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Abstract 

Skeletal muscle stem cells from food-producing animals are of interest to agricultural life 
scientists seeking to develop a better understanding of the molecular regulation of lean tissue 
(skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. En-
hanced understanding of muscle stem cell biology and function is essential for developing 
technologies and strategies to augment the metabolic efficiency and muscle hypertrophy of 
growing animals potentially leading to greater efficiency and reduced environmental impacts 
of animal production, while concomitantly improving product uniformity and consumer ac-
ceptance and enjoyment of muscle foods. 

Key words: Skeletal muscle stem cells, Satellite cells, Adipocytes, Adipofibroblasts, Embryogene-
sis, Postnatal myogenesis. 

Introduction 
Stem cells, cells that maintain their ability to 

replicate and can differentiate into various cell types, 
have been important in understanding cell regulation. 
In addition, these cells are used therapeutically with 
continued research hoping to increase their therapeu-
tic potential. Like many other organs, skeletal muscle 
contains various cell types and can give rise to both 
muscle-derived satellite cells and adipose tis-
sue-derived adipocytes, both of which are important 

to animal agriculture. It is well-known that satellite 
cells are important to postnatal skeletal muscle 
growth [1] and skeletal muscle regeneration in adult 
skeletal muscle [2, 3]. Almost fifty years of research 
with isolated satellite cells has focused on the activa-
tion and inhibition of their proliferation [4], regulation 
of their activity in vitro [5], the interaction of these 
cells with other cells like angiogenic cells [6], the 
identification of their subpopulation potential [2, 7, 8], 
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and their potential as vectors in genetic therapies [9]. 
More recently, it has become apparent that satellite 
cells exhibit more plasticity than was previous 
thought, since they can differentiate into cells with 
adipocyte features [10, 11]. Consideration of the mul-
tipotency of satellite cells to yield adipocytes has 
heightened interest in the regulation of these cells that 
might shed light on variables of disuse atrophy, senile 
muscular atrophy and the carcass composition va-
riables that are important in meat products. Alterna-
tively, adipocyte stem cells appear to be found in both 
the stromal vascular cell (SV) fraction [12], and the 
mature adipocyte fraction [13-15] of adipose tissue. 
While this observation was originally proposed in the 

mid 1970's [16, 17], it was not until recently that me-
thods were developed to repeatedly study the dedif-
ferentiation process of mature adipocytes in vitro [18, 
19]. Presently, a variety of studies are being conducted 
on the dedifferentiated progeny of mature adipocytes 
(Figure 1), and applications are being developed for 
tissue regeneration/engineering purposes [15]. Since 
hundreds of papers have been published on the topic 
of muscle-derived (muscle and adipose) stem cells, 
and their potential use for a variety of medical and 
agricultural applications, this paper is designed to 
address practical aspects of contemporary skeletal 
muscle stem cell research with specific application to 
animal agriculture. 

 

 

Figure 1: Phase contrast and oil-red-o photomicrographs of isolated fat cells in a variety of stages of development in vitro. 
A. Mature fat cells in ceiling culture (arrow; 20 X). B. Multilocular fat cell reverting to an adipofibroblast (arrow; 40 X). C. 
Adipofibroblasts that are beginning to proliferate (arrow; 20 X). D. Proliferating adipofibroblasts (10 X), E. Mature fat cell in 
ceiling culture (arrow; 40 X). F. Cells losing lipid at six days in culture (arrow; 40 X). G. Cells reverting to adipofibrob-
lasts—note the lipid halo (red stain) around nuclei (20 X). 

