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Abstract 

In this paper, we use Stokes, Brinkman and Darcy equations to approximate the porous continuum 
media of ligament tissues respectively, simulate the flow field with FLUENT software, and study the 
shear stress on the cell surface due to the interstitial fluid flow. Since the Brinkman equation 
approaches Stokes equation well in high hydraulic permeability (kp) condition (kp ≥1.0×10-8 m2 in 
our numerical simulation), and it is an approximation to Darcy model in low kp condition (kp ≤
5.0×10-12 m2 in our numerical simulation), we used the Brinkman model to simulate the interstitial 
fluid flow in the ligament where kp is approximately 1.0×10-16 m2. It shows kp and anisotropic 
property have a little effect on the flow field, but have a great effect on the shear stress on the 
membrane of interstitial cells (τcell). There is a linear relationship between τcell and 1 �𝑘𝑝⁄ , when kp 
=1.0×10-16 m2 and the maximum τcell (τcell,max) is approximately 10 Pa. The anisotropic property will 
affect τcell’s distribution on the cell surface. When kx/ky>1, low τcell dominates the cell, while when 
kx/ky<1, high τcell dominants the cell. 
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Introduction 
The interstitium is the space located between the 

capillary walls and the cells. The basic structure of the 
interstitium is similar in all tissues: collagen builds a 
fibril framework that is full of interstitial fluid; inter-
stitial cells are distributed in interstitium. The com-
ponents of interstitial fluid are very complex, includ-
ing water, glycosaminoglycan, proteoglycan, proteins 
and so on. The interstitial fluid volume is as much as 
approximately 3 times of the blood’s volume. Intersti-
tial fluid contacts with the cells more directly than 
blood does. But the researches on interstitial fluid are 
fewer than those on blood. Not only the components 
of interstitial fluid but also its flow plays an important 
role in the tissue’s normal physiological activities [1, 
2]. In poorly vascularized tissues such as ligaments 
and tendons, the flow of interstitial fluid is especially 
important. 

Many factors are known to influence the flow of 
interstitial fluid. First, interstitial fluid and blood ex-
change occurs at the capillary walls [3]. Therefore, the 
flow of interstitial fluid is affected by the confor-
mation of capillaries and the penetrating velocity on 
the wall of capillaries. Second, the space of the inter-
stitium is not empty but full of collagen fibril network, 
which affects the flow of interstitial fluid. In different 
tissues the structure of the collagen fibrils are differ-
ent. For example, in derma, collagen fibrils are orga-
nized into meshes and in ligaments, into regular par-
allel arrays, as shown in Fig. 1 [4]. Third, interstitial 
cells also affect the interstitial flow. In brain, neurons 
and glial cells formed the tight central nervous system 
(CNS) [5], while in the stained connective tissue, in-
terstitial cells (Mast cells, MCs) are isolated (×400, 
Fig.2).  

 

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2013, Vol. 9 

 
http://www.ijbs.com 

1051 

 
Fig 1. Configuration of parallel collagen fibrils. 

 

 
Fig 2. MCs in the skin under electron microscope. One dark circle rep-
resents one cell 

 
Most mathematical models of interstitial flow 

through fibrous matrix to date present the tissue as a 
continuum space and Stokes, Brinkman and Darcy 
equations are adopted respectively to study the inter-
stitial fluid flow [6-9]. For example, Lee and Fung [6] 
used Stokes equation to study a thin boundary-layer 
region near the fibrils surface. Pedersen et al. [7, 8] 
and we [9] used Brinkman equation to study the soft 
tissue. Chen et al. [10] used Darcy equation to study 
the interstitial fluid flow in ligaments and tendons. In 
Brinkman and Darcy equations, the properties of the 
fibrous matrix are represented by a hydraulic per-
meability kp that averages the flow resistance offered 
by the porous media across the entire flow domain. 
Many factors affect the tissue permeability; therefore, 
it’s hard to determine its accurate value which has to 
be evaluated in most cases. Yet, through numerical 
simulation, the estimated values of different cases are 
widely distinguished, ranging from 1.0×10-10 m2 to 
1.7×10-17 m2 [7, 9]. 

