Supplementary Materials and Methods

Antibodies. Anti-α-SMA (1A4) and anti-SDF-1 (79018) monoclonal antibodies for immunocytochemistry were purchased from R&D Systems Inc., Minneapolis, MN, USA. Anti-Pan-Keratin (C11) and anti-vimentin (R28) monoclonal antibodies were obtained from Cell Signaling Technology, Inc., Beverly, Massachusetts, USA. Anti-FAPα anti-collagen I (5D8), were obtained from Abcam Inc., Cambridge, MA, USA. Human cytokine antibody array kits were obtained from RayBiotech, Norcross, GA, USA. Rabbit anti-human Cav-1 (N-20) polyclonal antibody for Western blot and immunohistochemistry, as well as anti-β-actin (N-21) for Western blot, were obtained from Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA. Phycoerythrin (PE)-conjugated secondary antibody for flow cytometry and the Alexa Fluor secondary antibody used for immunocytochemistry were purchased from Invitrogen Corp., Carlsbad, Calif., USA.

Indirect immunocytochemistry of cultured cells. Cells cultured on the glass cover slips were washed thrice with PBS, fixed in 4% (weight/vol) paraformaldehyde in PBS (PFA/PBS; Sigma-Aldrich, St. Louis, MO, USA) for 10 min at room temperature, and then washed again thrice in PBS after reaching confluence. The cells were permeabilized with 0.1% (vol/vol) Triton X-100/PBS (Amresco Inc., Cleveland, Ohio, USA) for 10 min at room temperature. Afterward, the cells were washed thrice in PBS and incubated with 3% (weight/vol) bovine serum albumin (BSA)/0.3 M glycine in PBS (Sigma-Aldrich) for 2 h at room temperature to reduce the nonspecific binding of primary antibodies. Subsequently, 200 μl of the appropriate primary antibody, diluted in 3% (weight/vol) BSA/PBS, was placed on each cover slip, and then incubated overnight at 4°C. The cover slips were then washed thrice for 15 min each with PBS and were incubated with 200 μl of the secondary antibody (Alexa Fluor 488) diluted 1:2000 with 3% (weight/vol) BSA/PBS for 2 h at room temperature. Afterward, the cover slips were washed thrice for
5 min each with PBS and counter-stained with DAPI (0.1 μg/ml in PBS; Roche) for 1 min to visualize the nuclei. A final series of three 5 min washes with PBS was performed, after which, the cover slips were mounted on 1.5 μl Bio-Rad FluoroGuard™ Anti-fade Reagent (Bio-Rad, Hercules, CA, USA). The cover slips were sealed with nail polish.

Proliferation assay. A total of 3,000 AGS and MKN45 cells per well were seeded in 96-well plates and cultured in RPMI 1640 with 10% FCS. Then the medium was changed to serum-free RPMI for overnight incubation. Concentrated CM of the fibroblasts was added to AGS and MKN45 cells at various concentrations (0.25, 0.5, and 1.0 μg/μL), and serum-free RPMI 1640 or 10% FCS was added to the control wells. The cells were grown in a humidified atmosphere of 5% CO2 at 37°C. The cell growth of the AGS and MKN45 cell lines was each analyzed at 72 h with the CCK-8 reagent (Sigma-Aldrich) added 1 h before taking the spectrophotometric reading, according to the manufacturer's instructions

Invasion assay. BioCoat Matrigel-coated invasion chambers (BD Biosciences) were used to study cell invasiveness. Briefly, 1×10⁵ AGS or MKN45 cells in 500 μL serum-free medium was added to the upper chamber. The medium containing RPMI 1640, 10% FCS, or concentrated CM of the fibroblasts (0.25, 0.5, and 1.0 μg/μL) was added into the lower chamber. Serum-free medium was added to the lower chamber of the control wells. The cells were allowed to traverse the Matrigel for 72 h at 37°C in an environment with 5% CO₂. The non-invading cells on the upper surface of the membrane were removed with a cotton swab, and the filters were fixed in 0.1% glutaraldehyde and stained with 0.2% crystal violet. The number of cells that migrated to the lower side of the filter was counted under an upright microscope (Nikon Optiphot) using Image-Pro Plus 4.5 software (Media Cybernetics, Silver Spring, MD, USA). The whole area was counted per filter.
