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Abstract 

Artificially cultivating Chroogomphus rutilus is too inefficient to be commercially feasible. 
Furthermore, isolating C. rutilus mycelia in the wild is difficult. Thus, it is important to de-
termine the natural habitat of its fruiting body. This study focused on the ecology of the C. 
rutilus habitat to isolate and classify beneficial microorganisms that could affect its growth, 
which could be used in future research on artificial cultivation. In total, 342 isolates were 
isolated from soil samples collected around a C. rutilus colony in the Beijing region. Of these, 
22 bacterial and 14 fungal isolates were selected for sequencing and phylogenetic analysis, 
based on their growth characteristics and colony morphology. Using 16S rRNA gene se-
quence analysis, the bacterial isolates were divided into two monophyletic clusters which had 
significant hits to the genera Bacillus and Pseudomonas, respectively. Using internal transcribed 
spacer (ITS) sequence analysis, fungal isolates were divided into four monophyletic clusters: 
Penicillium, Trichoderma, Mortierella, and Bionectria. Moreover, the phylogenetic diversity of 
these isolates was analysed. The results indicated that numerous microorganisms were 
present in C. rutilus habitat. This was the first reported examination of the microbiological 
ecology of C. rutilus. 
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Introduction 

Chroogomphus rutilus (Schaeff.) O.K. Mill. is 
a type species in the genus Chroogomphus. The com-
mon names pine-spike and spike-cap are based on its 
shape and close growth association with pine trees. 
Based on records and our recent investigation, Chroo-
gomphus spp. inhabit the northern hemi-
sphere, including Asia, North America, and Europe 
[1]. C. rutilus is edible and especially flavourful when 

dried. Furthermore, it has been investigated as a 
source of antibiotics and other potentially useful sec-
ondary compounds. The fruiting body is economi-
cally important for food or herbal medicine use [2].  

Since artificially cultivating C. rutilus is difficult, 
making it too expensive to be a common commodity. 
There have been many attempts to find an efficient 
method of cultivating C. rutilus. Researchers have 
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attempted to imitate its natural habitat to promote 
mycelia growth, such as using soil collected near wild 
C. rutilus colonies and using pine tree tissue culture 
medium [3]. Pure mycelia cultures have been isolated; 
however, artificial cultivation is still inefficient and 
the fruiting body is difficult to obtain under artificial 
conditions [4]. Given the short time frame of research 
and lack of knowledge concerning the niche of C. ru-
tilus in its ecosystem, it is not surprising that culti-
vating C. rutilus artificially is difficult, even outdoors. 

Artificial cultivation may have failed due to the 
complex habitat C. rutilus requires. C. rutilus may re-
quire specific soil chemical composition and the pre-
sents of certain plants and microbes in order to grow. 
Some researchers have examined the plants living in 
C. rutilus habitats [5]; however, little research has been 
done to investigate the microorganisms present. Be-
cause no organism lives entirely isolated, soil micro-
organisms could directly or indirectly affect spore 
germination and fruiting body formation [6]. Fur-
thermore, organisms often establish biological inter-
actions, such as symbiosis, competition, and autoe-
cism. C. rutilus interacts with other fungi and bacteria 
in its habitat, and may affect each other’s growth or 
life cycles [7]. 

Based on the known requirements of casing-soil 
for the half artificial cultivation of Morchella, Shen et al. 
(2008) examined the bacterial community contained in 
the fruiting body of Morchella using a denaturing 
gradient gel electrophoresis (DGGE) technology. To 
some extent, the results of sequencing the 16S rRNA 
genes of 7 kinds of bacteria reflect the bacterial com-
munity structure inside Morchella [8]. Shen et al. (2009) 
also reported that the investigation of fungal com-
munities inhabiting Morchella growth soil using 
DGGE. Sequence analysis of 12 recovered dominant 
bands revealed the presence of 10 fungi whose growth 
may have been inhibited by the dominant Morchella 
[6]. All of the above studies suggest that co-occurring 
microbes play an important role in fungal growth. 