 

 

Figure 2:  Photomicrographs showing the presence of morphologically dissimilar cells (small cells; arrows) to satellite cells 
(large cells) in vitro. 
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Involvement of Skeletal Muscle and Adipo-
cyte Cells in Embryonic/Fetal Skeletal Mus-
cle Development 

 Early molecular events underlying the com-
mitment of embryonic stem cells to myogenic, adi-
pogenic or fibrogenic lineage remain largely unde-
fined. However, embryonic stem (ES) cells of proven 
quality have been isolated from a limited number of 
mammalian species. Most notably, ES cells were iso-
lated from the laboratory mouse Mus musculus in 1981 
[20, 21], and from nonhuman primates [22]. The plu-
ripotency of mouse ES cells have been most tho-
roughly established with the birth of normal, 
live-born mice after injection into blastocysts and 
embryo transfer into surrogate female mice. Fur-
thermore, the genome of mouse ES cells can be readily 
manipulated with the introduction of transgenes and 
through homologous recombination. The resulting 
engineered cells can undergo germline transmission 
to offspring. The pluripotency of human ES cell lines 
have also been well established, primarily by detailed 
analyses of pluripotency markers, and their ability to 
differentiate into a wide variety of cell types. Though 
considerable effort has been focused on developing 
germline-competent ES cells for agricultural species, 
efforts have been much less successful than with 
mouse and human. Several possibilities may contri-
bute to this difficulty, including species-specific dif-
ferences in the preimplantation developmental biol-
ogy of agricultural species as compared to mice, an 
incomplete knowledge of the growth factors required 
to support the culture of the explanted inner cell mass 
of agricultural embyros, and a limited knowledge of 
useful pluripotency markers for agricultural species 
as compared to mice or humans.  However, it seems 
likely that derivation methods and assays of pluripo-
tency for ES cells from agricultural species will im-
prove as knowledge from the rapidly-expanding stem 
cell field is obtained and applied.  In fact, a unique 
opportunity exists for the development of ES cells 
from agricultural species since they can be assayed for 
germline competency by injecting them into embryos 
and implantation into surrogate mothers, an assay 
that is prohibited for human ES cells.  In addition, it 
should be possible to use mouse ES cells (and their 
exquisite ability to be manipulated genetically), as a 
platform for basic research into satellite cell devel-
opment and function. In the future, if germline com-
petent ES cells from agricultural species are devel-
oped, knowledge from mouse ES cell research may be 
translated into applied research into the dynamics of 
skeletal muscle development in agricultural species. 

 In mammals, the majority of all skeletal muscle 
structures are finalized during the fetal stage of de-
velopment. Primary myofibers are first formed in the 
embryonic stage, followed by the formation of sec-
ondary myofibers in the mid and late gestation in 
humans, and late and neonatal stages in mice [23, 24]. 
Myogenesis is regulated by a series of transcription 
factors, including Pax 3, Pax 7, Gli, and four myogenic 
regulatory factors including MyoD, Myf-5, myogenin 
and MRF-4 [25]. The formation of secondary myofi-
bers overlaps with adipogenesis, and fibrogenesis, 
which are initiated at mid-gestation in humans, pigs, 
cattle and sheep, horses, chickens and late gestation in 
rodents. Myogenic, adipogenic and fibrogenic cells 
are derived from pools of embryonic stem cells (see 
below). Switching the commitment of these stem cells 
from myogenesis to adipogenesis may increase 
intramuscular fat, an event associated with muscle 
insulin resistance due to the paracrine effect of 
intramuscular adipocytes [26-28], and switching to 
fibrogenesis leads to impairment of skeletal muscle 
function including oxidative capacity [29]. A fi-
bro/adipogenic progenitor cell may exist in skeletal 
muscle (Figure 2), having impacts on intramuscular 
fat accumulation as well as fibrosis in disease states. 
This cell population could be responsible for the mas-
sive fibrosis observed in the plantaris, but not the so-
leus muscle, of IL-6 null skeletal muscle that was 
subjected to work-overload [30]. In addition, the at-
tenuation of myogenesis will reduce the muscle fiber 
density [31], exerting permanent negative effects on 
offspring muscle strength [32].  

