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Abstract 

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that is 
activated by many cytokines and growth factors and plays a key role in cell survival, prolif-
eration, and differentiation. STAT3 activation is detected virtually in all rodent models of liver 
injury and in human liver diseases. In this review, we highlight recent advances of STAT3 
signaling in liver injury, steatosis, inflammation, regeneration, fibrosis, and hepatocarcino-
genesis. The cytokines and small molecules that activate STAT3 in hepatocytes may have 
therapeutic benefits to treat acute liver injury, fatty liver disease, and alcoholic hepatitis, while 
blockage of STAT3 may have a therapeutic potential to prevent and treat liver cancer. 
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Introduction 

Alcoholic hepatitis, nonalcoholic steatohepatitis, 
and viral hepatitis are the 3 major causes of chronic 
liver diseases, leading to liver fibrosis, cirrhosis, and 
the end-stage of hepatocellular carcinoma. It is gener-
ally accepted that inflammation, characterized by an 
infiltration of inflammatory cells, plays a key role in 
promoting the progression of liver diseases. These 
inflammatory cells can modulate the progression of 
liver diseases by producing a wide variety of cyto-
kines that activate multiple signaling pathways in 
liver cells and subsequently affect these cells. Among 
these pathways, the roles of nuclear factor-kappa B 

(NF-B) and signal transducer and activator of tran-
scription 3 (STAT3) in the pathogenesis of liver dis-
eases have been extensively investigated. It has been 

shown that NF-B plays complex and multicellular 
roles in hepatic inflammation, injury, fibrosis, regen-

eration, and hepatocarcinogenesis, which have been 
summarized in several excellent reviews [1-5]. In 
2004, we summarized the role of STAT3 in liver inju-
ry, inflammation, and regeneration [6]. Since then, 
cell-type specific STAT3 knockout mice and gp130 
knockout mice have been made available and used 
extensively to investigate the functions of STAT3 in 
many murine liver injury models. In this review, we 
highlight recent advances in STAT3 signaling in liver 
pathophysiology and discuss the potential application 
of STAT3 as a therapeutic target to treat liver diseases. 

STAT3 signaling in liver parenchymal cells 
(hepatocytes)  

The liver, the largest solid organ in the body, 
plays a key role in metabolism, detoxification, and 
innate immunity [7]. Eighty percent of the liver vol-
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ume, or seventy percent of liver cells, is composed of 
hepatocytes that are responsible for the metabolic and 
detoxifying functions of the liver. The remaining cells 
are composed of Kupffer cells (liver resident macro-
phages), sinusoidal endothelial cells, stellate cells, and 
lymphocytes. It has been shown that a wide variety of 
cytokines can activate STAT3 in hepatocytes. These 
cytokines include interleukin-6 (IL-6), the IL-6 family 
of cytokines (such as leukemia inhibitory factor, cili-
ary neurotrophic factor, oncostatin M, cardiotro-

phin-1, and IL-11), and IL-22 [6]. IFN-/ and IFN- 
mainly induce STAT1 activation in hepatocytes, but 
also significantly stimulate STAT3 activation in 
hepatocytes [8]. As shown in Fig. 1, the ligation of 

these cytokines to their receptors induces receptor 
dimerization, which is followed by activation of the 
receptor-associated Janus tyrosine kinases (JAKs). 
This receptor-kinase complex interacts with and 
phosphorylates the SH2-containing cytoplasmic pro-
tein STAT3. The phosphorylated STAT3 then forms a 
dimer and translocates to the nucleus to activate the 
transcription of many target genes that play im-
portant roles in inducing the acute phase response, 
promoting hepatocyte survival and liver regenera-
tion, and ameliorating steatosis. In addition, hepato-
cyte growth factor, epidermal growth factor, and 
hepatitis viral proteins can also activate STAT3 in 
hepatocytes to a lesser extent.  

 

 

Figure 1. STAT3 signaling in hepatocytes. Hepatocytes express high levels of gp130, which is a common signal chain 

for IL-6 and IL-6 family cytokines, high levels of IL-6 receptors and various corresponding receptors for IL-6 family cytokines. 

IL-6 family cytokines include leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), oncostatin M (OSM), 

cardiotrophin-1 (CT-1), and IL-11. The ligation of these cytokines (IL-6 and IL-6 family cytokines) with their corresponding 

receptors leads to the dimerization of gp130, followed by dimerization of gp130-associated Janus kinases (JAKs) and 

phosphorylation of JAKs and gp130. This receptor-kinase complex then recruits and phosphorylates cytoplasmic protein 

STAT3. Phosphorylated STAT3 forms a dimer, translocates into the nuclei and subsequently induces transcription of many 

genes. Hepatocytes also express high levels of IL-22R1 and IL-10R2 for IL-22 signaling. IL-6, IL-6 family cytokines, and IL-22 

predominantly activate STAT3, but also induce a weak activation of other STATs and MAP kinases. Human hepatocytes 

express high levels of IFNAR1 and functional IFNAR2c (while mouse and rat hepatocytes predominantly express inhibitory 