This study was initiated to investigate the diver-
sity of microorganisms isolated from soil near a C. 
rutilus colony in the Beijing region. Bacteria and fungi 
were obtained selectively from soil samples collected 
around C. rutilus growing areas in the Beijing region 
based on their growth characteristics and colonial 
morphology. The 16S rRNA gene sequences of the 
bacteria isolates and the ITS gene sequences of the 
fungi isolates were amplified and sequenced respec-
tively. The phylogenetic diversity of the isolated bac-
teria and fungi was determined based on the 16S 
rRNA genes and ITS sequences, respectively. This 
was the first demonstration of the microbe sur-
rounding C. rutilus. 

Materials and Methods 

Soil sample collection and microbe isolation 

Soil samples about 10 cm under the fruiting body 
of a C. rutilus colony in the Beijing region of the Peo-
ple’s Republic of China were collected at an attitude 
of 790 m. The GPS coordinate was N40 57.186 E116 
29.923.The samples were immediately transported to 
the laboratory for gradient dilution using autoclaved 
water and aliquots were transferred to appropriate 
growth medium. Three consecutive propagations us-
ing beef extract-peptone agar slants for bacteria and 
PDA media for fungi were conducted. After a 2-3-day 
incubation period at 28°C, single colony of per prop-
agation was selected for observation. Out of the colo-
nies owing the same growth characteristics and 
morphology, only one colony of each morpho-species 
was selected for further genetic sequencing. In this 
study, growth characteristics mainly included growth 
rate and colony morphologies of the isolated strains 
included size, color, diaphaneity of the colony, the 
degree of smoothness and so on. All strains in this 

study (Table 1) were preserved at -80°C in their re-

spective liquid media with glycerol added to a final 
concentration of 15% (v/v). 

Genomic DNA extraction from the isolates 

Bacterial genomic DNA was extracted according 
to the methods described by Sambrook (1989) [9] for 
further 16S rRNA amplification. Fungal genomic 
DNA was extracted following the methods described 
by Doyle and Doyle (1987) [10], with some modifica-
tions. These pure DNAs extracted from the isolates 
were then sequenced for phylogenetic analyses. 

16S rRNA gene amplification, cloning, and se-
quencing 

The nearly complete 16S rRNA gene sequence, 
about 1,500-bp long, was amplified using the univer-
sal forward primer P1 and the universal reverse pri-
mer P6 [11] (Table 2). The PCR reactions were run 
using the methods described by Chouari et al. (2003, 
2005) [12, 13]. In this study, we used high fidelity Ex 
taq polymerase (Takara, Japan). The 16S rRNA gene 
PCR products were purified following the Nucleic 
Acid Recycling and Purification Kit protocol (Tiangen 
Biotech, P. R. China). Purified nucleotide sequences 
and pGEM-T plasmid vectors (Promega, USA) were 
ligated overnight at 4°C. Recombined plasmids were 
transformed into Escherichia coli DH10B by electro-
poration (BTX ECM830, USA) at 500 V for 17 ms and 
evaluated using blue-white screening. Plasmids con-
taining 16S rRNA gene sequences were extracted and 
purified according to the method described by Sam-
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brook (1989) [6]. In the present study, three positive 
clones were selected for sequencing by using the 
primers RV-M/M13-47 (Table 2) in both directions 

with an ABI377 automatic sequencer (Applied Bio-
systems, USA).  