 Both muscle cells and adipocytes are derived 
from mesenchymal stem cells which are abundant in 
the skeletal muscle at early developmental stages, 
especially during the fetal and neonatal stages. While 
most of the mesenchymal stem cells develop into 
myogenic cells, a small portion of these cells differen-
tiate into adipocytes which are the basis for intra-
muscular fat accumulation [23]. A pivotal factor in the 
fate of the cells is the Wnt family of proteins, as these 
proteins are paracrine growth regulators that might 
have different functions at cell development: Wnt 
signals may cause cell proliferation, apoptosis, cell 
fate determination, differentiation, or precursor cell 
maintenance. The canonical Wnt pathway is β-catenin 
dependent: binding of Wnt to Frizzled proteins acti-
vates Disheveled (DSH) family proteins which inac-
tivates glycogen synthase kinase 3 (GSK3), preventing 
it from phosphorylating β-catenin with subsequently 
increased degradation, leading to β-catenin accumu-
lation [33]. Without Wnt stimulation, the 
axin/GSK-3β/APC complex promotes the degrada-
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tion of β-catenin through its phosphorylation by 
GSK-3β [34]. Stabilized β-catenin enters the nucleus 
and interacts with members of the T cell factor/ 
Lymphoid enhancer factor (TCF/LEF) family of 
transcription factors to activate specific target genes 
[35]. Activation of the Wnt signaling pathway en-
hances myogenesis and inhibits adipogenesis in cul-
tured mesenchymal stem cells derived from bone 
marrow [36]. Blocking the β-catenin pathway reduces 
the total number of myocytes [37, 38]. Wnt signals are 
also highly expressed in preadipocytes and have been 
shown to be inhibitors of adipogenesis [39] by block-
ing the induction of C/EBPα and PPARγ [40]. Stabili-
zation of β-catenin is also associated with inhibition of 
adipogenesis in myoblasts and the age-related in-
crease in adipogenic potential of muscle satellite cells 
[41]. 

Specific Skeletal Muscles vs Specific Adi-
pose Depots 

Skeletal muscle stem cells are resident in all 
skeletal muscles, but may possess varying prolifera-
tive/differentiative capacity, due to location and/or 
function. Postnatal skeletal muscle is extremely res-
ponsive to environmental and physiological cues and 
is able to modify growth and functional characteristics 
in accordance with the demands placed on it. For 
example, exercise, injury or trauma initiate regenera-
tion and repair in skeletal muscle despite being 
largely composed of post-mitotic, multi-nucleated 
myofibers. The plasticity of skeletal muscle results, in 
large part, from a population of resident stem cells, 
often referred to as satellite cells. For most in vitro 
studies with rodents a collection of back and 
hind-limb muscles are used to isolate myogenic satel-
lite cells. No distinction is given to the contribution of 
specific skeletal muscles in terms of numbers of satel-
lite cells isolated. Recent studies describing the isola-
tion and study of satellite cells from both ruminant 
and non-ruminant meat animals have described the 
specific skeletal muscles isolated but there are insuf-
ficient studies to determine if regulation of satellite 
cells isolated from different muscles differs. However, 
there are considerable reports that adipocyte behavior 
differs depending on the adipose depot from which 
the cells were isolated suggesting location may impact 
activity in cells of different tissues. For example, dif-
ferent adipose tissue depots possess unique growth, 
development and regulation properties [42-44], en-
zymatic activities [44-46] that are animal dependent 
[44, 45, 47-60]. These types of studies parallel recent 
ones using purified cultures of adipocyte stem cells at 
both the cell and molecular level [14, 61]. 