In this paper, based on a simple coupled capil-
lariy-interstitium model, we take a computational 
fluid dynamics (CFD) approach to investigate the 
following problems: (i) comparison of three equations 
(Stokes, Brinkman and Darcy) numerical results; (ii) 
the effect of kp on the interstitial fluid flow and inter-

stitial cells; (iii) the effect of interstitial cells on the 
flow field; (iv) the effect of the ratio of longitudinal 
permeability kx (parallel to the collagen fibrils) to the 
transverse permeability ky (perpendicular to the col-
lagen fibrils) (ratio=kx/ky) on the interstitial fluid flow 
and interstitial cells. 

Mathematical Model and Methods 
Model 

The two-dimensional interstitial fluid domain is 
occupied by a porous media, the top and the bottom 
of which are the capillaries (Fig.3). The capillaries 
collocate parallelly in the x direction: the left side of 
the capillary is near the arteriole, and the right side of 
the capillary is near the venule. We denote 2H as the 
distance between two neighboring capillaries and L as 
the length of the capillary. The four short lines at the 
four corners represent periodic conditions and the 
lengths of the lines are 0.01 L.  

 
 

 
Fig 3. A coupled capillariy-interstitium model. 

 
 
To solve the mathematical model, we need to 

determine the boundary conditions. Denote 
 the velocity, p the pressure, ρ the densi-

ty, μ the viscosity. Assuming that before entering and 
after leaving the domain, the flow is fully-developed 
and the derivative of horizontal velocities at the inlet 
and outlet are zero, namely, 

∂𝑢𝑥
∂𝑥
�
𝑥=−0.01𝐿

= 0, ∂𝑢𝑥
∂𝑥
�
𝑥=1.01𝐿

= 0          …(1) 

Unfortunately, these conditions result in the 
ill-posedness of the problem. To overcome this flaw, 
we subtract a background flow to fix the horizontal 
velocity at the inlet (x=-0.01 L) to zero. On the other 
hand, at the top and bottom of the interstitial space, 
we adopt the well-accepted Starling formula [3] 

𝑢𝑦 = 𝑘𝑐(𝑝𝑐 − 𝑝𝑖 − 𝜋𝑐 + 𝜋𝑖)            …(2) 

where kc is the permeability coefficient of capillary’s 
wall, pi is the interstitial hydrostatic pressure at the 
capillary wall, πc is the osmotic pressure in blood, and 
πi is the interstitial osmotic pressure at the capillary 

( , )x yu u=u
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wall. Here, according to the Poiseuille’s Law [3], pc 
will decrease linearly from artery to vein, assuming 
other parameters are constants. Finally, we impose 
the nonslip condition along the capillary walls (ux=0). 

 In order to study the effect of cells on interstitial 
flow and the effect of flow on interstitial cells, we 
place a cell (a circle with diameter of 8µm) in the cen-
ter of the domain and impose the nonslip condition on 
the cell’s wall (ux= uy=0). The sheer stress on the mast 
cell (τcell) is 

𝜏𝑐𝑒𝑙𝑙 = −𝜇 �𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑦

𝜕𝑥
�
𝑐𝑒𝑙𝑙

                …(3) 

Stokes equation 
Assuming the interstitial fluid is incompressible 

and defining the dimensionless parameters 𝒖∗ = 𝒖
𝑈

, 
𝑝∗ = 𝑝

𝜌𝑈2
,𝒙∗ = 𝒙

𝐷
, the continuity equation is 

∇ ⋅ 𝒖∗ = 𝟎                …(4)  

where U is the characteristic velocity, defined as 
𝑈 = 𝑘𝑐[(𝑝𝑎 − 𝑝𝑖) − (𝜋𝑐 − 𝜋𝑖)] , pa is the hydrostatic 
pressure at the arteriole section of capillary, D is the 
diameter of capillaries, and ∇ is the gradient operator. 
Generally, the steady viscous fluid dynamics equation 
is the Navier-Stokes equation 