Supplementary Table S1. Basic characteristics of 120 gastric cancer patients.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number (%)</th>
<th>5-year survival rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>49 (41)</td>
<td>50</td>
</tr>
<tr>
<td>≥60</td>
<td>71 (59)</td>
<td>43</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>74 (68)</td>
<td>51</td>
</tr>
<tr>
<td>Female</td>
<td>36 (32)</td>
<td>30</td>
</tr>
<tr>
<td>H pylori infection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td>53 (58)</td>
<td>49</td>
</tr>
<tr>
<td>positive</td>
<td>38 (42)</td>
<td>52</td>
</tr>
<tr>
<td>Size(cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>60 (50)</td>
<td>54</td>
</tr>
<tr>
<td>≥5</td>
<td>60 (50)</td>
<td>35</td>
</tr>
<tr>
<td>Histologic type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well and moderately</td>
<td>74 (62)</td>
<td>57</td>
</tr>
<tr>
<td>Poorly and others*</td>
<td>46 (38)</td>
<td>25</td>
</tr>
<tr>
<td>Lauren classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal type</td>
<td>73 (61)</td>
<td>53</td>
</tr>
<tr>
<td>Diffuse and Mixed type</td>
<td>47 (35)</td>
<td>32</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEJ</td>
<td>14 (12)</td>
<td>48</td>
</tr>
<tr>
<td>Stomach</td>
<td>96 (88)</td>
<td>23</td>
</tr>
<tr>
<td>Lymphatic invasion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td>31 (26)</td>
<td>58</td>
</tr>
<tr>
<td>positive</td>
<td>79 (74)</td>
<td>39</td>
</tr>
<tr>
<td>Depth of tumor(T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1+ T2</td>
<td>28 (23)</td>
<td>81</td>
</tr>
<tr>
<td>T3+ T4</td>
<td>92 (77)</td>
<td>35</td>
</tr>
<tr>
<td>Lymph node metastasis (N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No+ N1</td>
<td>52 (43)</td>
<td>57</td>
</tr>
<tr>
<td>N2+ N3</td>
<td>68 (57)</td>
<td>35</td>
</tr>
<tr>
<td>Distant metastasis(M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>107 (89)</td>
<td>48</td>
</tr>
<tr>
<td>M1</td>
<td>13 (11)</td>
<td>20</td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I+II</td>
<td>52 (43)</td>
<td>58</td>
</tr>
<tr>
<td>III+IV</td>
<td>68 (57)</td>
<td>35</td>
</tr>
</tbody>
</table>

Note: *H. pylori* status was determined histologically and/or serologically. GEJ: gastroesophageal junction. The TNM stage of GC was determined according to the classification system of the International Union Against Cancer (7th edition). *Other histologic types of gastric cancer mainly included mucinous adenocarcinomas and signet-ring cell carcinomas, according to the World Health Organization (WHO) classifications.
Supplementary Table S2. Patient Characteristics of Primary Fibroblast Cultures

<table>
<thead>
<tr>
<th>NO.</th>
<th>Sex</th>
<th>Age (y)</th>
<th>Histological Type</th>
<th>Location</th>
<th>Lauren Classification</th>
<th>Tumor Stage</th>
<th>Adjacent Tissue</th>
<th>H. p Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>79</td>
<td>P</td>
<td>Antrum</td>
<td>IGC</td>
<td>T4a N2 M0</td>
<td>CG with IM</td>
<td>Neg</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>61</td>
<td>P</td>
<td>Corpus</td>
<td>IGC</td>
<td>T3 N0 M0</td>
<td>CG</td>
<td>Pos</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>52</td>
<td>P</td>
<td>Antrum</td>
<td>MGC</td>
<td>T3 N3b M0</td>
<td>CG</td>
<td>Neg</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td>58</td>
<td>M</td>
<td>Antrum</td>
<td>DGC</td>
<td>T3 N2 M1</td>
<td>CG</td>
<td>Neg</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>54</td>
<td>M</td>
<td>Antrum</td>
<td>IGC</td>
<td>T3 N3a M0</td>
<td>CG</td>
<td>Pos</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>48</td>
<td>P</td>
<td>Corpus</td>
<td>IGC</td>
<td>T3 N0 M0</td>
<td>CG</td>
<td>ND</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>67</td>
<td>M</td>
<td>Corpus</td>
<td>DGC</td>
<td>T3 N3a M1</td>