Postnatal Myogenesis 
When needed, satellite cells proceed through a 

terminal differentiation program culminating in fu-
sion competency. Interestingly, we are still identifying 
new growth factors (e.g. Wnt4) that influence satellite 
cell proliferation [62], which indicated that there are 
probably additional mechanisms yet to be identified. 
During muscle fiber hypertrophy or repair, satellite 
cells are able to fuse with the existing muscle fiber for 
nuclei donation. When muscle fibers are lost to dam-
age, satellite cells fuse to each other for the formation 
of a nascent myotube and eventual muscle fiber re-
placement. Of course, skeletal muscle is a dynamic 
tissue composed of numerous elements including 
vascular, nervous and connective tissue. It is during 
skeletal muscle development and regeneration that 
these elements need to grow or repair in conjunction 
with the muscle fibers in order to produce a fully 
functional unit. This is supported by previous studies 
indicating that muscle regeneration involves the 
coordination of myogenesis, revascularization and 
neurogenesis in order to restore proper muscle func-
tion. Communication between myogenic and other 
cells seems plausible, especially given the number of 
growth factors and myokines produced by satellite 
cells leading to the question “do satellite cells play 
additional roles during skeletal muscle growth and 
repair aside from the traditional myogenic role?” Re-
cently, investigators have begun to address this novel 
question and produce evidence in support of this 
idea. To characterize these interactions, an in vitro 
co-culture model composed of microvascular frag-
ments (MVF) and satellite cells was developed [6]. In 
this system, isolated MVF suspended in collagen gel 
are cultured over a rat SC monolayer culture. In the 
presence of SC, MVF exhibit greater indices of angi-
ogenesis than MVF cultured alone. Recent data by 
Christov et al. [63] indicates that satellite and endo-
thelial cells are tightly juxtaposed in the muscle niche 
suggesting that direct contact may be an important 
means of cellular communication [63]. Collectively, 
these initial observations suggest that a previously 
unexplored aspect of satellite cell activation is the 
initiation of a pro-angiogenic program. 

 While a number of reports exist that document 
the extrinsic and intrinsic regulation of postnatal 
myogenic satellite cells, the plasticity of skeletal mus-
cle is also exemplified by the capacity to produce and 
respond to various cytokines. Depending on the na-
ture of the inflammatory event and cytokine profile 
present, skeletal muscle will respond in a catabolic or 
anabolic fashion. For example, skeletal muscle 
breakdown during periods of infection supports 
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processes related to survival [64]. In contrast, myo-
trauma and inflammation following a bout of exercise 
ultimately leads to muscle hypertrophy [65]. To date, 
studies examining the effect of various cytokines on 
satellite cell activity have provided mixed results that 
may be related to cell type, dose and time of exposure. 
Regardless, early studies show that macrophage 
co-culture and monocyte conditioned medium have 
positive effects on satellite cell proliferation and that 
this effect may be mediated through interleukin (IL)-6 
autocrine secretion by satellite cells. During work 
overload induced skeletal muscle hypertrophy, IL-6 
expression is increased in a transitory manner [66]. 
Recently, it was demonstrated that IL-6 was necessary 
to keep fibrosis in check within the plantaris, but not 
the soleus muscle [30]. Investigators are extending 
these novel observations to include activated T cell 
function on satellite cells [67]. Despite such work, little 
is known about myogenic and white blood cell com-
munication, an area that could provide much needed 
stimulus for therapies targeting skeletal muscle in-
flammation and regeneration. 

Postnatal Adipogenesis 
At the cellular level, two different physiological 

components are at play. The first, lipid metabolism, is 
the energy flow into or out of adipocytes (lipogenesis 
and lipolysis), respectively [68], and does not require 
stem cell activity. The second physiological compo-
nent, termed adipogenesis, is (collectively) the dis-
cernable cellular transitions, through which a spin-
dle-shaped stem-like precursor cell proceeds, first 
forming a preadipocyte devoid of lipid, then a multi-
locular adipocyte, and, finally, a mature (unilocular) 
adipocyte [12, 69]. Whereas countless scientific papers 
are published each year regarding both of these areas 
(lipid metabolism and adipogenesis), little gains have 
been made to either formulate an effective exogenous 
treatment for inducing an overall reduction in body 
lipid or for altering (decreasing) the cellular conver-
sion to form adipocytes. Indeed, the majority of pub-
lished articles in the adipogenesis field suggest that 
once a preadipocyte accumulates lipid, then the cell is 
a terminally differentiated adipocyte with a role in 
lipid metabolism from that point onward [reviewed in 
13]. In most adipose depots, the number of adipo-
cyte-like cells with the capability of lipid synthesis 
and storage does not appear fixed at birth. Rather, 
postnatal adipocyte growth is both hyperplastic and 
hypertrophic, the extent of each changing with depot 
location [45, 45, 53, 70-73]. It is interesting to note that, 
according to traditional thought, should additional 
adipocytes be required in specific adipose depots, and 
then the fibroblast-like cells that reside in the connec-

tive tissue fraction are converted into the requisite 
number of adipocytes. 