∇𝑝∗ + 𝒖∗ ⋅ ∇𝒖∗ = 1
Re
∆𝒖∗          …(5) 

where Re = 𝜌𝑈𝐷
𝜇

 is the Reynolds number, and ∆ is the 
Laplacian operator. Because Re is small (approxi-
mately 10-6 in this model), the inertia term (𝒖∗ ∙ ∇𝒖∗) is 
negligible compared to the viscous term ( 1

Re
∆𝒖∗). Then 

the Navier-Stokes equation is simplified as the Stokes 
equation 

∇𝑝∗ = 1
Re
∆𝒖∗                      …(6) 

Brinkman and Darcy equations 
Low Reynolds number flows in porous media 

filled with a matrix of fibrous material have fre-
quently been approximated using a Brinkman equa-
tion, and the properties of the material are repre-
sented by a hydraulic permeability 𝒌𝑝 = �𝑘𝑝𝑥,𝑘𝑝𝑦� 
[11]. Pederson et al. [7] evaluated that kp ranged from 
approximately 4.0×10-11 m2 to 1.0×10-13 m2 in tissues, 
while Chen et al. [10] estimated that kp ranged from 
1.0×10-16 m2 to 1.0×10-18 m2 in ligaments. Define 𝒌 =
𝒌𝑝
𝐷2

, the dimensionless Brinkman equation is 

∇𝑝∗ = 1
Re
∆𝒖∗ − 1

Re⋅𝒌
𝒖∗      …(7) 

when |𝒌| is small, the viscous term ( 1
Re
∆𝒖∗) is negligi-

ble compared to the Darcy-Forchheimer term ( 1
Re⋅𝒌

𝒖∗) 
and Brinkman equation reduces to Darcy's law [11], 

∇𝑝∗ = − 1
Re⋅𝒌

𝒖∗              …(8) 

Computational method 
The CFD software package FLUENT (version 

6.0) is used for the numerical simulation. The grid is 
generated by the GAMBIT software package. The 
governing equations are solved by iterating. When the 
iteration is convergent (error of iterated results 
e<0.001), the velocity field is obtained. 

Physiological parameters 
Table 1 shows the physiological parameters used 

in the numerical simulation. Based on these values, 
the characteristic velocity U=1.33×10-6 m/s. 

 

Table 1. Physiological parameter values of the model. 

Parameter Value 
Viscosity of interstitial fluid µ/( kg·m-1·s-1) 3.5×10-3 [10] 
Permeability coefficient of capillary’s wall kc /( 
m2·s·kg-1) 

5×10-10 [13] 

Plasma colloid osmotic pressure πc /mmHg 28 [3] 
Interstitial colloid osmotic pressure at the capillary 
wall πi /mmHg 

8 [12] 

Density of interstitial fluid ρ /(kg·m-3) 1000[3] 
Length of capillary L/µm 1000[3] 
Diameter of capillary D/µm 8[3] 
Distance between adjacent capillaries (2H)/µm 48[3] 
Interstitial hydrostatic pressure at the capillary wall 
pi/mmHg 

-5 [12] 

Hydrostatic pressure at the arteriole section of capil-
lary pa /mmHg 

30 [3] 

Hydrostatic pressure at the venule section of capillary 
pv /mmHg 

10 [3] 

 

Results 
Interstitial flow filed in isotropic media 

The computational results of Stokes equation 
and Brinkman equation are nearly the same when kp 

is large (Fig.4, kp=1×10-8m2, display scale is x:y=1:5), 
while the results of Darcy equation and Brinkman 
equation are similar when kp is small (Fig.5, 
kp=5×10-12m2, display scale is x:y=1:5). The numerical 
results of Stokes, Brinkman and Darcy equations all 
show that the interstitial fluids flow from the capillary 
to the interstitium at the arteriole (left) side and are 
absorbed by the capillaries at the venule (right) side. 
Near the x axis (symmetry axis, y=0), the flows’ di-
rections tend to become parallel to the capillaries, and 
the maximum velocities are at the x axis (x≈660µm). 
The maximum velocities of Stokes and Brinkman 
(kp=1×10-8m2) equations are 2.75×10-5 m/s, while the 
maximum velocities of Darcy and Brinkman 
(kp=5×10-12m2) equations are 2.01×10-5 m/s. The ve-
locity profile in the cross-section causes the difference 



Int. J. Biol. Sci. 2013, Vol. 9 

 
http://www.ijbs.com 

1053 

between the maximum velocities: the velocity profile 
of Stokes equation is the parabola shape, which is 
accordance with Fu et al.’s μPIV measurement [14] 
(‘+’and ‘o’ in Fig.6 and Fig.7), while the velocity pro-
file of Darcy equation is nearly equality (‘*’ and 
dash-dot line in Fig.6 and Fig.7). The results also show 
there are boundary layers in Brinkman equation, and 
the thickness of the boundary layers is positive cor-
relation to kp (‘*’ and dash-dot line in Fig.6 and Fig.7). 