<td>CG</td>
<td>Neg</td>
</tr>
<tr>
<td>8</td>
<td>Male</td>
<td>59</td>
<td>M</td>
<td>Antrum</td>
<td>MGC</td>
<td>T4 N1 M0</td>
<td>CG</td>
<td>Neg</td>
</tr>
<tr>
<td>9</td>
<td>Male</td>
<td>84</td>
<td>M</td>
<td>Antrum</td>
<td>IGC</td>
<td>T4b N1 M0</td>
<td>CG with IM</td>
<td>ND</td>
</tr>
<tr>
<td>10</td>
<td>Female</td>
<td>47</td>
<td>M</td>
<td>GEJ</td>
<td>DGC</td>
<td>T2 N2 M0</td>
<td>CG</td>
<td>Neg</td>
</tr>
</tbody>
</table>

Note: M-moderately differentiated; P-poorly differentiated; IGC- Intestinal gastric cancer; DGC-diffuse gastric cancer; MGC-mixed gastric cancer; T-tumor; N-lymph node; M- metastasis. IM-Intestinal metaplasia; CG-Chronic gastritis; Neg, negative; Pos, positive; ND, not determined;
Supplementary Table S3. Expression difference of soluble mediators in the Media of GCAFs and GIAFs

<table>
<thead>
<tr>
<th>Protein Name</th>
<th>Ratio of GCAFs/GIAFs</th>
<th>Official Gene Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytokines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1alpha</td>
<td>1.04</td>
<td>interleukin 1, alpha</td>
</tr>
<tr>
<td>IL-2</td>
<td>1.24</td>
<td>interleukin 2</td>
</tr>
<tr>
<td>IL-3</td>
<td>1.25</td>
<td>interleukin 3</td>
</tr>
<tr>
<td>IL-4 *</td>
<td>1.60</td>
<td>interleukin 4</td>
</tr>
<tr>
<td>IL-5</td>
<td>1.29</td>
<td>interleukin 5</td>
</tr>
<tr>
<td>IL-6 *#</td>
<td>2.07</td>
<td>interleukin 6</td>
</tr>
<tr>
<td>IL-7 *</td>
<td>1.60</td>
<td>interleukin 7</td>
</tr>
<tr>
<td>IL-8 *#</td>
<td>3.57</td>
<td>interleukin 8</td>
</tr>
<tr>
<td>IL-12P70</td>
<td>1.19</td>
<td>interleukin 12A</td>
</tr>
<tr>
<td>IL-12P40 *</td>
<td>1.53</td>
<td>interleukin 12B</td>
</tr>
<tr>
<td>IL-13</td>
<td>1.30</td>
<td>interleukin 13</td>
</tr>
<tr>
<td>IL-15</td>
<td>1.23</td>
<td>interleukin 15</td>
</tr>
<tr>
<td>IL-1ra</td>
<td>1.15</td>
<td>interleukin 1 receptor antagonist</td>
</tr>
<tr>
<td>IL-2sRa *</td>
<td>1.33</td>
<td>interleukin 2 receptor, alpha</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>1.06</td>
<td>colony stimulating factor 2</td>
</tr>
<tr>
<td>G-CSF</td>
<td>1.03</td>
<td>colony stimulating factor 3</td>
</tr>
<tr>
<td>TNF-alpha</td>
<td>1.12</td>
<td>tumor necrosis factor, alpha</td>
</tr>
<tr>
<td>TNF-beta</td>
<td>1.35</td>
<td>tumor necrosis factor, beta</td>
</tr>
<tr>
<td>MIF *</td>
<td>1.41</td>
<td>macrophage migration inhibitory factor</td>
</tr>
<tr>
<td>TIMP-1</td>
<td>1.02</td>
<td>tissue inhibitor of metalloproteinase 1</td>
</tr>
<tr>
<td>TIMP-2 *</td>
<td>1.69</td>
<td>tissue inhibitor of metalloproteinase 2</td>
</tr>
<tr>
<td>IFN-gamma</td>
<td>1.37</td>
<td>interferon, gamma</td>
</tr>
<tr>
<td>TPO</td>
<td>1.22</td>
<td>thrombopoietin</td>
</tr>
<tr>
<td>Signal Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP-4 *</td>
<td>1.53</td>
<td>bone morphogenetic protein 4</td>
</tr>
<tr>
<td>BMP-6 *</td>
<td>1.63</td>
<td>bone morphogenetic protein 6</td>
</tr>
<tr>
<td>Angiogenin *#</td>
<td>1.53</td>
<td>angiogenin, ribonuclease, RNase A family, 5</td>
</tr>
<tr>
<td>IGFBP-1</td>
<td>1.17</td>
<td>insulin-like growth factor binding protein 1</td>
</tr>
<tr>
<td>IGFBP-3 *</td>
<td>1.39</td>
<td>insulin-like growth factor binding protein 3</td>
</tr>
<tr>
<td>IGFBP-4 *</td>
<td>1.57</td>
<td>insulin-like growth factor binding protein 4</td>
</tr>
<tr>
<td>IGFBP-6 *</td>
<td>1.66</td>
<td>insulin-like growth factor binding protein 6</td>
</tr>
<tr>
<td>Leptin</td>
<td>1.05</td>
<td>Leptin</td>
</tr>
<tr>
<td>SCF</td>
<td>1.34</td>
<td>stem cell factor</td>
</tr>
<tr>
<td>Fas</td>
<td>1.22</td>
<td>Fas (TNF receptor superfamily, member 6)</td>
</tr>
<tr>
<td>Osteoprotegerin</td>
<td>1.18</td>
<td>tumor necrosis factor receptor superfamily, member 11b</td>
</tr>
<tr>
<td>Protein Name</td>