Table 1. Strains isolated in this study 

Strain number Genus 16S rRNA sequences GenBank acces-
sion number 

ITS sequences GenBank 
accession number 

I2X Bacillus sp. HQ727951 - 

I3X Bacillus sp. HQ727952 - 

I4X Bacillus sp. HQ727953 - 

II2X Bacillus sp. HQ727954 - 

II3X Bacillus sp. HQ844041 - 

III1X Bacillus sp. HQ727955 - 

III3X Bacillus sp. HQ727956 - 

IV1X Bacillus sp. HQ727957 - 

IV3X Bacillus sp. HQ727958 - 

V1X Bacillus sp. HQ727959 - 

V2X Bacillus sp. HQ727960 - 

V3X Bacillus sp. HQ727961 - 

V4X Bacillus sp. HQ727962 - 

VI2X Bacillus sp. HQ727963 - 

VII1X Bacillus sp. HQ727964 - 

VII2X Bacillus sp. HQ727965 - 

VII3X Bacillus sp. HQ727966 - 

II4X Pseudomonas sp. HQ727967 - 

III4X Pseudomonas sp. HQ727968 - 

IV2X Pseudomonas sp. HQ727969 - 

VI3X Pseudomonas sp. HQ727970 - 

I1X Pseudomonas sp. HQ844040 - 

I1Z Penicillium sp. - HQ730121 

I2Z Trichoderma sp. - HQ730122 

II1Z Penicillium sp. - HQ730123 

II2Z Bionectria sp. - HQ730124 

II3Z Trichoderma sp. - HQ730125 

III1Z Mortierella sp. - HQ730126 

III2Z Penicillium sp. - HQ730127 

V2Z Penicillium sp. - HQ730128 

VI1Z Mortierella sp. - HQ730129 

VI2Z Trichoderma sp. - HQ730130 

VII1Z Trichoderma sp. - HQ730131 

VII2Z Mortierella sp. - HQ730132 

IV2Z Trichoderma sp. - HQ844042 

V3Z Mortierella sp. - HQ844043 

 
 

Table 2. Primers used in this study 

Primers  Sequence (5’→3’) Reference 

16S P1 AGAGTTTGATCCTGGTCAGAACGCT Yanagi and Yamasato, 1993 

16S P2 TACGGCTACCTTGTTACGACTTCACCCC Yanagi and Yamasato, 1993 

ITS1 TCCGTAGGTGAACCTGCGG White et al, 1990 

ITS4 TCCTCCGCTTATTGATATGC White et al, 1990 

RV-M GAGCGGATAACAATTTCACACAGG Takara, Code No. D3880, Japan. 

M13-47 CGCCAGGGTTTTCCCAGTCACGAC Takara, Code No. D3887, Japan. 
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ITS gene amplification, cloning, and sequencing  

Recently, the ITS region of the ribosomal operon 
has become preferentially used for fungi classification 
instead of 18S ribosome RNA sequences [14]. The en-
tire stretch of ITS1-5.8S-ITS2, approximately 750-bp 
long, was amplified using the universal forward pri-
mer ITS1 and the universal reverse primer ITS4 [15]. 
Ex taq polymerase (Takara, Japan) was used. The pu-
rification and sequencing procedures were the same 
as those described for the 16S rRNA sequences. 

Sequence analysis and phylogenetic tree con-
struction 

The 16S rRNA and ITS gene sequences of the 
isolated strains were compared with sequences in 
DDBJ/EMBL/GenBank using the basic local align-
ment search tool (BLAST) [16]. The isolates had sig-
nificant hits to the genus which owed the lowest 
e-value in the results of BLAST. When more than one 
sequence had the same e-value, only the first sequence 
was selected. Further, sequences were aligned using 
the Clustal_X software [17]. The distances were cal-
culated according to two-parameter method [18]. The 
phylogenetic tree was inferred using the neigh-
bour-joining methods [19]. Bootstrap analysis was 
based on 1,000 re-samplings. The MEGA4.0 package 
[20] was used for all analyses. All 16S rRNA se-
quences of the Bacillus and Pseudomonas type strains 
were obtained from the websites at  
http://www.bacterio.cict.fr/b/bacillus.html and 
http://www.bacterio.cict.fr/p/pseudomonas.html, 
respectively. The ITS sequences of the fungi type 
strains were obtained from DDBJ/EMBL/GenBank. 

Results 

Bacteria and fungi isolation from the soil samples 

In total, 342 isolates were selectively obtained 
from soil samples collected near a C. rutilus colony in 
the Beijing region. Of these, 22 bacterial and 14 fungal 
isolates were selected out of 342 isolates based on the 
methods described in Materials and Methods.  

