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Abstract 

Cardiovascular diseases (CVDs) are still a major cause of people deaths worldwide, and mesen-
chymal stem cells (MSCs) transplantation holds great promise due to its capacity to differentiate 
into cardiovascular cells and secrete protective cytokines, which presents an important mecha-
nism of MSCs therapy for CVDs. Although the capability of MSCs to differentiate into cardio-
myocytes (CMCs), endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) has been well 
recognized in massive previous experiments both in vitro and in vivo, low survival rate of trans-
planted MSCs in recipient hearts suggests that therapeutic effects of MSCs transplantation might 
be also correlated with other underlying mechanisms. Notably, recent studies uncovered that 
MSCs were able to secret cholesterol-rich, phospholipid exosomes which were enriched with 
microRNAs (miRNAs). The released exosomes from MSCs acted on hearts and vessels, and then 
exerted anti-apoptosis, cardiac regeneration, anti-cardiac remodeling, anti-inflammatory effects, 
neovascularization and anti-vascular remodeling, which are considered as novel molecular 
mechanisms of therapeutic potential of MSCs transplantation. Here we summarized recent ad-
vances about the role of exosomes in MSCs therapy for CVDs, and discussed exosomes as a novel 
approach in the treatment of CVDs in the future. 
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1. Introduction 
Cardiovascular diseases (CVDs) remain a major 

killer of human health and accord for the growing 
mortality and disability in developed countries and 
some developing countries such as China. Stem 
cells-based therapy showed great promise to regen-
erate damaged myocardium and treat CVDs. Em-
bryonic stem cells (ESCs), induced pluripotent stem 
cells (iPSCs), endothelial progenitor cells (EPCs), 
mesenchymal stem cells (MSCs) and adipose tis-
sue-derived stem cells (ADSCs) have shown thera-
peutic potential on CVDs and suggested as ideal 
sources of stem cells-based therapy [1]. In particular, 
MSCs transplantation has been proved as a new 

promising therapeutic approach for CVDs because 
MSCs possess multipotent differentiation ability and 
paracrine actions. MSCs originally derive from mes-
oderm and ectoderm during early embryonic devel-
opment, and were found in various types of tissues 
and organs such as bone marrow [2], fat [3], muscles 
[4], lungs [5], liver [6], pancreas [7] and synovial 
membrane [8]. MSCs are capable to differentiate into 
osteoblasts [9], adipocytes [10], chondrocytes [11], 
CMCs [12], endothelial cells (ECs) [13] and vascular 
smooth muscle cells (VSMCs) [14] after the induction 
of certain microenvironments and cellular factors in 
vitro or in vivo. It has been widely recognized that 
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engrafted MSCs differentiating into CMCs at least to a 
certain degree accounts for therapeutic effects of 
MSCs transplantation [15]. In addition to cardiomy-
ocyte differentiation, MSCs are also capable to dif-
ferentiate into ECs and VSMCs, which contributed to 
revascularization [16-18]. Accordingly, transplanted 
MSCs can replace the loss of vascular cells and CMCs 
in myocardial infarction (MI) and heart failure, and 
improved cardiac function of damaged hearts [19-21]. 
Whereas actually, it has been observed that only a 
minority of MSCs survived and engrafted after trans-
plantation, and most of MSCs do not differentiate into 
CMCs, ECs and VSMCs to exert potent therapeutic 
effects. It suggests that MSCs might exert biological 
functions through multiple mechanisms. 

Increasing evidence demonstrated that MSCs 
also can secrete functional paracrine factors such as 
vascular endothelial growth factor (VEGF), insu-
lin-like growth factor-1 and basic fibroblast growth 
factor to produce various protective effects such as 
promoting vascular regeneration [22], supporting 
hematopoiesis [23], repairing injured kidney [24], fa-
cilitating myocardial repair [25] and ameliorating 
cardiac remodeling [26]. Interestingly, recent study 
revealed that transplanted MSCs may secret abundant 
particles documented as exosomes, which not only 
may reduce tissue injury but also enhance tissue re-
pair [27]. Exosomes are cholesterol-rich, phospholipid 
vesicles enriched with microRNAs (miRNAs) which 
have been well recognized to regulate gene expres-
sion in a post-transcriptional manner and play a 
prominent role in various pathological and physio-
logical processes [28-29] (Fig. 1). In the light of pro-
tective influences of exosomes on cardiovascular sys-
tem, it is proposed that exosomes secreted by MSCs 
will be presented as an ideal therapeutic target for 
CVDs in the near future. 

2. Exosomes  
2.1. Concept and characteristic of exosomes  

Exosomes are defined as nanosized membrane 
vesicles with a diameter of 30-100 nm that origins 
from multivesicular endosomal and are released by 
cells into extracellular environment. It is different 
from the other extracellular vesicles 
(EVs)—microvesicles which has a diameter of 
100–1000 nm and origins from plasma membrane. It 
has been reported that there are multiple contents in 
exosomes including cytokines, proteins, lipids, 
mRNAs, miRNAs and ribosomal RNAs [30-31]. Exo-
somes can be released by various cells including T 
cells [32], B cells [33], reticulocytes [34], mast cells [35], 
platelets [36] and tumor cells [37-38]. For instance, 
miR-126 secreted from chronic myelogenous leuke-

mia cells was found shuttled into endothelial cells, 
which modulated adhesive and migratory abilities of 
chronic myelogenous leukemia cells [39]. The exo-
somes derived from chronic myelogenous leukemia 
stimulated interleukin-8 (IL-8) release from bone 
marrow stromal cells, and promoted the progression 
of leukemia [40]. Thus, exosomes are suggested as 
central mediators of intercellular communication by 
transferring proteins, mRNAs and miRNAs to adja-
cent cells leading to coordinative function in organ-
isms [41-42]. 