<td>Ratio</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Oncostatin M</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>IL-6 sR</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>TRAIL R4 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1R4</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>GITR</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>TNFR-1</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>Sgp130</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>IL-1 R-like 1</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>Growth Factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF-β1 *#</td>
<td>2.04</td>
<td></td>
</tr>
<tr>
<td>IGF-1 *#</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>HGF *#</td>
<td>2.07</td>
<td></td>
</tr>
<tr>
<td>GDNF *</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>FGF-4</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>FGF-7</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>FGF-9</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>bFGF</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>Chemokines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL1/1-309 *</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td>CCL2/MCP-1 *#</td>
<td>2.87</td>
<td></td>
</tr>
<tr>
<td>CCL3/MIP-1α</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>CCL4/MIP-1β</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>CCL5/RANTES *#</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>CCL11/Eotaxin</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>CCL16/LEC *#</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>CCL20/MIP-3</td>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>CCL23/CKb8-1</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>CCL24/Eotaxin-2</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>CCL26/Eotaxin-3</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>CCL-28*#</td>
<td>3.09</td>
<td></td>
</tr>
<tr>
<td>Chemokine Name</td>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>CXCL9/MIG*</td>
<td>3.10</td>
<td>Chemokine (C-X-C motif) ligand 9/monokine induced by IFN</td>
</tr>
<tr>
<td>CXCL11/I-TAC</td>
<td>1.06</td>
<td>Chemokine (C-X-C motif) ligand 11/Interferon-inducible T-cell alpha chemoattractant</td>
</tr>
<tr>
<td>CXCL12/SDF-1*</td>
<td>2.09</td>
<td>Chemokine (C-X-C motif) ligand 12/Stromal cell-derived factor-1</td>
</tr>
<tr>
<td>Lymphotactin</td>
<td>1.16341912</td>
<td>Lymphotactin</td>
</tr>
</tbody>
</table>

*GCAFs/GIAFs ratio of more than 1.3 folds; # confirmation by ELISA.
Supplementary Table S4. Differentially Expressed Proteins in GCAFs and GIAFs by 2D-Nano-LC-ESI-MS/MS

<table>
<thead>
<tr>
<th>Accession number</th>
<th>Symbol</th>
<th>Description</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(GCAF/GIAF)</td>
</tr>
<tr>
<td>Q09666</td>
<td>AHNAK</td>
<td>Neuroblast differentiation-associated protein AHNAK</td>
<td>0.14</td>
</tr>
<tr>
<td>O43852</td>
<td>CALU</td>
<td>Calumenin</td>
<td>0.17</td>
</tr>
<tr>
<td>P21266</td>
<td>GSTM3</td>
<td>Glutathione S-transferase Mu 3</td>
<td>0.14</td>
</tr>
<tr>
<td>P07099</td>
<td>EPHX1</td>
<td>Epoxide hydrolase 1</td>
<td>0.1</td>
</tr>
<tr>
<td>Q00688</td>
<td>FKBP3</td>
<td>FK506-binding protein 3</td>
<td>0.22</td>
</tr>
<tr>
<td>P10599</td>
<td>TXN</td>
<td>Thioredoxin</td>
<td>0.16</td>
</tr>
<tr>
<td>Q03135</td>
<td>CAV1</td>
<td>Caveolin-1</td>
<td>0.16</td>
</tr>
<tr>
<td>O96008</td>
<td>TOMM40</td>
<td>Mitochondrial import receptor subunit TOM40 homolog</td>
<td>0.22</td>
</tr>
<tr>
<td>P20700</td>
<td>LMNB1</td>
<td>Lamin-B1</td>
<td>0.28</td>
</tr>
<tr>
<td>P09429</td>
<td>HMGB1</td>
<td>High mobility group protein B1</td>
<td>0.15</td>
</tr>
<tr>
<td>P62158</td>
<td>CALM1</td>
<td>Calmodulin</td>
<td>0.11</td>
</tr>
<tr>
<td>P13645</td>
<td>KRT10</td>
<td>Keratin, type I cytoskeletal 10</td>
<td>0.29</td>
</tr>
<tr>
<td>Q99733</td>
<td>NAPIL4</td>