 

 
Fig 4. Interstitial flow field in isotropic media (a) Brinkman equation 
(kp=1×10-8m2), (b) Stokes equation. 

 

 
Fig 5. Interstitial flow field in isotropic media (a) Brinkman equation 
(kp=5×10-12m2), (b) Darcy equation 

 

 
Fig 6. velocity profile in the maximum velocity cross-section (x=0.66mm). 

 

 
Fig 7. velocity profile at the outlet (x=1mm) . 

 

The effect of interstitial cells on the flow field 
Fig.8 is the flow field near the cell (Brinkman 

equation, kp=1×10-12m2). The interstitial cell has little 
effect on the flow field except for the flow field near 
the cell surface where a boundary layer exists. Inter-
stitial fluid velocity will provide mechanical stimuli to 
the interstitial cell, and the sheer stress on the surface 
of cell (τcell) is direct proportional to 1 �𝑘𝑝⁄  because of 
Brinkman boundary layer (Fig.9). Fig.10 shows the 
cell’s influence is approximately 10 µm range, where 
‘+’ and ‘*’ represent the velocities in the cross-sections 
of 2 µm before and after the cell respectively. There 
are obviously a large variation at |y|<10µm range. ‘o’ 
represents the velocity in the cross-section of 10 µm 
before the cell. There is a slightly change at |y|<10µm 
range. The solid line represents the velocity in the 
cross-section of 20 µm before the cell, and it is similar 
to the velocity without the interstitial cell (dash-dot 
line in Fig.6). 

 
Fig 8. The flow field near the cell (Brinkman equation, kp=1×10-12m2). 
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Fig 9. τcell distribution at the cell surface. 

 

 
Fig 10. Velocities in the cross-sections. 

 
 

Interstitial flow filed in anisotropic media 
While many researches assumed the tissue is 

isotropic, Chen et al. [10] showed the parallel ar-
rangement of collagen fibrils in ligaments will cer-
tainly lead to anisotropic permeability property in the 
tissue. Our simulation results showed that the flow 
fields are similar when kx is equal to or less than ky, 
that is when kx/ky ≤1, while the flow fields are differ-
ent when kx>ky. Fig.11 is the velocity in the maximum 
velocity cross-section, which shows the velocity pro-
file is more concave-down with the ratio increase. 
Fig.12 plots the velocity at the outlet, which shows the 
velocity profile is more convex with the ratio increase. 
Though anisotropic property will affect the flow field, 
Fig.11 and Fig.12 show the influence is less when 
kx/ky<10, and the influence is not great even when 

kx/ky=100. Based on Chen et al.’s results, the maxi-
mum evaluation value of ratio in ligaments is less than 
50 [10]. Therefore, the isotropic analysis in some re-
search is acceptable. 

The anisotropic property will affect the flow field 
near the cell surface and τcell obviously. Fig.13 shows 
the low τcell range increases with ratio increasing, and 
the maximum τcell is at y=±4µm (the top and bottom 
sides of the cell) when kx/ky>1. When kx/ky=100, τcell at 
over 85% range of the cell surface(y<±3.3 µm) is under 
1 Pa, and τcell increases to 10 Pa quickly near y=±4µm 
position (‘·’ in Fig.13). When kx/ky<1, the positions of 
maximum τcell shift to the left and right sides of the cell 
and the high τcell range increases (‘*’ and ‘o’ in Fig.13, 
y=0µm represent the left and right sides of the cell). 

 
 

 
Fig 11. Velocities in the maximum velocity cross-section. 