In vitro studies demonstrate that peroxisome 
proliferator-activated receptor γ (PPARγ) and 
CCAAT-enhancer-binding proteins (C/EBPs) are 
crucial factors controlling adipogenesis. Their expres-
sion induces adipogenesis from embryonic stem cells 
[74]. Published evidence supports the notion that the 
mechanisms regulating adipogenesis in farm animals 
with human and rodents are somewhat similar. Adi-
pogenesis initiates during the fetal stage, and around 
mid-gestation in ruminant animals [24, 75-78], and 
late gestation in pigs and rodents [78]. The difference 
in the initiation of adipogenesis is mainly due to the 
difference in maturity of neonatal animals at birth [23]. 
Adipogenesis is regulated by several key transcrip-
tion factors, including PPARγ and C/EBPs [12]. 
C/EBPβ and-δ are first induced by adipogenic stimuli 
and followed by an increase in PPARγ and C/EBPα 
expression. C/EBPα and PPARγ re-enforce each other 
to turn on adipocyte-specific programs to promote 
adipogenesis [12, 79-81]. The adipocyte determination 
and differentiation-dependent factor-1/sterol regula-
tory element-binding protein-1 (ADD-1/SREBP-1) is 
another important protein induced during the early 
stages of adipogenesis that regulates genes involved 
in lipogenesis [82]. PPARγ is the master regulator of 
adipogenesis. PPARγ forms a heterodimer in partner 
with retinoid X receptor α (RXRα) and binds to pe-
roxisome proliferator response elements (PPREs) on 
the promoters of targeted genes [83]. Therefore, reti-
noid acids affect adipogenesis via RXRα and its inte-
raction with PPARγ [84, 85]. PPARγ is a li-
gand-activated transcriptional factor. In the inactive 
state, PPARγ is associated with co-repressors to si-
lence its transcription activity. Binding of ligands 
leads to the replacement of co-repressors with 
co-activators possessing histone acetyl transferase 
activity such as cAMP response element binding 
protein binding protein (CBP/p300). Acetylation of 
histones leads to local chromatin decondensation and 
gene expression. Fatty acids are ligands for PPARγ [86, 
87] and it appears that oxidized fatty acids activate 
PPARγ with higher potency compared to the native 
fatty acids [88]. 

Extracellular Matrix and Stem Cell Activity 
Changes in the expression of extracellular matrix 

genes will affect muscle mass accretion impacting 
both meat yield and potentially meat quality. Indeed, 
communication between the extracellular matrix and 
skeletal muscle stem cells plays a pivotal role in the 
regulation of cellular events. In vitro studies have 
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shown that the extracellular matrix is essential in the 
regulation of gene expression, cell proliferation, mi-
gration, adhesion, and differentiation, all of which are 
vital for muscle development and growth [89]. Spe-
cifically, the presence of the extracellular matrix is 
required for skeletal muscle satellite cells to respond 
to growth factors. Through interactions with growth 
factors such as transforming growth factor-β (TGF-β) 
[90], fibroblast growth factor 2 [91], myostatin [92, 93] 
and hepatocyte growth factor [94], the extracellular 
matrix can regulate the ability of skeletal muscle sa-
tellite cells to proliferate or differentiate. Differences 
in the expression of growth factor regulating extra-
cellular matrix proteoglycans will alter satellite cell 
responsiveness to the growth factor. For example, the 
overexpression of the heparan sulfate proteoglycan, 
glypican-1, in satellite cells will increase the respon-
siveness of these cells to fibroblast growth factor 2, 
and underexpression reduced satellite cell prolifera-
tion and differentiation [95]. 