IFNAR2a and poorly respond to IFN- stimulation). IFN-/ predominately induce STAT1 activation in primary human 

hepatocytes but also induce strong STAT3 activation. Activated STAT3 induces transcription of many genes that play 

important roles in inducing acute phase responses, promoting hepatocyte survival and liver regeneration, and ameliorating 

fatty liver.  
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STAT3 signaling in liver non-parenchymal 
cells  

Kupffer cells are liver resident macrophages that 
account for 80% to 90% of the total population of fixed 
tissue macrophages in the body. Kupffer cells are the 
major source not only of proinflammatory cytokines 
such as IL-6, but also of anti-inflammatory cytokines 
such as IL-10. In addition, Kupffer cells can also re-
spond to IL-6 and IL-10. Notably, both IL-6 and IL-10 
induce STAT3 activation in macrophages, but exert 
opposing functions. While IL-10 induces STAT3 acti-
vation and subsequently inhibits LPS-induced in-
flammatory responses in macrophages and Kupffer 
cells [9-11], IL-6 also activates STAT3 but potentiates 
proinflammatory responses in peritoneal macro-
phages [12]. Although the effect of IL-6 on Kupffer 
cells has not been investigated, it is plausible to spec-
ulate that IL-6 may also promote proinflammatory 
responses in Kupffer cells. The reason why STAT3 

activation by IL-10 or IL-6 inhibits or promotes, re-
spectively, the macrophage inflammatory response 
remains unclear. It has been shown that both IL-6 and 
IL-10 activate STAT3 and subsequently upregulate 
expression of suppressor of cytokine signaling 3 
(SOCS3) in macrophages [12]. SOCS3 then, in turn, 
inhibits IL-6 signaling via binding to gp130, resulting 
in IL-6 induction of transient STAT3 activation, while 
SOCS3 does not block IL-10 activation of STAT3; 
therefore, IL-10 induces prolonged STAT3 activation 
(Fig. 2) [12]. It is believed that IL-6 induction of tran-
sient STAT3 activation is responsible for its 
pro-inflammatory response, while IL-10 induces pro-
longed STAT3 activation and subsequently inhibits 
inflammatory responses in macrophages [12]. In ad-
dition, the effects of other IL-6 family cytokines on 
STAT3 activation and pro-inflammatory responses in 
Kupffer cells remain largely unknown.  

 

 

Figure 2. STAT3 signaling in Kupffer cells. Kupffer cells express high levels of IL-10R1 and IL-10R2. The ligation of 

IL-10 with IL-10R1 and IL-10R2 leads to prolonged activation of STAT3, thereby inhibiting inflammatory responses. In 

contrast, the ligation of IL-6 with IL-6R and gp130, which are expressed at high levels on Kupffer cells, leads to transient 

activation of STAT3, followed by the induction of inflammatory responses. STAT3 activation induces expression of SOCS3, 

which in turns inhibits IL-6 activation of STAT3, but does not inhibit IL-10 signaling.  
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Figure 3. STAT3 signaling in hepatic stellate cells. Hepatic stellate cells express high levels of the long form of the 

leptin receptor (OBRL). The ligation of leptin with OBRL induces activation of STAT3, leading to stellate cell activation, 

proliferation, and survival. IL-6 can also stimulate stellate cell survival, proliferation, and activation via binding of IL-6R and 

gp130 on stellate cells. 

 
 
Hepatic stellate cells are located in the space of 

Disse (a small area between the endothelial cells and 
hepatocytes) and store 75% of the body’s supply of 
vitamin A. Activation of hepatic stellate cells plays a 
key role in the pathogenesis of liver fibrosis via pro-
ducing extracellular matrix proteins [13,14]. IL-6 and 
leptin have been shown to activate STAT3 in hepatic 
stellate cells and promote their survival and prolifer-
ation, thereby contributing to liver fibrogenesis 
[15,16]. However, the exact role of STAT3 in hepatic 
stellate cells remains to be determined.  

Liver sinusoidal endothelial cells lack a base-
ment membrane and form a fenestrated monolayer, 
separating hepatocytes from the passing blood. It has 
been shown that IL-6 treatment activates STAT3 and 
protects against cell death in liver sinusoidal endo-
thelial cells [17,18]. 

STAT3 in fatty liver and glucose metabolism 

Fatty liver (accumulation of fat in hepatocytes) is 

mainly caused by alcohol consumption and obesity, 
but can also be caused by metabolic diseases, nutri-
tional factors, drugs, toxins, genotype 3 hepatitis C 
infection, and alpha 1-antitrypsin deficiency. The 
presence of a fatty liver was considered to be a benign 
feature in the past, but is now known to be prone to 
steatohepatitis, fibrosis, and hepatocellular carcinoma 
[19-21]. Excess fat accumulation in hepatocytes may 
lead to hepatocellular injury via direct cellular cyto-
toxicity mediated by FFAs, oxidative stress, lipid pe-
roxidation, mitochondrial impairment, and cyto-
kine-induced hepatoxicity [19-23]. For example, both 