Sequencing and phylogenetic analysis of the 16S 
rRNA gene sequences 

The nearly complete 16S rRNA gene sequences 
of the 22 bacteria isolates were amplified using the 
universal primers for the 16S rRNA sequence shown 

in Table 2 and sequenced. Comparing the 16S rRNA 
sequences with those in DDBJ/EMBL/GenBank, the 
strains labeled I2X, I3X, I4X, II2X, II3X, III1X, III3X, 
IV1X, IV3X, V1X, V2X, V3X, V4X, VI2X, VII1X, VII2X, 
and VII3X had significant hits to Bacillus spp. and 
those labeled I1X, II4X, III4X, IV2X, and VI3X had 
significant hits to Pseudomonas spp.. The 16S rRNA 
sequence GenBank accession numbers of these strains 
are indicated after the bacterial names in Table 1. 

A phylogenetic tree based on the Bacillus spp. 
listed in the website http://www.bacterio.cict.fr/b/ 
bacillus.html and the 17 sequenced Bacillus isolates 
was established (data not shown). Based on genetic 
distances, Bacillus spp. that had high similarities with 
the isolates were selected to construct the phyloge-
netic tree. The 17 Bacillus isolates formed three clus-
ters (Fig. 1). Cluster I included eight isolates. The 
strains labeled V1X, VII1X, V4X, VII3X, and I3X were 
clustered with B. simplex, exhibiting 99.9, 99.9, 99.9, 
100, and 100% 16S rRNA sequence similarity with B. 
simplex, respectively. Strains VI2X, V3X, and IV1X 
clustered with B. sp. LMG 20238, all exhibiting 99.9% 
16S rRNA sequence similarity with B. sp. LMG 20238. 
Cluster II included strains II3X and III1X, which had 
99.9% 16S rRNA sequence similarity with B. aryabhat-
tai. Cluster III consisted of seven strains. Strains I2X, 
V2X, I4X, VII2X, II2X, and III3X were clustered with B. 
thuringiensis, exhibiting 99.9, 99.9, 100, 99.9, 100, and 
100% 16S rRNA sequence similarity, respectively. 
Strain IV3X showed the highest 16S rRNA sequence 
similarity, 99.9%, with B. cereus. 

The phylogenetic diversity of the Pseudomonas 
isolates was analyzed as described above for Bacillus. 
A phylogenetic tree was constructed based on the 
Pseudomonas spp. in the website 
(http://www.bacterio.cict.fr/p/pseudomonas.html) 
and the five isolates (data not shown). Using genetic 
distances, the Pseudomonas spp. which had high simi-
larities with these five isolates were selected to con-
struct the phylogenetic tree. The Pseudomonas isolates 
formed two clusters (Fig. 2). The Pseudomonas isolates 
labeled II4X, VI3X, IV2X, and III4X clustered with P. 
koreensis, exhibiting 99.8, 99.7, 99.8, and 99.8% 16S 
rRNA sequence similarity, respectively. In the other 
cluster, strain I1X had 99.8% similarities with P. um-
songensis. 
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Fig. 1 Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the distance of isolated strains with 

the nearest species of the genus Bacillus. Pseudomonas agarici ATCC25941 was used as an out group. Bootstrap percentage 

values as obtained from 1,000 resamplings of the date set are given at the nodes of the tree. Bar, 0.01 substitutions per 

nucleotide position.  
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Fig. 2 Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the distance of isolated strains with 

the nearest species of the genus Pseudomonas. Bacillus subtilis NCDO 1769T was used as an out group. Bootstrap percentage 

values as obtained from 1,000 resamplings of the date set are given at the nodes of the tree. Bar, 0.02 substitutions per 

nucleotide position. 
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Fig. 3 Neighbour-joining phylogenetic tree based on ITS sequences showing the distance of isolated strains with the nearest 

species of the genus Penicillium. Trichoderma viride ATCC20898 was used as an out group. Bootstrap percentage values as 

obtained from 1,000 resamplings of the date set are given at the nodes of the tree. Bar, 0.005 substitutions per nucleotide 

position. 
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Sequencing and phylogenetic analysis of the ITS 