Dedifferentiation and Transdifferentiation 
The reprogramming of somatic cells to an em-

bryonic state has been achieved by three principal 
methods (1) somatic cell nuclear transfer [97, 97], (2) 
fusion mediated reprogramming, where ES cells are 
fused to somatic cells to yield pluripotent tetraploid 
lines with properties of ES cells [98], and (3) regula-
tory factor-induced pluripotency, a new method that 
yields induced pluripotent stem (iPS) cells [99]. Since 
it has been difficult to derive ES cells from preim-
plantation embryos of agricultural species, the use of 
iPS approach holds special promise. In the iPS pro-
cedure, combinations of key transcriptional regula-
tory factors (OCT4, SOX2, KLF4, and c-MYC) are in-
troduced into fibroblasts by retroviral or lentiviral 
transduction. The expression of these factors then 
induce the pluripotent state in the recipient cells, 

possibly by inducing a transcriptional state that is 
quite similar to that found in ES cells. In addition, it is 
likely that extensive chromatin remodeling and at-
tendant epigenetic changes also accompany the iPS 
change in developmental state. Use of the iPS ap-
proach offers an attractive strategy to produce ES-like 
cells for agricultural species, which are expected to 
function much like ES cells. The first success with iPS 
technology for agricultural species was recently re-
ported in a study that shows that porcine iPS cells can 
be produced from pig mesenchymal stem cells [100]. 
The pluripotency of the porcine iPS cells was demon-
strated by their ability to contribute to live-born chi-
meric offspring. In another recent report, mouse iPS 
cells have been differentiated into myogenic cells 
[101]. Therefore, it now seems highly likely that iPS 
approaches may yield porcine myogenic stem cells, 
thus opening the door to in vitro studies of muscle 
protein production with obvious avenues for future 
applied  research. 

Conclusions 
 Even though a number of lessons have been 

learned with respect to agricultural stem cells (Table 
1), presently we are still struggling just to understand 
the basic concepts of in vitro culture and the deve-
lopmental patterns of muscle satellite cells and 
intramuscular preadipocytes, stromal vascular cells 
and mature adipocytes. Completing this elementary 
line of research, however, will still provide a greater 
understanding of regulatory mechanisms controlling 
growth of these important tissues in production ani-
mals. Subsequently, defining the transcriptional sig-
nature and uncovering potential epigenetic network 
effects of these cell populations on the regulation of 
muscle development may result in future develop-
ments of new paradigms in animal production. 

 

Table 1: Lessons learned with respect to agricultural stem cell research. 
Lesson 1 – Research with stem 
cells must be novel 

General cultures of muscle-derived satellite cells were initially isolated and examined for factors that 
regulated their proliferative and differentiative activity [5, 102]. However, it was determined that many of 
the cells that were in satellite cell isolates were likely heterogeneous in a variety of functional properties 
[3, 7, 8, 103]. Due to the thought that different cell types are co-isolated with muscle-derived satellite cells, 
it is logical to conclude that cell subpopulation dynamics may play a key role in subpopulation respon-
siveness to intrinsic and extrinsic regulatory signals. Moreover, if specific satellite cell subpopulations 
exist in different proportion/abundance at different developmental times, should we re-examine satellite 
cell subpopulation dynamics as a function of aging? The same is easily extended to muscle-derived adi-
pose stem cells. Is the (past) research with adipose stem cells interpretable, considering the subpopulation 
dynamics of fractional contributions of cells during development? Questions like these will need to be 
addressed in the immediate future should agricultural stem cell research progress. 