IL-1 and TNF- have been shown to promote hepa-
tocellular damage and the development of fatty liver 
[24-26]. In contrast, several cytokines that activate 
STAT3 in hepatocytes are known to ameliorate fatty 
liver. IL-6 deficient-mice are more susceptible to al-
cohol- and high-fat diet-induced fatty liver [27,28], 
while treatment with IL-6 ameliorates fatty liver [29]. 
Recent studies also showed that treatment with IL-22 
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induces STAT3 activation in the liver and alleviates 
steatosis induced by alcohol or high-fat diet feeding 
[30,31]. The protective effect of IL-22 on alcoholic fatty 
liver is diminished in hepatocyte-specific STAT3 
knockout mice [30], suggesting that IL-22 ameliorates 
steatosis through activation of STAT3 in hepatocytes. 
Furthermore, disruption of gp130 (upstream of 
STAT3) or STAT3 in hepatocytes exacerbates fatty 
liver induced by a choline-deficient, ethio-
nine-supplemented diet [32], alcohol-containing diet 
[33], or high-fat diet [34], whereas overexpression of 
constitutively activated STAT3 ameliorates high-fat 
diet-induced fatty liver [34]. The anti-steatogenic ef-
fect of hepatocyte STAT3 is mediated, at least in part, 
via inhibition of SREBP-1, a master transcription fac-
tor that controls lipid synthesis, and subsequent sup-
pression of hepatic lipogenesis [33,34]. However, the 
mechanism by which STAT3 represses SREBP-1 re-
mains to be determined.  

In addition to controlling lipid metabolism, 
STAT3 signaling also plays an important role in 
maintaining normal glucose homeostasis via down-
regulation of hepatic gluconeogenic genes, including 
glucose-6-phosphatase (G6Pase) and phosphoe-
nolpyruvate carboxykinase (PEPCK), in hepatocytes 
[34,35]. STAT3 activation inhibits expression of 
G6Pase and PEPCK in both cultured hepatocytes and 
mouse liver; such inhibition is mediated via STAT3 
binding to the promoters of the G6Pase and PEPCK 
genes [35].  

STAT3 in liver injury and inflammation 

STAT3 in hepatocytes: It has been reported that 
treatment with IL-6, IL-6 family cytokines, or IL-22 
protects against liver injury in many rodent models 
[6,17,29,36-39], while blockage of IL-22 with a neu-
tralizing antibody exacerbates liver injury induced by 
Con A injection [37,40] or by viral infection [41]. 
Transgenic mice with overexpression of IL-22 in the 
liver are completely resistant to T cell hepati-
tis-induced hepatocellular damage [42]. Moreover, 
disruption of the IL-6/gp130, OSM, or IL-22 genes, or 
hepatocyte STAT3, increases the susceptibility of mice 
to liver injury in most animal models tested so far 
[6,43-53]. All of these findings clearly demonstrate 
that STAT3 plays a key role in protecting against 
hepatocellular damage. In contrast to the 
well-documented hepatoprotection, hepatocyte 
STAT3 has a more complex role in liver inflammation. 
Compared to wild-type mice, hepatocyte-specific 
STAT3 knockout mice have reduced liver inflamma-
tion in models of liver injury induced by acute carbon 
tetrachloride injection [50] or alcohol feeding [33] but 
elevated liver inflammation in Con A-induced T cell 

hepatitis (Lafdil and Gao, unpublished data) or in 
LPS-induced liver injury [54], suggesting that 
hepatocyte STAT3 acts as either a pro-inflammatory 
or an anti-inflammatory signal according to the mod-
els. The pro-inflammatory effect of hepatocyte STAT3 
is likely mediated via its induction of acute phase 
proteins and chemokines in the liver [33,50]. In con-
trast, activation of hepatocyte STAT3 protects against 
hepatocellular damage and subsequently reduces 
liver necrosis-associated inflammation. Hepatocyte 

STAT3 also inhibits IFN--activated STAT1, a key 
proinflammatory signal in the liver [55], thereby 
playing an important role in attenuating inflamma-
tory responses. In both Con A-induced T cell hepatitis 

and LPS-induced liver injury models, IFN- is mark-
edly elevated, and STAT1 is highly activated in 
hepatocytes [54,56], whereas such activation is not 
observed in CCl4- or alcohol-induced liver injury 
models. Therefore, activation of STAT3 inhibits 
STAT1 activation in the liver and subsequently re-
presses liver inflammation in both Con A- and 
LPS-induced liver injury models [54,56]. However, 
such anti-inflammatory effects of STAT3 may not oc-
cur in CCl4- or alcohol-induced liver injury models, as 

the IFN-/STAT1 signaling pathway is not upregu-
lated in these models.  

STAT3 in macrophages/Kupffer cells: The an-
ti-inflammatory effect of STAT3 in myeloid cells, in-
cluding macrophages/Kupffer cells, has been 
well-documented in various models of organ injury, 
including liver injury [33,50,57-59], and in cultured 
Kupffer cells [33]. However, the role of STAT3 in my-
eloid cells in hepatocellular damage remains obscure. 
Interestingly, a specific deletion of STAT3 in myeloid 
cells enhances the susceptibility of mice to Con 
A-induced T cell hepatitis [58] and alcohol-induced 
liver injury [33], but reduces CCl4-induced hepato-
cellular damage [50]. This opposing effect could be 
attributable to the deletion of STAT3 in myeloid cells, 

preferentially augmenting IFN- production that 
subsequently enhances liver injury in Con A-induced 
T cell hepatitis [58], while preferentially enhancing 
IL-6 production that consequently protects against 
hepatocellular damage in CCl4-induced liver injury 
[50]. Collectively, STAT3 in myeloid cells not only 
inhibits expression of pro-inflammatory cytokines, 