<td>Nucleosome assembly protein 1-like 4</td>
<td>0.34</td>
</tr>
<tr>
<td>Q8TDZ2</td>
<td>MICAL1</td>
<td>NEDD9-interacting protein with calponin homology and LIM domains</td>
<td>0.35</td>
</tr>
<tr>
<td>Q92597</td>
<td>NDRG1</td>
<td>Protein NDRG1</td>
<td>0.37</td>
</tr>
<tr>
<td>P28482</td>
<td>MAPK1</td>
<td>Mitogen-activated protein kinase 1</td>
<td>0.37</td>
</tr>
<tr>
<td>P47755</td>
<td>CAPZA2</td>
<td>F-actin-capping protein subunit alpha-2</td>
<td>0.39</td>
</tr>
<tr>
<td>P26038</td>
<td>MSN</td>
<td>Moesin</td>
<td>0.39</td>
</tr>
<tr>
<td>Q99715</td>
<td>COL12A1</td>
<td>Collagen alpha-1(XII) chain</td>
<td>0.42</td>
</tr>
<tr>
<td>P19338</td>
<td>NCL</td>
<td>Nucleolin</td>
<td>0.27</td>
</tr>
<tr>
<td>P80303</td>
<td>NUCB2</td>
<td>Nucleobindin-2</td>
<td>0.24</td>
</tr>
<tr>
<td>P43121</td>
<td>MCAM</td>
<td>Cell surface glycoprotein MUC18</td>
<td>0.42</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Value1</td>
<td>Value2</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Q14914</td>
<td>PTGR1</td>
<td>Prostaglandin reductase 1</td>
<td>0.43</td>
</tr>
<tr>
<td>P58546</td>
<td>MTPN</td>
<td>Myotrophin</td>
<td>0.29</td>
</tr>
<tr>
<td>P35527</td>
<td>KRT9</td>
<td>Keratin, type I cytoskeletal 9</td>
<td>0.16</td>
</tr>
<tr>
<td>O76074</td>
<td>PDE5A</td>
<td>cGMP-specific 3',5'-cyclic phosphodiesterase</td>
<td>0.43</td>
</tr>
<tr>
<td>Q9UNM6</td>
<td>PSMD13</td>
<td>26S proteasome non-ATPase regulatory subunit 13</td>
<td>0.42</td>
</tr>
<tr>
<td>P53992</td>
<td>SEC24C</td>
<td>Protein transport protein Sec24C</td>
<td>0.45</td>
</tr>
<tr>
<td>Q9P0K7</td>
<td>RAI14</td>
<td>Ankycorbin</td>
<td>0.45</td>
</tr>
<tr>
<td>O60888</td>
<td>CUTA</td>
<td>Protein CutA</td>
<td>0.42</td>
</tr>
<tr>
<td>O95816</td>
<td>BAG2</td>
<td>BAG family molecular chaperone regulator 2</td>
<td>0.35</td>
</tr>
<tr>
<td>TXNDC1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q9BRA2</td>
<td>7</td>
<td>Thioredoxin domain-containing protein 17</td>
<td>0.24</td>
</tr>
<tr>
<td>P05387</td>
<td>RPLP2</td>
<td>60S acidic ribosomal protein P2</td>
<td>0.19</td>
</tr>
<tr>
<td>P21964</td>
<td>COMT</td>
<td>Catechol O-methyltransferase</td>
<td>0.5</td>
</tr>
<tr>
<td>Q14152</td>
<td>EIF3A</td>
<td>Eukaryotic translation initiation factor 3 subunit A</td>
<td>0.51</td>
</tr>
<tr>
<td>P42224</td>
<td>STAT1</td>
<td>Signal transducer and activator of transcription 1-alpha/beta</td>
<td>0.5</td>
</tr>
<tr>
<td>P60228</td>
<td>EIF3E</td>
<td>Eukaryotic translation initiation factor 3 subunit E</td>
<td>0.44</td>
</tr>
<tr>
<td>Q15181</td>
<td>PPA1</td>
<td>Inorganic pyrophosphatase</td>
<td>0.39</td>
</tr>
<tr>
<td>O00116</td>
<td>AGPS</td>
<td>Alkylidihydroxyacetonephosphate synthase, peroxisomal</td>
<td>0.53</td>
</tr>
<tr>
<td>P00441</td>
<td>SOD1</td>
<td>Superoxide dismutase [Cu-Zn]</td>
<td>0.24</td>
</tr>
<tr>
<td>P00750</td>
<td>PLAT</td>
<td>Tissue-type plasminogen activator</td>
<td>0.41</td>
</tr>
<tr>
<td>Q7L2H7</td>
<td>EIF3M</td>
<td>Eukaryotic translation initiation factor 3 subunit M</td>
<td>0.54</td>
</tr>
<tr>
<td>P61604</td>
<td>HSPE1</td>
<td>10 kDa heat shock protein, mitochondrial</td>
<td>0.49</td>
</tr>
<tr>
<td>P15311</td>
<td>EZR</td>
<td>Ezrin</td>
<td>0.31</td>
</tr>
<tr>
<td>Q9UL46</td>
<td>PSME2</td>
<td>Proteasome activator complex subunit 2</td>
<td>0.13</td>
</tr>
<tr>
<td>Q01105</td>
<td>SET</td>
<td>Protein SET</td>
<td>0.55</td>
</tr>
<tr>
<td>P20290</td>
<td>BTF3</td>
<td>Transcription factor BTF3</td>
<td>0.21</td>
</tr>
<tr>
<td>P61981</td>
<td>YWHAG</td>
<td>14-3-3 protein gamma</td>
<td>0.55</td>
</tr>
<tr>
<td>Q969G5</td>
<td>P</td>
<td>Protein kinase C delta-binding protein</td>
<td>0.4</td>
</tr>
<tr>
<td>Q14444</td>
<td>CAPRIN1</td>
<td>Caprin-1</td>
<td>0.4</td>
</tr>
<tr>
<td>O43399</td>
<td>TPD52L2</td>
<td>Tumor protein D54</td>
<td>0.41</td>
</tr>