Lessons 2 and 3 – Research 
should be productive and appli-
cable 

For all agricultural research with muscle-derived stem cells, new principles and theories to address prac-
tical problems and questions must be added to justify the research to funding agencies. This may include 
an end-point whereby stem cell-based therapies to an animal health-related dysfunction are developed 
[104, 105], or for applications involving tissue engineering [3, 7, 8, 103] 

Lesson 4 – Progress in research 
may be made even without the 
most up to date laboratory set-

Better tools may need to be developed before mechanistic experiments can proceed. Whether the chal-
lenges are ill-defined growth media (culture environment), poorly designed cell cultureware, cell culture 
inserts, or analyses technologies, to make correct interpretations the system employed needs to be de-
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tings, complete experimental 
protocols and infrastructure 

fined. Alternatively, if the tools and procedures to conduct research are not available, one should not be 
hesitant to devise and develop them. Any timely, new methods development will help numerous (other) 
laboratories. 

Lessons 5 and 6 – Do not to 
give-up on a research problem 
with stem cells, and there are a 
variety of levels at which one can 
contribute effectively to the 
scientific arena 

If the experimental system is relatively constant, environmental conditions are easily reproduced and 
short incubation periods are all that is needed to see a result, it is likely that substantial progress may be 
made with whatever cell is employed. However, for the most part this is not the case. Cells used are 
usually new and not easily categorized in terms of growth reagents needed to sustain them. Environ-
mental conditions may need to be altered depending on the specific physiology being evaluated, and 
incubation condition may need to be changed as the cells age. These types of circumstances are normal 
when dealing with stem cells, and any alteration in any of the variables resulting in some difference in 
stem cell physiology may result in a new contribution to the scientific literature. 

Lesson 7 – Develop viable re-
search teams 

Agricultural stem cell research is a broad area of scientific endeavor. It draws from a great many estab-
lished disciplines, including developmental biology, cell biology, genetics, computational biology and 
bioinformatics, epigenetics, and others. Though there is a great deal of research activity focused on animal 
agricultural stem cell research, the field as a whole is still in its infancy. The specialist who is trained in one 
of the above disciplines can make good progress by applying his unique expertise to a team effort. For 
instance, a cell biologist that does not possess experience in molecular techniques might consider focusing 
on cells, cell behavior, cellular regulation and other aspects of cell physiology. By doing so, he brings the 
most strength to the research. Others might be recruited to conduct other aspects of the research effort. 
The development of research "teams" to solve mutually agreeable research projects results in a "divide and 
conquer" approach. In lean funding times, such a team effort will make scholarly efforts with skeletal 
muscle stem cells much more efficient [106]. 

Lesson 8 – Publish all research, 
as it may influence other labora-
tories in different ways 

All significant information related to the use of agriculturally-derived stem cells should be published. 
Someone, somewhere, might need the very information that you possess. What you may think is unim-
portant may be vitally important to others. The stem cell literature contains a surprisingly high volume of 
research papers that can best be described as "accounts of technical tinkering". Many of these methods and 
technology development papers describe improvements to cell culture methods for specific kinds of stem 
cells, the design and use of assays for cell type, and improved methods for the directed differentiation of 
stem cells of various kinds into a wide array of differentiated lineages. Many of the published methods 
work only partially. For instance, differentiation methods that produce desired cells with only marginal 
efficiency and purity are still readily publishable. Even negative results, which are notoriously difficult to 
publish at all in most disciplines, can still be published in the stem cell arena, provided that the experi-
ments were well designed and controlled (though with negative outcomes).   

Lesson 9 – Sometimes your re-
search may be a bit ahead of its 
time 

At times it may be necessary for you to venture onto a different aspect of the research and then return to 
your original model when conditions are more correct. 

Lesson 10 – One must be adapt-
able, in all research outlets, while 
keeping the original research 
focus in light (Question yours 
and others results) 

Also, only by questioning results can we make progress forward in our understanding of biological me-
chanisms.  For example, why was fibrosis only observed in the plantaris and not the soleus in IL-6 null 
mice that were subjected to work overload?  Why do satellite cells play a role in angiogenesis?  Why do 
immune cells interact with muscle?  These are just a couple of the myriad of questions that exist for agri-
cultural stem cell researchers. The process of stem cell research is a dynamic one in which, even though 
you would like to control all aspects of the research pathway only in a few occasions do things really 
turn-out the way you planned. 
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