such as TNF- and IFN-, that induce liver damage 
and inflammation, but also represses production of 
hepatoprotective cytokines, such as IL-6 and IL-22, 
that ameliorate liver injury [58]. Thus, the outcome of 
myeloid STAT3 on hepatocellular damage is likely 
determined by the balance between detrimental and 
hepatoprotective cytokines produced during liver 
injury.  
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STAT3 in endothelial cells: Previous studies sug-
gest that STAT3 signaling in endothelial cells plays an 
important role in inhibiting inflammation and pro-
tecting against LPS-induced inflammation [60-62], but 
the role of endothelial cell STAT3 in liver injury and 
inflammation has not been extensively studied. We 
have previously reported that endothelial cell-specific 
STAT3 knockout mice were more susceptible to al-
cohol-induced liver injury and inflammation [63], 
suggesting that endothelial cell STAT3 plays im-
portant dual functions of attenuating hepatic in-
flammation and sinusoidal endothelial cell apoptosis 
during alcoholic liver injury. However, the role of 
STAT3 in liver injury and inflammation in other 
models remains to be determined.  

STAT3 and liver regeneration 

The liver is the only solid organ in mammals 
with amazing regenerative capabilities after loss of 
tissue or injury [64-66]. Emerging evidence suggests 
that liver regeneration is controlled by a wide variety 
of cytokines, growth factors, hormones, and their 
downstream signaling pathways [64-66]. Among 
them, the roles of IL-6 and its downstream signaling 
molecule STAT3 in liver regeneration have been ex-
tensively investigated [64-66]. In addition, several 
other IL-6 family cytokines and IL-22, which activate 
STAT3 in hepatocytes, are also reported to promote 
liver regeneration [47,67,68], while the an-
ti-inflammatory cytokine IL-10, which activates 
STAT3 in immune cells, has been shown to inhibit 
liver regeneration via suppression of the proinflam-
matory response during liver regeneration [69].  

Two-third partial hepatectomy (PHx) is a widely 
used model to study liver regeneration. It is 
well-established that after PHx, the ability of the 
remnant liver to detoxify endotoxin (LPS) decreases, 
leading to elevation of hepatic LPS levels [70,71]. LPS 
stimulates Kupffer cells to produce inflammatory cy-

tokines, including TNF- and IL-6, that subsequently 
initiate liver regeneration. This priming phase usually 
takes place shortly after PHx with a transient increase 
in low inflammation. This notion was supported by 
studies using several strains of knockout mice. For 
example, genetic deletion of the type I TNF receptor 
(TNFR-1) resulted in an increase of the mortality rate 
in mice after PHx, and was accompanied by reduced 
hepatocyte proliferation [72]. Similarly, IL-6 deficient 
mice, reported initially by Cressman et al. [73], had 
increased mortality, blunted hepatocyte DNA syn-
thesis, and repressed AP-1, Myc, and cyclin D with an 
absence of STAT3 activation after PHx. Treatment 
with a single preoperative dose of IL-6 restored 
STAT3 binding and hepatocyte proliferation and 

prevented liver damage in IL-6-deficient mice [73]. 
This study strongly posited an important role for IL-6 
in hepatocyte proliferation via activation STAT3. 
However, several follow-up studies using IL-6 
knockout mice generated conflicting data on the role 
of IL-6 on liver regeneration. Sakamoto et al. [74] re-
ported that the peak of hepatocyte proliferation was 
only reduced by 20-30% in IL-6-deficient mice com-
pared with wild-type mice after PHx, and similar 
mortality was observed in both groups, while Blin-
denbacher et al. [75] reported that IL-6-deficient mice 
had higher mortality after PHx but that the surviving 
IL-6-deficient mice had similar hepatocyte prolifera-
tion compared to wild-type mice. In addition, two 
later studies demonstrated that IL-6 knockout mice 
and wild-type mice had similar hepatocyte prolifera-
tion after PHx [76,77]. Systemic delivery of high levels 
of IL-6 using CHO cell tumors in nude mice resulted 
in a dramatic induction of hepatocyte proliferation 
and hepatomegaly via activation of the MAPK/ERK 
and STAT3 signaling pathways [78]. However, hy-
perstimulation with IL-6 in transgenic mice with 
overexpression of the human soluble IL-6 recep-
tor/gp80 in hepatocytes before PHx resulted in de-
layed and inhibited cell cycle progression after PHx in 
mice [79]. The reasons for these controversial reports 
on the role of IL-6 in liver regeneration are not clear 
and may be due to using different surgery techniques, 
strains of mice, or research environments. Despite of 
these controversial reports, most investigators still 
accepted the notion that IL-6 plays an important role 
in liver regeneration [80-82]. Furthermore, several IL-6 
family cytokines, such as oncostatin M [47] and car-
diotrophin-1 [36], have also been shown to promote 
liver regeneration in various models. IL-22 was also 
shown to play a role in promoting liver regeneration 
after PHx [83].  