<tr>
<td>P63010</td>
<td>AP2B1</td>
<td>AP-2 complex subunit beta-1</td>
<td>0.57</td>
</tr>
<tr>
<td>P25789</td>
<td>PSMA4</td>
<td>Proteasome subunit alpha type-4</td>
<td>0.26</td>
</tr>
<tr>
<td>P62195</td>
<td>PSMC5</td>
<td>26S protease regulatory subunit 8</td>
<td>0.5</td>
</tr>
<tr>
<td>Q9NQC3</td>
<td>RTN4</td>
<td>Reticulon-4</td>
<td>0.48</td>
</tr>
<tr>
<td>P05455</td>
<td>SSB</td>
<td>Lupus La protein</td>
<td>0.55</td>
</tr>
<tr>
<td>O95336</td>
<td>PGLS</td>
<td>6-phosphogluconolactonase</td>
<td>0.26</td>
</tr>
<tr>
<td>Q9NVD7</td>
<td>PARVA</td>
<td>Alpha-parvin</td>
<td>0.36</td>
</tr>
<tr>
<td>P30085</td>
<td>CMPK1</td>
<td>UMP-CMP kinase</td>
<td>0.39</td>
</tr>
<tr>
<td>P05556</td>
<td>ITGB1</td>
<td>Integrin beta-1</td>
<td>0.6</td>
</tr>
<tr>
<td>P46459</td>
<td>NSF</td>
<td>Vesicle-fusing ATPase</td>
<td>0.52</td>
</tr>
<tr>
<td>Q5T4S7</td>
<td>UBR4</td>
<td>E3 ubiquitin-protein ligase UBR4</td>
<td>0.32</td>
</tr>
<tr>
<td>P55209</td>
<td>NAP1L1</td>
<td>Nucleosome assembly protein 1-like 1</td>
<td>0.61</td>
</tr>
<tr>
<td>P27487</td>
<td>DPP4</td>
<td>Dipeptidyl peptidase 4</td>
<td>0.45</td>
</tr>
<tr>
<td>Q562R1</td>
<td>ACTBL2</td>
<td>Beta-actin-like protein 2</td>
<td>0.08</td>
</tr>
<tr>
<td>Q13561</td>
<td>DCTN2</td>
<td>Dynactin subunit 2</td>
<td>0.35</td>
</tr>
<tr>
<td>P55769</td>
<td>NHP2L1</td>
<td>NHP2-like protein 1</td>
<td>0.63</td>
</tr>
<tr>
<td>O95340</td>
<td>PAPSS2</td>
<td>Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthetase 2</td>
<td>0.63</td>
</tr>
<tr>
<td>Q9HDC9</td>
<td>APMAP</td>
<td>Adipocyte plasma membrane-associated protein</td>
<td>0.5</td>
</tr>
<tr>
<td>P16070</td>
<td>CD44</td>
<td>CD44 antigen</td>
<td>0.65</td>
</tr>
<tr>
<td>P21589</td>
<td>NT5E</td>
<td>5'-nucleotidase</td>
<td>0.65</td>
</tr>
<tr>
<td>P48163</td>
<td>ME1</td>
<td>NADP-dependent malic enzyme</td>
<td>0.31</td>
</tr>
<tr>
<td>PPP1R12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O14974</td>
<td>A</td>
<td>Protein phosphatase 1 regulatory subunit 12A</td>
<td>0.66</td>
</tr>
<tr>
<td>Q9H3H3</td>
<td>C11orf68</td>
<td>UPF0696 protein C11orf68</td>
<td>0.38</td>
</tr>
<tr>
<td>Q96D15</td>
<td>RCN3</td>
<td>Reticulocalbin-3</td>
<td>0.65</td>
</tr>
<tr>
<td>Q9BT78</td>
<td>COPS4</td>
<td>COP9 signalosome complex subunit 4</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Forty-five up-regulated proteins in GCAFs

<p>| Q15084 | PDIA6 | Protein disulfide-isomerase A6 | 2.22 | 2.01 | 2.32 |
| Q15084 | SERPINE | | | | |
| P07093 | 2 | Glia-derived nexin | 2.78 | 2.35 | 2.46 |
| P05067 | APP | Amyloid beta A4 protein | 2.16 | 2.79 | 2.42 |
| Q9HBL0 | TNS1 | Tensin-1 | 2.29 | 2.82 | 2.74 |
| Q9Y570 | ETHE1 | Protein ETHER1, mitochondrial | 2.1 | 2.39 | 2.93 |
| P09846 | SPARC | SPARC | 2.94 | 1.62 | 1.77 |
| P07814 | 2PRCE | Bifunctional aminoacyl-tRNA synthetase | 3.13 | 2.02 | 2.47 |
| Q9Y570 | PPME1 | Protein phosphatase methylesterase 1 | 2.94 | 2.71 | 3.16 |
| Q8IYD1 | TNS1 | Tensin-1 | 2.29 | 2.82 | 2.74 |
| P61254 | RPL26 | 60S ribosomal protein L26 | 2.2 | 2.83 | 3.39 |
| P26373 | RPL13 | 60S ribosomal protein L13 | 3.42 | 2.4 | 2.43 |
| P40429 | RPL13A | 60S ribosomal protein L13a | 2.98 | 2.96 | 3.48 |
| P42677 | RPS27 | 40S ribosomal protein S27 | 3.55 | 2.2 | 2.23 |
| Q9Y5M8 | SRPRB | Signal recognition particle receptor subunit beta | 3.63 | 3.48 | 2.44 |
| P09619 | PDGFRB | Beta-type platelet-derived growth factor receptor | 2.15 | 2.33 | 3.71 |
| P56134 | ATP5J2 | ATP synthase subunit f, mitochondrial | 2.4 | 3.83 | 3.32 |
| Q16851 | UGP2 | UTP-glucose-1-phosphate uridylyltransferase | 2.11 | 2.4 | 3.94 |
| P07996 | THBS1 | Thrombospondin-1 | 3.95 | 2.47 | 2.21 |
| P62988 | RPS27A | Ubiquitin | 3.79 | 2.7 | 4.11 |
| P17301 | ITGA2 | Integrin alpha-2 | 2.39 | 4.52 | 3.04 |
| P68363 | TUBA1B | Tubulin alpha-1B chain | 2.88 | 2.15 | 4.59 |
