Int J Biol Sci 2010; 6(3):252-267. doi:10.7150/ijbs.6.252 This issue Cite

Research Paper

NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response

Xiaojun Xie1#, Jack Hu1#, Xiping Liu1, Hanjuan Qin1, Anthony Percival-Smith2, Yong Rao3, Shawn S.C. Li1

1. Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada;
2. Department of Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada;
3. Centre for Research in Neuroscience, Montreal General Hospital, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
# These authors contributed equally to this work.

Citation:
Xie X, Hu J, Liu X, Qin H, Percival-Smith A, Rao Y, Li SSC. NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response. Int J Biol Sci 2010; 6(3):252-267. doi:10.7150/ijbs.6.252. https://www.ijbs.com/v06p0252.htm
Other styles

File import instruction

Abstract

NIP/DuoxA, originally cloned as a protein capable of binding to the cell fate determinant Numb in Drosophila, was recently identified as a modulator of reactive oxygen species (ROS) production in mammalian systems. Despite biochemical and cellular studies that link NIP/DuoxA to the generation of ROS through the dual oxidase (Duox) enzyme, the in vivo function of NIP/DuoxA has not been characterized to date. Here we report a genetic and functional characterization of nip in Drosophila melanogaster. We show that nip is essential for Drosophila development as nip null mutants die at the 1st larval instar. Expression of UAS-nip, but not UAS-Duox, rescued the lethality. To understand the function of nip beyond the early larval stage, we generated GAL4 inducible UAS-RNAi transgenes. daG32-GAL4 driven, ubiquitous RNAi-mediated silencing of nip led to profound abnormality in pre-adult development, crinkled wing and markedly reduced lifespan at 29°C. Compared to wild type flies, da-GAL4 induced nip-RNAi transgenic flies exhibited significantly reduced ability to survive under oxidative stress and displayed impaired mitochondrial aconitase function. Our work provides in vivo evidence for a critical role for nip in the development and oxidative stress response in Drosophila.

Keywords: Numb Interacting protein, dual oxidase maturation factor, embryonic development, oxidative stress.


Citation styles

APA
Xie, X., Hu, J., Liu, X., Qin, H., Percival-Smith, A., Rao, Y., Li, S.S.C. (2010). NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response. International Journal of Biological Sciences, 6(3), 252-267. https://doi.org/10.7150/ijbs.6.252.

ACS
Xie, X.; Hu, J.; Liu, X.; Qin, H.; Percival-Smith, A.; Rao, Y.; Li, S.S.C. NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response. Int. J. Biol. Sci. 2010, 6 (3), 252-267. DOI: 10.7150/ijbs.6.252.

NLM
Xie X, Hu J, Liu X, Qin H, Percival-Smith A, Rao Y, Li SSC. NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response. Int J Biol Sci 2010; 6(3):252-267. doi:10.7150/ijbs.6.252. https://www.ijbs.com/v06p0252.htm

CSE
Xie X, Hu J, Liu X, Qin H, Percival-Smith A, Rao Y, Li SSC. 2010. NIP/DuoxA is essential for Drosophila embryonic development and regulates oxidative stress response. Int J Biol Sci. 6(3):252-267.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
Popup Image