In contrast to the cytokines that activate STAT3 
in hepatocytes and promote liver regeneration dis-
cussed above, the anti-inflammatory cytokine IL-10, 
which activates STAT3 in immune cells (e.g., macro-
phages), but not in hepatocytes, may negatively reg-
ulate liver regeneration. Expression of IL-10 in the 
liver is upregulated after PHx [69]. Disruption of IL-10 
enhances liver inflammation and regenerative re-
sponses with increased STAT3 activation in the liver 
[69]. An additional deletion of hepatocyte STAT3 re-
duced liver regeneration in IL-10-deficient mice [69], 
suggesting that enhanced liver regeneration in IL-10 
knockout mice is due to elevated IL-6/STAT3 activa-
tion in the liver.  

Rapid activation of STAT3 has been 
well-documented during liver regeneration after PHx 
or liver injury [59,84-86]. After PHx, activation of 
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STAT3 was first detected in Kupffer cells and in si-
nusoidal endothelial cells and later detected in 
hepatocytes localized in the periportal zones of he-
patic lobules in rats [86]. As global disruption of the 
STAT3 gene leads to early embryonic death, tis-
sue-specific STAT3 knockout mice were generated to 
investigate the biological impact of STAT3 in liver 
regeneration. Studies from our lab and other groups 
showed that deletion of STAT3 in hepatocytes only 
moderately reduced liver regeneration without in-
duction of hepatocyte apoptosis after PHx [59,85,87]. 
Several STAT3 targeted genes have been identified; 
these include cyclin D and c-myc, which induce the 
cell-cycle transition from the G1 to the S phase, and 
bcl-2, bcl-xl, mcl-1, and c-Flip, which protect against 
hepatocyte apoptosis [85]. STAT3 in immune cells was 
also markedly activated by PHx, and conditional de-
letion of STAT3 in myeloid linage cells resulted in 
enhanced inflammatory response and increased liver 
regeneration [59]. Combined conditional ablation of 
STAT3 in both hepatocytes and myeloid cells resulted 
in a dramatic reduction in survival with elevated ac-
tivation of STAT1 and hepatocyte apoptosis after 
PHx, as compared to wild-type or single knockout 
animals [59]. These findings suggest that the interplay 
of STAT3 in myeloid cells and hepatocytes plays an 
important role in ensuring normal liver regeneration 
via tempering systemic and hepatic innate inflam-
matory responses [59]. Activation of STAT3 also in-
duces expression of SOCS3, which in turn terminates 
STAT3 signaling and negatively regulates liver re-
generation [88]. Interestingly, recent studies from Dr. 
Ozaki’s group suggest that PDK1/Akt signaling also 
contributes to liver regeneration by regulating cell 
size [89,90].  

In summary, the role of hepatocyte STAT3 in 
liver regeneration has been extensively investigated, 
and it is generally accepted that activation of STAT3 
in hepatocytes promotes hepatocyte proliferation af-
ter PHx or loss of tissue, while myeloid cell STAT3 
activation seems to suppress liver regeneration via 
inhibiting inflammatory responses. In contrast, the 
roles of STAT3 in other immune cells and sinusoidal 
endothelial cells in liver regeneration have not been 
explored and deserved further studies. In addition, 
the interplay of STAT3 from different cell types in 
liver regeneration likely plays a critical role in ensur-
ing normal liver regeneration, which also needs fur-
ther investigation.  

STAT3 in liver fibrosis 

Liver fibrosis, or cirrhosis, is a common 
end-stage condition of many chronic liver diseases 
after incomplete recovery from hepatocyte damage. 

During fibrosis progression, inflammation and liver 
injury trigger complex cellular events that result in 
collagen deposition and disruption of the normal liver 
architecture. Generally, activated hepatic stellate cells 
are considered the most important cell type for the 
production of collagens [14,91]. More recent research 
suggests that myofibroblasts, bone marrow-derived 
progenitor cells, and hepatocytes may also contribute 
to fibrogenesis via production of collagens [14,91,92], 
and immune cells may regulate fibrogenesis via pro-
duction of a wide variety of cytokines; among them, 

TGF- has been shown to promote liver fibrosis via 

stimulating hepatic stellate cell activation, while IFN- 
is known to inhibit liver fibrosis via inducing hepatic 
stellate cell apoptosis and cell cycle arrest [14,91]. 
Although the hepatoprotection ability of IL-6, one of 
the most important cytokines to activate STAT3 in the 
liver, has been well-documented, the data on the role 
of IL-6 in liver fibrogenesis from animal models re-
main controversial.  