sequences 

Because ITS sequences can accumulate muta-
tions at a faster rate than the 5.8S, 18S, and 28S rRNA 
genes, the ITS region is typically most useful for mo-
lecular systematics at the species or within species 
level [21, 22]. The ITS1-5.8S-ITS2 gene sequences of 
the 14 isolates were compared with sequences listed 
in DDBJ/EMBL/GenBank, indicating that they had 
significant hits to the genera Penicillium, Trichoderma, 
Mortierella and Bionectria. The strains labeled I1Z, II1Z, 
III2Z, and V2Z had significant hits to Penicillium. 
Strains I2Z, II3Z, IV2Z, VI2Z and VII1Z had signifi-
cant hits to Trichoderma. Strains III1Z, V3Z, VI1Z and 
VII2Z had significant hits to Mortierella. Strain II2Z 
had significant hits to Bionectria. The ITS gene se-
quence GenBank accession numbers of the isolated 
fungi are indicated in Table 1. 

A phylogenetic tree using the Penicillium spp. 

which had high similarities to the isolated fungi was 
constructed based on genetic distance (Fig. 3). The 
four Penicillium spp. isolates formed three clusters 
(Fig. 3). Cluster I consisted of strain I1Z, which exhib-
ited 100% ITS sequence similarity with P. canescens. 
Cluster II contained strains II1Z and III2Z, which had 
the highest ITS sequence similarity to P. restrictum, 
99.3% and 99.8%, respectively. Cluster III consisted of 
V2Z, with 100% similarity to P. aculeatum, and I1Z, 
with 100% similarity to P. canescens. 

Using the method described for Penicillium, 
strains I2Z, II3Z, VI2Z, and VII1Z had 100, 99.9, 100, 
and 100% similarity with Trichoderma koningiopsis, 
respectively (Fig. 4). Strain IV2Z had 99% similarity 
with T. atroviride (Fig. 4). The fungi labeled III1Z, 
VI1Z, VII2Z, and V3Z had 100, 100, 100 and 99.8% 
similarity with Mortierella alpina, respectively (Fig. 5). 
The fungus labeled II2Z had 100% similarities with 
B. ochroleuca (Fig. 6). 

 

 

Fig. 4 Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the distance of isolated strains with 

the nearest species of the genus Trichoderma. Aspergillus niger ATCC9642 was used as an out group. Bootstrap percentage 

values as obtained from 1,000 resamplings of the date set are given at the nodes of the tree. Bar, 0.05 substitutions per 

nucleotide position. 
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Fig. 5 Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the distance of isolated strains with 

the nearest species of the genus Mortierella. Aspergillus niger ATCC9642 was used as an out group. Bootstrap percentage 

values as obtained from 1,000 resamplings of the date set are given at the nodes of the tree. Bar, 0.05 substitutions per 

nucleotide position. 
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Fig. 6 Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences showing the distance of isolated strains with 

the nearest species of the genus Bionectria. Aspergillus niger ATCC9642 was used as an out group. Bootstrap percentage 

values as obtained from 1,000 resamplings of the date set are given at the nodes of the tree. Bar, 0.005 substitutions per 

nucleotide position. 

 

Discussions 

To date, the artificial cultivation of some edible 
wild fungi, including Chroogomphus spp., Morchella 
spp., and Matsutake spp., has not been successful. The 
slow mycelia growth rate on nutrient medium and the 
difficulty in fruiting body formation is due to the lack 
of information on the mechanisms of spore germina-
tion and fruiting body formation. Fruiting body for-
mation could be affected by factors within the mycelia 
or externally, in the environment. Many microorgan-
isms secrete beneficial secondary metabolites, which 
could be important for spore germination or fruiting 
body formation in wild mushrooms [23]. Rainey et al. 
(1991) reported that casing was required for the in-

duction of fruiting body formation, which is caused 
by the presence of saprophytic bacteria in the casing 
medium [24]. Ntougias et al. (2004) reported that 
Gram-negative bacteria existed in spent mushroom 
compost and in mushroom cultivation substrate ana-
lyzed immediately after pasteurisation and cooling. 
The biological properties of compost appear to be 
important for the induction of fruiting body formation 
[25]. The microorganisms that exist in proximity to C. 
rutilus require further detailed examination to deter-
mine important interactions, which could advance the 
artificial cultivation of C. rutilus. 

