International Journal of Biological Sciences

Impact factor
3.873

ISSN 1449-2288

News feeds of IJBS published articles
My Manuscript
My Account

Journal of Biomedicinenew

Theranostics

International Journal of Medical Sciences

Journal of Cancer

Oncomedicine

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

Journal of Genomics now in PubMed/PubMed Central. Submit manuscript...

PubMed Central Indexed in Journal Impact Factor

Int J Biol Sci 2012; 8(8):1188-1196. doi:10.7150/ijbs.5059

Research Paper

Hydrophobic Properties of tRNA with Varied Conformations Evaluated by an Aqueous Two-Phase System

Keishi Suga, Hibiki Tomita, Seishiro Tanaka, Hiroshi Umakoshi

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka, Japan

Abstract

The surface properties of transfer RNA (tRNA) were analyzed using a poly(ethylene glycol)/dextran aqueous two-phase system (ATPS), where the surface net hydrophobicity (HFS) and the local hydrophobicity (LH) were evaluated based on the partition coefficient of tRNA in the ATPS. According to the evaluated HFS values, the surface of the tRNA molecule was hydrophilic at 20° -40 °C, and it became hydrophobic at 50° -80 °C because of the exposure of the intrinsic nucleobases of tRNA. In contrast, the LH values were found to be maximal at 20° -40 °C. The conformation of tRNA was investigated by Raman and circular dichroism (CD) spectroscopies, corroborating the results with the calculated prediction of its secondary structure (Mfold). It was shown that 66% of A-form structure existed at room temperature; the base stacking (θ265) was gradually decreased, and the A-form structure (θ208) was denatured along with a sigmoid curve against the temperature increase; the denatured secondary structures were observed above 50° C by Mfold prediction. The HFS value of the DNA duplex was found to be hydrophilic, compared to that of the single-stranded DNA, indicating that the exposure of nucleobases is a key factor of the hydrophobic properties of nucleotides. We conclude that the hydrophobic property of the tRNA surface was directly affected by its conformational transition.

Keywords: transfer RNA, hydrophobicity

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Suga K, Tomita H, Tanaka S, Umakoshi H. Hydrophobic Properties of tRNA with Varied Conformations Evaluated by an Aqueous Two-Phase System. Int J Biol Sci 2012; 8(8):1188-1196. doi:10.7150/ijbs.5059. Available from http://www.ijbs.com/v08p1188.htm