Initial experiments showed that IL-6 knockout 
mice were more susceptible to CCl4-induced liver 
injury and fibrosis [93], while other reports demon-
strated reduced liver fibrosis in IL-6-deficient mice 
after CCl4 treatment [94,95]. The reasons for the dis-
crepancy between these studies are not clear. In addi-
tion, deletion of gp130 (the common signal transducer 
of IL-6 family cytokines) in hepatocytes had no effect 
on liver fibrosis, while deletion of gp130 in nonpa-
renchymal liver cells aggravated fibrosis progression 
[45]. In vitro culture experiments showed that Kupffer 
cell-derived IL-6 promotes hepatic stellate cell sur-
vival and proliferation [15]. Clinical studies showed 
that hepatic IL-6 expression was upregulated and 
correlated positively with the degree of liver fibrosis 
in opisthorchiasis periductal fibrosis and in nonalcoholic 
steatohepatitis [96,97]. Furthermore, genetic poly-
morphisms of IL-6 were reported to modulate fibrosis 
progression in patients with mild chronic hepatitis C 
(HCV) [98]. Because IL-6 receptors are expressed 
ubiquitously on all types of liver cells, it is plausible to 
speculate that IL-6 may positively and negatively 
regulate liver fibrosis via targeting different types of 
liver cells. For example, IL-6 protects against hepato-
cellular damage, thereby reducing liver fibrosis, while 
IL-6 may also directly promote hepatic stellate cell 
survival and proliferation, followed by enhancing 
liver fibrosis. The final effect of IL-6 on liver fibrosis is 
likely determined by the balance between these in-
hibitory and stimulatory effects and is dependent on 
the stage and etiology of liver fibrosis.  

The initial clue for the role of the IL-6 down-
stream signaling molecule STAT3 in liver fibrogenesis 
is emerging from the clinical observations of Dr. 
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Starkel’s group [99]. This study documented that 
STAT3 expression and phosphorylation were not al-
tered in HCV-fibrosis patients and alcoholic cirrhosis, 
while STAT3-DNA binding was markedly suppressed 
in all alcoholic and most HCV fibrotic patients when 
compared with to normal healthy livers. This im-
paired STAT3-DNA binding might contribute to dis-
turbed liver regeneration and repair in these patients. 
Further studies from the same group later showed 
that fibrosis progression in HCV-infected patients 
correlated positively with a continuous decline in 
STAT3-DNA binding activity. This decreased STAT3 
activity also correlated with reduced hepatocyte pro-
liferation and a positive anti-apoptotic balance in in-
filtrating inflammatory cells that are known media-
tors of cell damage in HCV [100]. Taken together, 
these clinical studies indicate that STAT3 may ame-
liorate HCV and alcohol-related liver fibrosis via 
protecting against hepatocellular damage.  

Recent studies from animal models suggest the 
STAT3 in hepatocytes plays a protective role in pre-
venting liver fibrosis, mainly because of STAT3’s 
hepatoprotective and proliferative functions 
[50,53,101]. The hepatoprotective function of STAT3 
in the liver has been well-documented in many mu-
rine models of liver injury as discussed in above sec-
tions. Thus, it is probable that activation of STAT3 in 
hepatocytes may suppress liver fibrosis via prevent-
ing hepatocyte damage. This speculation is, indeed, 
supported by the studies from several animal models. 
In the models of Sclerosing Cholangitis, which use 
mice lacking the multidrug resistance gene 2 
(mdr2-/-), conditionally inactivated STAT3 in hepato-
cytes and cholangiocytes leads to strongly aggravated 
hepatocellular damage and fibrosis [53]. The hepato-
protective role of STAT3 is likely due to activation of 
EGFR and IGF-1 signaling pathways in hepatocytes, 
thereby preventing bile acid–induced liver injury and 
fibrosis [53]. Similarly, another study showed that 
lack of gp130/STAT3-mediated signaling in hepato-
cytes resulted in enhanced chronic cholestatic liver 
injury and fibrosis progression induced by 
3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) 
[101]. Deletion of the gp130/STAT3 pathway in 
hepatocytes leads to more severe liver injury and an 
enhanced inflammatory response with increased 

TNF- expression and subsequent cytotoxicity. This 
greater chronic liver injury leads to enhanced hepatic 
stellate cell activation and a profibrogenic response. In 
contrast, Ogata et al. [102] reported that deletion of 
SOCS3 (a protein with a strong inhibitory effect on 
STAT3 signaling) in the liver, via injection of adeno-
virus dominant STAT3 or in the SOCS3flox/flox mice via 
injection of adenovirus Cre, resulted in hyperactiva-

tion of STAT3 in the liver and enhanced hepatic fi-
brosis through the production of TGF-β1. Although 
adenovirus mainly infects hepatocytes, it may also 
infect other liver cells including hepatic stellate cells 
and Kupffer cells. Thus, it is not clear whether en-
hanced liver fibrosis in the models reported by Ogata 
et al. [102] is due to deletion of SOCS3 in hepatocytes 
or in other nonparenchymal cells.  

Until now, the functions of STAT3 in nonparen-
chymal liver cells and inflammatory cells during liver 
fibrogenesis are largely unknown. Several studies 
provide indirect evidence of profibrogenic and sur-
vival roles of STAT3 in hepatic stellate cells. Leptin is 
an important pro-fibrogenic cytokine that activates 
STAT3 in hepatic stellate cells [103,104]. Inhibition of 
JAK/STAT3 activation by a specific JAK2 inhibitor 
AG490 prevents hepatic stellate cell early activation 
[105]. In addition, STAT3 is involved in lep-
tin-mediated production of TIMP-1, an important 
survival factor for hepatic stellate cells [106]. Other 
mechanisms leading to fibrogenesis via STAT3 sig-
naling pathway activation in hepatic stellate cells, 
such as phagocytosis of apoptotic bodies, have been 
shown to promote their survival [107]. Kupffer cells 
also play an important role in the pathogenesis of 
leptin-induced liver fibrosis [108]. Treatment with 
leptin potentiated activation of STAT3, Akt, and ex-
tracellular signal-related kinase 1/2 phosphorylation 
in Kupffer cells and increased AP-1 and nuclear fac-
tor-kappaB DNA binding. Blockage of STAT3 activa-
tion by a STAT3 inhibitor attenuated TGFβ1 produc-
tion by Kupffer cells [108]. These observations indi-
cate that leptin may promote liver fibrogenesis via 
activation of STAT3 and subsequent production of 

TGF- in Kupffer cells. Additional studies are re-
quired to clarify the roles of STAT3 in hepatic stellate 
cells, Kupffer cells, sinusoidal cells, and inflammatory 
cells in the pathogenesis of liver fibrosis. 