| P54136 | RARS | Arginyl-tRNA synthetase, cytoplasmic | 4.9 | 4.94 | 4.33 |
| P12111 | COL6A3 | Collagen alpha-3(VI) chain | 4.95 | 4 | 3.33 |
| P02792 | FTL | Ferritin light chain | 3.09 | 2.29 | 5.53 |
| Q9BUT1 | BDH2 | 3-hydroxybutyrate dehydrogenase type 2 | 4.27 | 5.62 | 5.51 |
| Q14254 | FLOT2 | Flotillin-2 | 5.07 | 2.81 | 5.73 |
| SERPINE | 1 | Plasminogen activator inhibitor 1 | 2.57 | 2.42 | 5.83 |
| Q9NZO1 | GPSN2 | Synaptic glycoprotein SC2 | 3 | 3 | 5.95 |
| Q9NQW7 | XPNPEP1 | Xaa-Pro aminopeptidase 1 | 5.76 | 6.58 | 5.59 |
| P46782 | RPS5 | 40S ribosomal protein S5 | 5.43 | 6.02 | 6.88 |
| P14174 | MIF | Macrophage migration inhibitory factor | 7.19 | 2.31 | 2.75 |</p>
<table>
<thead>
<tr>
<th>Accession</th>
<th>Gene ID</th>
<th>Description</th>
<th>ExpRatio</th>
<th>FoldChange</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q08431</td>
<td>MFGE8</td>
<td>Lactadherin</td>
<td>7.54</td>
<td>3.3</td>
<td>4.75</td>
</tr>
<tr>
<td>P01023</td>
<td>A2M</td>
<td>Alpha-2-macroglobulin</td>
<td>7.57</td>
<td>5.69</td>
<td>5.23</td>
</tr>
<tr>
<td>Q9BWD1</td>
<td>ACAT2</td>
<td>Acetyl-CoA acetyltransferase, cytosolic</td>
<td>7.78</td>
<td>2.38</td>
<td>3.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KIAA119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q8WUJ3</td>
<td>9</td>
<td>Protein KIAA1199</td>
<td>4.49</td>
<td>8.08</td>
<td>2.06</td>
</tr>
<tr>
<td>P62304</td>
<td>SNRPE</td>
<td>Small nuclear ribonucleoprotein E</td>
<td>8.28</td>
<td>2.27</td>
<td>7.93</td>
</tr>
<tr>
<td>P0C0L4</td>
<td>C4B</td>
<td>Complement C4-B</td>
<td>8.57</td>
<td>2.42</td>
<td>4.36</td>
</tr>
<tr>
<td>Q9Y617</td>
<td>PSAT1</td>
<td>Phosphoserine aminotransferase</td>
<td>4.54</td>
<td>3.09</td>
<td>9.81</td>
</tr>
<tr>
<td>P50502</td>
<td>ST13</td>
<td>Hsc70-interacting protein</td>
<td>2.54</td>
<td>9.95</td>
<td>8.39</td>
</tr>
<tr>
<td>P61513</td>
<td>RPL37A</td>
<td>60S ribosomal protein L37a</td>
<td>2.11</td>
<td>7.63</td>
<td>10.38</td>
</tr>
<tr>
<td>P22102</td>
<td>GART</td>
<td>Trifunctional purine biosynthetic protein adenosine-3</td>
<td>2.05</td>
<td>3.61</td>
<td>11.6</td>
</tr>
<tr>
<td>Q9UMS6</td>
<td>SYNPO2</td>
<td>Synaptopodin-2</td>
<td>11.92</td>
<td>2.47</td>
<td>3.31</td>
</tr>
<tr>
<td>P07585</td>
<td>DCN</td>
<td>Decorin</td>
<td>12.15</td>
<td>3.16</td>
<td>2.03</td>
</tr>
<tr>
<td>Q9UKX3</td>
<td>MYH13</td>
<td>Myosin-13</td>
<td>13.36</td>
<td>4.96</td>
<td>8.5</td>
</tr>
<tr>
<td>P00325</td>
<td>ADH1B</td>
<td>Alcohol dehydrogenase 1B</td>
<td>9.63</td>
<td>57.67</td>
<td>71.88</td>
</tr>
<tr>
<td>Enriched function</td>
<td>P-value</td>
<td>Bayes factor</td>
<td>Genes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene Ontology (GO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell adhesion</td>
<td>< 0.0001</td>
<td>10</td>
<td>APP, CD4, CD44, COL14A1, COL4A6, FLOT2, HSPG2, ILK, ITGA2, ITGB1, LAMA1, LAMA3, PARVA, THBS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation of cell migration</td>
<td>0.0001</td>
<td>6</td>
<td>LAMA1, LAMA3, SERPINE2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation of cell motility</td>
<td>0.0001</td>
<td>6</td>
<td>LAMA1, LAMA3, SERPINE2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEGG Pathway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECM-receptor interaction</td>
<td>< 0.0001</td>
<td>16</td>
<td>CD44, COL1A1, COL1A2, COL4A6, HSPG2, ITGA2, ITGB1, LAMA1, LAMA3, SDC2, THBS1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal adhesion</td>
<td>< 0.0001</td>
<td>15</td>
<td>CAV1, COL1A1, COL1A2, COL4A6, ILK, ITGA2, ITGB1, LAMA1, LAMA3, MAPK1, PARVA, PDGFB, PDGFRB, PPP1R12A, ROCK2, THBS1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table S6. Correlations between Cav-1 Expression and Clinical Features of GC patients

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cav-1 expression in GCAFs</th>
