International Journal of Biological Sciences

Impact factor
3.873

ISSN 1449-2288

News feeds of IJBS published articles
My Manuscript
My Account

Journal of Biomedicinenew

Theranostics

International Journal of Medical Sciences

Journal of Cancer

Oncomedicine

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Biol Sci 2014; 10(3):236-244. doi:10.7150/ijbs.7744

Short Research Communication

Genome Wide Screening of Candidate Genes for Improving Piglet Birth Weight Using High and Low Estimated Breeding Value Populations

Lifan Zhang1,2✉, Xiang Zhou1, Jennifer J. Michal1, Bo Ding1, Rui Li1,2, Zhihua Jiang1✉

1. Department of Animal Sciences, Washington State University, Pullman, WA, 99164-6351, USA.
2. College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.

Abstract

Birth weight is an economically important trait in pig production because it directly impacts piglet growth and survival rate. In the present study, we performed a genome wide survey of candidate genes and pathways associated with individual birth weight (IBW) using the Illumina PorcineSNP60 BeadChip on 24 high (HEBV) and 24 low estimated breeding value (LEBV) animals. These animals were selected from a reference population of 522 individuals produced by three sires and six dam lines, which were crossbreds with multiple breeds. After quality-control, 43,257 SNPs (single nucleotide polymorphisms), including 42,243 autosomal SNPs and 1,014 SNPs on chromosome X, were used in the data analysis. A total of 27 differentially selected regions (DSRs), including 1 on Sus scrofa chromosome 1 (SSC1), 1 on SSC4, 2 on SSC5, 4 on SSC6, 2 on SSC7, 5 on SSC8, 3 on SSC9, 1 on SSC14, 3 on SSC18, and 5 on SSCX, were identified to show the genome wide separations between the HEBV and LEBV groups for IBW in piglets. A DSR with the most number of significant SNPs (including 7 top 0.1% and 31 top 5% SNPs) was located on SSC6, while another DSR with the largest genetic differences in FST was found on SSC18. These regions harbor known functionally important genes involved in growth and development, such as TNFRSF9 (tumor necrosis factor receptor superfamily member 9), CA6 (carbonic anhydrase VI) and MDFIC (MyoD family inhibitor domain containing). A DSR rich in imprinting genes appeared on SSC9, which included PEG10 (paternally expressed 10), SGCE (sarcoglycan, epsilon), PPP1R9A (protein phosphatase 1, regulatory subunit 9A) and ASB4 (ankyrin repeat and SOCS box containing 4). More importantly, our present study provided evidence to support six quantitative trait loci (QTL) regions for pig birth weight, six QTL regions for average birth weight (ABW) and three QTL regions for litter birth weight (LBW) reported previously by other groups. Furthermore, gene ontology analysis with 183 genes harbored in these 27 DSRs suggested that protein, metal, ion and ATP binding, viral process and innate immune response present important pathways for deciphering their roles in fetal growth or development. Overall, our study provides useful information on candidate genes and pathways for regulating birth weight in piglets, thus improving our understanding of the genetic mechanisms involved in porcine embryonic or fetal development.

Keywords: PorcineSNP60 BeadChip, Differentially selected regions, Pathways, Birth weight, Piglets.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Zhang L, Zhou X, Michal JJ, Ding B, Li R, Jiang Z. Genome Wide Screening of Candidate Genes for Improving Piglet Birth Weight Using High and Low Estimated Breeding Value Populations. Int J Biol Sci 2014; 10(3):236-244. doi:10.7150/ijbs.7744. Available from http://www.ijbs.com/v10p0236.htm