STAT3 and liver cancer 

Aberrantly hyperactivated IL-6-STAT3 signaling 
in cancer cells and the tumor microenvironment has 
been detected in a wide variety of human cancers and 
is considered to be an important factor for cancer ini-
tiation, development, and progression [109-112]. The 
interplay of STAT3 in cancer cells and other cells 
around cancer cells likely plays an important role in 
modulating tumor growth via several steps. First, it is 
well known that IL-6-STAT3 signaling is crucial for 
tumor cell proliferation and survival via induction a 
variety of protooncogenes [113-115]. In contrast to 
normal cells, in which STAT3 activation is rapid and 
transient, cancer cells routinely harbor persistently 
activated STAT3 proteins that promote a permanent 
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alteration of some genes that control cellular process-
es. Constitutively activated STAT3 promotes tumor-
igenesis through the upregulation of cell survival 
proteins (Bcl-xl and Bcl-2), cell cycle regulators (c-Myc 
and cyclin D) [112,114,116,117], anti-oxidant genes 
(Mn-SOD, ferritin, and catalse), and tissue repair 

genes (RegIII, RegIII, and Tff3) [114,118,119]. Se-
cond, persistent activation of STAT3 also increases 
angiogenesis and metastasis via upregulation of vas-
cular endothelial growth factor (VEGF), hypoxia in-

ducible factor 1 alpha (HIF1) and basic fibroblast 
growth factor (bFGF), all of which are important me-
diators of angiogenesis during tumor formation 
[120-122]. Third, the persistent activation of STAT3 in 
immune/inflammatory cells is also very important in 
the control of tumor promotion and progression 
through tumor-promoting inflammation and sup-
pressing anti-tumor immunity [123]. Recently, a key 
novel molecule, sphingosine-1-phosphate receptor-1 
(S1PR1), that is induced by STAT3 has been uncov-
ered to play an important role in inducing persistent 
STAT3 activation in tumor cells and the tumor mi-
croenvironment [124]. In summary, STAT3 can 
broadly and profoundly affect tumor growth via 
stimulation of tumor cell survival and proliferation, 
induction of tumor angiogenesis, and suppressing 
anti-tumor immunity. Thus, constitutively activated 
STAT3 both in tumor cells and tumor stromal im-
mune cells is an attractive target for cancer treatment 
[125].  

Hepatocellular carcinoma (HCC) is the most 
common primary malignancy of the liver in adults 
and the third leading cause of cancer deaths world-
wide, with few effective therapeutic options for this 
advanced disease [126-128]. Most HCC appears in 
cirrhotic livers after years of chronic liver inflamma-
tion caused by viral hepatitis and alcoholic and 
non-alcoholic steatohepatitis [127,129]. Several cyto-
kines (such as IL-6, IL-6 family cytokines, IL-22, etc) 
that activate STAT3 in hepatocytes have been shown 
to promote HCC growth in vitro and in vivo 
[37,42,130]. Clinical studies reported that serum IL-6 
concentrations were elevated in patients with chronic 
liver inflammation, including alcoholic hepatitis, viral 
hepatitis, and nonalcoholic steatohepatitis, and in 
patients with HCC [131]. Notably, men are about 
three to five times more likely to develop HCC than 
women [132]. A similar gender disparity was also 
seen in a murine model of HCC induced by diethyl-
nitrosamine (DEN). It is believed that higher serum 
levels of IL-6 in male mice contributed to the higher 
susceptibility to DEN-induced liver cancer compared 
to female mice [130]. In addition to IL-6, IL-22 and 
leptin, which also activate STAT3 in liver cancer cells, 

have also been implicated in liver tumorigenesis. 
IL-22, a recently identified IL-10 family cytokine, also 
activates STAT3 in hepatocytes and has been shown 
to promote HCC in vitro and in vivo [37]. In vitro 
treatment with IL-22 or overexpression of IL-22 pro-
motes cell growth and survival of human hepatoma 
HepG2 cells. Stable overexpression of IL-22 in HepG2 
cells constitutively activates STAT3 and upregulates 
expression of a variety of anti-apoptotic (e.g., Bcl-2, 
Bcl-xl, and Mcl-1) and mitogenic (e.g., c-myc, cyclin 
D1, Rb2, and CDK4) proteins. Overexpression of IL-22 
in HepG2 and Hep3B cells also promotes tumor for-
mation of these cells in nude mice [37]. Transgenic 
mice with overexpression of IL-22 in the liver are 
more susceptible to DEN-induced liver tumorigenesis 
[42]. Leptin is an adipose-derived hormone that plays 
an important role in food intake and energy ex-
penditure. Recent studies showed that leptin also ac-
tivates STAT3 in liver cancer cells and promotes liver 
cancer cell survival and proliferation [133-135].  