<th>Cav-1 expression in GIAFs</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
<td>P</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Age (y)</td>
<td></td>
<td></td>
<td>.825</td>
<td></td>
<td></td>
</tr>
<tr>
<td><60</td>
<td>24</td>
<td>14</td>
<td>32</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>≥60</td>
<td>36</td>
<td>18</td>
<td>43</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>.161</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>37</td>
<td>25</td>
<td>51</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>23</td>
<td>7</td>
<td>24</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>H pylori infection</td>
<td></td>
<td></td>
<td>.511</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>30</td>
<td>13</td>
<td>39</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>30</td>
<td>19</td>
<td>36</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td>.742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEJ</td>
<td>8</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>52</td>
<td>29</td>
<td>69</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Size(cm)</td>
<td></td>
<td></td>
<td>.048</td>
<td></td>
<td></td>
</tr>
<tr>
<td><5</td>
<td>35</td>
<td>11</td>
<td>42</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>≥5</td>
<td>25</td>
<td>21</td>
<td>33</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Histologic type</td>
<td></td>
<td></td>
<td>.007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well and moderately</td>
<td>44</td>
<td>14</td>
<td>46</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Poorly and others*</td>
<td>16</td>
<td>18</td>
<td>29</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Lauren classification</td>
<td></td>
<td></td>
<td>.370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intestinal</td>
<td>39</td>
<td>17</td>
<td>46</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Diffuse+Mixed</td>
<td>21</td>
<td>15</td>
<td>29</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Lymphatic invasion</td>
<td></td>
<td></td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>52</td>
<td>16</td>
<td>60</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>8</td>
<td>26</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Depth of tumor (T)</td>
<td></td>
<td></td>
<td>.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1+T2</td>
<td>19</td>
<td>2</td>
<td>19</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>T3+T4</td>
<td>41</td>
<td>30</td>
<td>56</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Lymph node metastasis (N)</td>
<td></td>
<td></td>
<td>.015</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0+N1</td>
<td>32</td>
<td>8</td>
<td>38</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>N2+N3</td>
<td>28</td>
<td>24</td>
<td>37</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Distant metastasis (M)</td>
<td></td>
<td></td>
<td>.734</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>53</td>
<td>29</td>
<td>68</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I+II</td>
<td>III+VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>36</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas</td>
<td>8</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cases</td>
<td>41</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Areas</td>
<td>3</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: *H. pylori* status was determined histologically and/or serologically. GEJ: gastroesophageal junction. The TNM stage of GC was determined according to the classification system of the International Union Against Cancer (7th edition). *Other histologic types of gastric cancer mainly included mucinous adenocarcinomas and signet-ring cell carcinomas, according to the World Health Organization (WHO) classifications.