lionidae) have a longer A+T-rich region (~500–700 
bp), due mainly to an increase in the size and copy 
number of repeat units [46]. However, the H. cunea 
A+T-rich region is comprised of non-repetitive se-
quences, but harbors several features (Fig. 5) common 
to the Lepidoptera A+T-rich region [11, 19]. In B. mori, 
the ON (origin of minority or light strand replication) 
is located 21 bp downstream from srRNA gene, which 
contains the motif ATAGA followed by an 18 bp 
poly-T stretch [47]. A very similar pattern occurs in H. 
cunea where the ATAGA motif is located 20 bp 
downstream from srRNA gene and is followed by an 
18 bp poly-T stretch. A microsatellite-like (AT)8 ele-
ment preceded by the ATTTA motif is present in the 3' 
end of the H. cunea A+T-rich region. The presence of a 
microsatellite preceded by the ATTTA motif is com-
mon in the control regions of insect mitogenomes, and 
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has been found in all other lepidopteran species 
which have been sequenced [19]. Finally, an 11 bp 
poly-A is present immediately upstream tRNAMet. 
This poly-A element is still a common feature of the 
A+T-rich region in Lepidoptera [19, 46]. This se-
quence has been suggested to be involved in the con-
trol of transcription and/or replication initiation in 
other insects or have some other unknown functional 
role [7]. 

Phylogenetic relationships 

To place the H. cunea mtDNA sequence in pers-
pective relative to other lepidopteran insect mitoge-
nomes and to probe into the phylogenetic relation-
ships among the lepidopteran superfamilies, a data 
set containing the concatenated amino acid sequences 
of 13 PCGs was generated. The sequences of the 13 
PCGs were concatenated, rather than analyzed sepa-
rately, to reconstruct the phylogenetic relationships, 
which may result in a more complete analysis [48]. 
The final alignment resulted in 3838 amino acid sites 
for the 19 ingroup and two outgroup taxa, including 
gaps. Of these sites, 1606 were conserved, 2170 were 
variable, and 1555 were informative for parsimony. 
The MP and NJ analyses generate overall similar to-
pology except for the branching superfamily among 
A. honmai, and Papillonoidea species (Fig. 6). The 
phylogenetic analyses support a close relationship 
between H. cunea and L. dispar with 100% bootstrap-
ping value, which is consistent with the morphologi-
cal classification. The phylogenetic analyses also 
support a sister relationship between Noctuoidea (H. 
cunea, L. dispar, and O. lunifer) and Geometroidea (P. 
atrilineata).  

The M. sexta is sometimes placed in their own 

superfamily Sphingidea. However, phylogenetic 
analyses based on the complete mitogenome in this 
study strongly support the placement within the 
superfamily Bombycoidea, which is consistent with 
the previous findings by morphological analysis [49] 
and by molecular analysis based on some nuclear 
genes [50]. 

These 19 sequences represent six superfamilies 
within the lepidopteran suborder: Bombycoidea, 
Geometroidea, Noctuoidea, Papillonoidea, Pyraloi-
dea, and Tortricidea. Based on morphological analy-
sis, Bombycoidea, Noctuoidea, Papillonoidea and 
Geometroidea are designated as the Macrolepidopte-
ra; Pyraloidea together with Macrolepidoptera are 
designated as Obtectornera; Tortricoidea is the sister 
to the remaining lepidopteran superfamilies covered 
in the present study (Fig. 6A) [49]. In the phylogenetic 
trees constructed (Fig. 6B and C), the butterflies of 
Papillonoidea (A. melete, A. issoria, and C. raphaelis) are 
sisters to the remaining lepidopteran superfamilies, 
also showing a basal position within the monophyly 
of Lepidoptera [16]. This result is different to the tra-
ditional morphological analyses (Fig. 6A). Also, recent 
phylogenetic analyses of 123 species representing 27 
superfamilies of Ditrysia based on five protein-coding 
nuclear genes (6.7 kb total) provide sufficient infor-
mation to conclusively demonstrate that several 
prominent features of the current morphology-based 
hypothesis, including the position of the butterflies, 
need revision [51]. These results present in this study 
suggest that the complete insect mitogenome se-
quence has a power to resolve the majority of family 
relationships within superfamilies, however, the 
deeper nodes among superfamilies need more efforts. 

 
 
 
 

 

Fig. 5 The features present in the A+T-rich region of Hyphantria cunea. The sequence is shown in the N strand. 
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Fig. 6 Phylogeny of lepidopteran insects. (A) Current hypothesis of lepidopteran superfamily relationships after Kristensen 
and Skalski (1999) [50]. Phylogenetic trees inferred from amino acid sequences of 13 PCGs of the mitogenome by using MP 
analysis (B) and NJ analysis (C). Drosophila yakuba [33] and Anopheles gambiae [34] were used as outgroups. The numbers 
above branches specify bootstrap percentages (1000 replicates). 
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