In the present study, 10 gram soil sample were 
resolved and serial diluted. Only a portion of the so-
lution was spread on the appropriate media. Finally, 
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36 isolates were obtained for further classification and 
phylogenetic analysis. Limited by the sample size, 
there was the chance that some key microbes needed 
for C. rutilus might be missed. Moreover, traditional 
cultural method exhibit its limitations in the phylo-
genetic analysis, since only a small proportion of mi-
crobe can be obtained in laboratory condition [26]. 
Culture-indepentdent methods, such as metagenomic 
approach, could overcome these difficulties and limi-
tations [27]. To solve these existing problems, meta-
genomic approach will be applied in the future study. 
Except of these, several important results from this 
investigation were summarized below. 

First, of the 22 bacteria strains, 17, or about 80%, 
were Bacillus spp. It was reported that Bacillus spp. are 
abundant and widely distributed in agro-ecosystem 
[28, 29]. This could be because these Bacillus strains 
form a thick outer spore coat increasing resistance to 
extreme conditions, such as heat, ultraviolet radiation, 
toxic chemicals, and desiccation. Effects of Bacillus sp. 
on growth on mushroom was reported by Bis’ko et al. 
(1995) [30]. 

Second, four Pseudomonas spp. were isolated 
from the soil sample. Reports indicated that the 
presence of saprophytic bacteria, such as Pseudomonas 
spp., in the casing medium could induce fruiting body 
formation [31]. Moreover, secondary products ex-
creted by Pseudomonas, such as insecticides and ger-
micides, could affect the growth of C. rutilus mycelia 
in its natural habitat. Kloepper et al. (2004) reported 
that Pseudomonas spp. were one of the familiar plant 
growth-promoting rhizobacteria (PGPR) [32]. This 
explained the isolation of Pseudomomas spp. in the soil 
sample in this study. Further research on Pseudomonas 
spp. and C. rutilus interactions should be conducted, 
because this interaction might be the key point to ar-
tificial cultivation. 

Third, we observed that some bacteria isolates 
could secrete much extracellular polysaccharides in 
the medium. Extracellular polysaccharides are im-
portant in inter-microorganism signaling [33, 34] and 
are involved in selection recognition, which is im-
portant for symbiosis [35]. In this study, the fact that 
soil samples were collected where C. rutilus grew im-
plied that these extracellular polysaccharides could be 
important for recognition and signalling between 
bacteria and C. rutilus. By understanding the molecu-
lar mechanisms of these hypothesized interactions, 
we could enhance the interactions and expand the use 
of these bacteria. 

Finally, it is notable that the fungus strain la-
beled II2Z had significant hits to the genus Bionectria. 
Bionectria are endophytic fungi that can colonize liv-
ing, internal plant tissue without any immediate or 

overt negative effects [36]. In fact, endophytic fungi 
were detected and reported in many plants. These 
fungi showed positive role to help protecting the 
plants against insects, nematodes, pathogens and so 
on [37, 38]. In the present study, Bionectria spp. was 
isolated from the soil sample together with the myce-
lium of C. rutilus. It could be deduced that Bionectria 
spp. might interact with the organism nearby. The 
organism perhaps was the nearby pine tree or the 
mycelium of C. rutilus. Based on the results obtained 
in the present study, the detail interaction between C. 
rutilus and Bionectria sp. II2Z requires more research 
to determine if this strain played the role on the fruit 
body formation of C. rutilus. 

In this study, microorganisms were isolated and 
classified in C. rutilus habitat. This laid the foundation 
of the artificial cultivation of C. rutilus. This report is 
the first reported examination of the microbiological 
ecology of C. rutilus. Based on the results of this study, 
we will examine the exact interactions between C. 
rutilus and these isolated microorganisms to reveal 
how these microorganisms assist in the artificial cul-
tivation of C. rutilus. If this research path is successful, 
the applications of C. rutilus will broaden. 
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