 
 

 
Fig 12. Velocity distribution at the outlet. 
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Fig 13. τcell distribution at the cell surface. 

 

Discussion and Conclusions 
 In this study, we explore the nature of intersti-

tial fluid flow in ligaments and compare the results 
derived from Stokes, Brinkman and Darcy models. 
Through the simulations, we can make the following 
conclusions. 

Parallel array capillaries can induce parallel 
interstitial fluid flow no matter which model is 
selected 

The interstitial fluid flow is nearly parallel to the 
capillaries. The difference between these models is the 
velocity distribution in the cross-section: parabola 
shape in Stokes model and uniform in Darcy model. 
The numerical simulation is accordance with the an-
alytical solutions [11]: Brinkman equation ap-
proaches Stokes equation well in high kp condition (kp 
≥1.0×10-8 m2), while is an approximation to Darcy 
model in low kp condition (kp ≤5.0×10-12 m2), except for 
that there exist a boundary layer of �𝑘𝑝 magnitude. 
One group of capillaries will generate 1.2×10-5 m/s 
(0.07cm/min) velocity at the outlet. If the fluid from 
the capillaries is not absorbed by lymphatic, it will 
flow downstream and be accelerated through the next 
group of capillaries. In the past, it was accepted that 
the most seepage from the arteriole side of capillary is 
absorbed at the venule side of capillary, and the sur-
plus is absorbed by lymphatic vessels right away. 
Since lymphatic vessels are not always near capillary 
and the seepage from arteries is always more than the 
fluid absorbed by capillaries, the unabsorbed fluid 
will travel some distance and even a long distance 
before being reabsorbed by capillary or lymphatic. 
Interstitial fluid flow will affect cells bioactivities. To 
poorly vascularized tissues such as ligaments and 

tendons, the flow of interstitial fluid is more im-
portant to metabolism. 

Interstitial cells will affect the flow field near 
the cell surface and interstitial fluid flow can 
induce shear stress on cell surface 

Though the interstitial cell has little effect on the 
flow field 20 µm away from the cell surface, it does 
affect the flow field near the cell surface. Therefore, 
for the interstitial cells that isolated from each other 
(Fig.2), it is reasonable to neglect other cell’s effect 
when study the shear stress on one cell. Interstitial 
fluid velocity will induce τcell on the surface of cell in 
Brinkman equation and τcell is direct proportional to 
1 �𝑘𝑝⁄ , which is accordance with the theoretical 
analysis [11]. 

The anisotropic property has a little effect on 
the interstitial fluid flow, but will affect τcell’s 
distribution on the cell surface  

The anisotropic property has little effect on the 
interstitial fluid flow when kx/ky<1, while has some 
effect on the interstitial fluid flow when kx/ky>1. The 
increase of kx/ky will induce the velocity profile con-
cave in the cross-section. We don’t know the physio-
logical effect of this concave. Weimbum et al. had 
found the similar drop in the middle of the 
cross-section when discussing the flow through an 
orifice in a fibrous medium [15]. The anisotropic 
property has obvious effect on τcell. When kx/ky>1, low 
τcell dominates the cell and the maximum τcell is at the 
top and bottom sides of the cell. When kx/ky<1, high 
τcell dominants the cell and the positions of maximum 
τcell shift to the left and right sides of the cell. This re-
sults show that the parallel arrangement of fibril 
along the capillaries (kx/ky>1) can reduce the me-
chanical stimuli on cells induced by the interstitial 
fluid flow. In vitro experiments have shown that sub-
tle fluid flow environment plays an important role in 
cells’ living, reproduction and development [16-18]. 
For example, Swartz et al. found that collagen aligns 
perpendicular to subtle flow [16], and Hayward et al. 
figured out that the interstitial fluid velocity and tis-
sue shear stress are key mechanical stimuli for the 
differentiation of skeletal tissues [18]. But the mecha-
nism of the flow’s function is unknown.  

This numerical simulation provides an effective 
way to explore the in vivo interstitial fluid flow in all 
sorts of tissues, helps to set up the vivid subtle inter-
stitial flow environment of cells, and is benefit to un-
derstand the physiological functions of interstitial 
fluid flow. 
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