STAT3 is the major downstream signaling mol-
ecule of IL-6, IL-22, and leptin in hepatocytes. Several 
lines of evidence suggest that STAT3 plays an im-
portant role in the development of liver cancer. First, 
constitutively activated STAT3 is detected in human 
hepatoma cells and human liver tumor tissues [136]. 
In HCC tissues, strong STAT3 immunostaining was 
observed in the cytoplasm, and pY705STAT3 im-
munostaining was observed in the nucleus [136]. In 
addition, blockage of STAT3 using chemical inhibitors 
or siRNA induced liver cancer cell apoptosis and cell 
cycle arrest in vitro and inhibited growth of trans-
planted liver cancer cells in vivo [136-138]. Second, 
altered p-STAT3 expression was positively correlated 
with the histological grading and intra-tumor mi-
crovessel density in HCC [139]. Third, deletion or 
methylation silencing of hepatic SOCS3, an inhibitor 
for STAT3, resulted in enhanced STAT3 activation in 
the liver and accelerated DEN-induced liver tumor-
igenesis [88,140], while overexpression of SOCS3 in-
hibited HCC cell growth [141]. Finally, the conclusive 
evidence for an important role of STAT3 in liver can-
cer development is from the fact that conditional de-
letion of STAT3 in hepatocytes prevented 
DEN-induced liver cancer development in mice [142]. 
Notably, recent studies suggest that STAT3 activation 
is also implicated in HCV- and obesity-mediated 
hepatocarcinogenesis [143,144]. Another important 
line of evidence for the role of STAT3 in liver cancer 
development is that constitutively activated STAT3 is 
detected in cancer stem cells from HCC and likely 
contributes to liver cancer stem cell proliferation and 
survival [145]. Collectively, activation of STAT3 plays 
an important role in liver tumorigenesis. Blockage of 
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STAT3 may have a therapeutic potential in preventing 
and treating liver cancer.  

STAT3 as a therapeutic target to treat liver 
disease 

Because the hepatoprotection and an-
ti-steatogenic effects of hepatocyte STAT3 are 
well-established, the cytokines and small molecules 
that activate STAT3 in hepatocytes may have a ther-
apeutic potential to treat acute liver injury and fatty 
liver diseases. IL-6 has been shown to effectively 
ameliorate liver injury and fatty liver diseases in an-
imal models [17,29,38]. However, the clinical applica-
tion of IL-6 in patients has been halted owing to many 
adverse effects of IL-6 that are likely caused by ubiq-
uitous expression of the IL-6 receptor, IL-6 receptor 
signal chain gp130, and the existence of circulating 
soluble IL-6 receptor. In addition, patients with liver 
diseases are always associated with highly elevated 
levels of IL-6 [96,97,146,147], resulting in resistance to 
IL-6 treatment. Interestingly, we have recently 
demonstrated that ex vivo treatment of fatty donor 
liver with IL-6 prevents fatty liver transplant failure 
via improving microcirculation and reducing liver cell 
apoptosis [17]. Application of IL-6 ex vivo could be a 
magic potion to prevent fatty liver transplant failure 
in humans [148].  

Since IL-22 receptor expression is restricted to 
epithelial cells, including hepatocytes, in vivo IL-22 
treatment will likely have few side effects [149]. Thus, 
IL-22 may have a better therapeutic potential than 
IL-6 in treating patients with fatty liver disease or 
acute liver failure induced by acute viral hepatitis, 
ischemia/reperfusion, liver transplantation, and al-
coholic hepatitis. Alcoholic hepatitis is a severe dis-
ease with up to 40% mortality within 6 months after 
the onset of the clinical syndrome [150]. Corticoster-
oids are widely used to treat alcoholic hepatitis, but 
such treatment only improves the short-term survival 
rate [150]. This may be because treatment with corti-
costeroids inhibits inflammation, which is beneficial 
for alcoholic hepatitis, but can also suppress liver re-
generation and increase the rate of bacterial infection. 
Corticosteroids plus IL-22 treatment appear to have 
multiple beneficial effects on alcoholic hepatitis such 
as IL-22 preventing hepatocellular damage, promot-
ing hepatocyte proliferation, and inhibiting bacterial 
infection. Clinical trials examining such therapeutic 
combinations for patients with severe alcoholic hepa-
titis should be tested in the future.  

Like many other types of cancer, hepatocellular 
carcinoma and cholangiocarcinoma also have elevat-
ed levels of STAT3 activation [4]. Blockage of STAT3 
activation has been shown to effectively reduce 

hepatocellular carcinoma and cholangiocarcinoma 
growth in vitro and in in vivo animal models 
[135,136,151]. During last several years, extreme ef-
forts have been made to develop STAT3 inhibitors. 
These inhibitors have been extensively used in pre-
clinical studies in various types of cancer, and some of 
these inhibitors have also been tested in Phase 1 clin-
ical trials [152]. We anticipate that these STAT3 inhib-
itors will have beneficial effects in treating liver cancer 
in the future. 
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