 

 
Fig. 1. Mechanisms of mesenchymal stem cells transplantation for CVDs. 
MSCs can differentiate into CMCs, ECs and VSMCs to replace the loss of 
cardiovascular cells. Besides, MSCs also secreted paracrine factors and 
exosomes to target heart and vasculature to exert anti-apoptosis, an-
ti-cardiac remodeling, anti-inflammatory reactions, neovascularization and 
anti-vascular remodeling effects.  

 
 

2.2. Exosomes secreted by MSCs 
Likewise, MSCs also synthesize and secrete 

functional exosomes that are cholesterol-rich phos-
pholipid vesicles. For example, bone marrow-derived 
MSCs may release the exosomes that can promote 
breast cancer cell dormancy in a metastatic niche [43]. 
Adipose MSCs secret the exosomes and microvesicles, 
and in turn regulate angiogenic potential of MSCs 
[44]. Gastric cancer tissue-derived MSCs also may 
release exosomes [45]. Moreover, injection of exo-
somes from MSCs into stroke rats might relieve 
symptoms by promoting angiogenesis, neurite re-
modeling and neurogenesis [46]. The exosomes de-
rived from MSCs contain lipids, protein, mRNAs, 
precursor miRNAs (pre-miRNAs), miRNAs, etc. In 
particular, miRNAs in microparticles were sensitive 
to RNase only with the existence of phospholipase A2, 
sodium dodecyl sulfate-based cell lysis buffer or cy-
clodextrin, which definitely indicates that direct pro-
tection of RNAs against RNase was afforded by cho-
lesterol-rich phospholipid vesicles [29].  
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2.3. miRNAs mediated functions of exosomes  
It is well known that miRNAs play an essential 

role in various physiological and pathological pro-
cesses by regulating gene expression at the 
post-transcription level [47]. The primary miRNAs 
(pri-miRNAs) are transcribed by RNA polymerase II 
and then are excised into pre-miRNAs by Drosha. 
Then, pre-miRNAs are cleaved by Dicer into mature 
miRNAs that assemble with argonaute (Ago) protein 
to form miRNA-induced silencing complex (RISC). It 
was recently reported that the exosomes with a hy-
drodynamic radius of 55~65nm were rich in miRNAs, 
and the majority form of miRNAs was not mature but 
pre-miRNAs [29]. Pre-miRNAs are also able to exert 
biological effects after the conversion into mature 
miRNAs. The loading and secretion of miRNAs in 
exosomes have been ascertained as a strictly con-
trolled process dependent on the source and devel-
opmental stage of derived cells rather than a random 
process.  

Recent studies have clearly clarified that miR-
NAs mediate biological effects of exosomes on a vari-
ety of tissues [45, 49]. For example, MSCs-derived 
exosomes lead to a significant inhibition of angio-
genesis through miR-16-mediated downregulation of 
VEGF in breast cancer cells [48]. Gastric cancer tis-
sue-derived mesenchymal stem cells were shown to 
promote growth and migration of gastric cancer via 
transferring exosomal miR-221 [45]. In cardiovascular 
system, miRNAs-bearing exosomes or microvesicles 
are readily internalized into CMCs and ECs, resulting 
in cardiomyocyte protection and angiogenesis pro-
motion [49-50]. These studies uncover important roles 
of miRNAs encapsulated in exosomes in the devel-
opment of CVDs. 

3. Effects of exosomes on cardiovascular 
system 
3.1. Cardiac benefits of exosomes 

Anti-apoptosis 
Myocardial infarction is characterized by pro-

gressive loss of CMCs consequently resulting in con-
gestive heart failure (CHF), and has become a difficult 
challenge due to the failure of CMCs to replace 
apoptotic cells. Emergence of MSCs provides a novel 
approach for therapeutics of MI not only because of 
their capability to directly differentiate into CMCs but 
also their anti-apoptotic effect from paracrine action 
[49, 51-52]. 

Recent study has reported that MSCs had ability 
to ameliorate ischemic CMCs injury by transferring 
miR-22 in exosomes targeting methyl CpG binding 
protein 2 (Mecp2) to reduce apoptosis [52] (Fig. 2). 

Moreover, delivery of miR-221 in exosomes mediated 
anti-apoptotic effect of MSCs by inhibiting 
p53-upregulated modulator of apoptosis (PUMA), a 
subclass of the Bcl-2 protein family [49]. PUMA was 
shown to interplay with BCL-xL and p53 [53], and 
activate pro-apoptotic proteins while restrain an-
ti-apoptotic proteins, so inhibition of PUMA by 
miR-221 could give rise to CMCs survival [49]. These 
findings suggest that miRNAs-bearing exosomes are 
involving in anti-apoptotic process. 

Anti-inflammatory effect 
It is well known that exosomes from dendritic 

cells, MHC class II+ cells and tumor cells aggressively 
participate in inhibition of inflammation response, 
which is considered as a novel therapeutic approach 
for some diseases [54-56]. Likewise, some studies have 
also proved that exosomes derived from MSCs indeed 
produce similar benefits on CVDs [57-58]. It was re-
vealed that suppression of inflammation by 
MSCs-derived exosomes in lungs accords for reliev-
ing symptoms of pulmonary hypertension (PH) [57]. 
Additionally, it was also reported that MSCs-secreting 
exosomes contributed to a smaller number of white 
blood cell count and alleviated inflammation reaction 
accompanied by decreased infarct size and enhanced 
cardiac function in hearts after ischemia-reperfusion 
injury (IRI) [58] (Fig. 2). These studies reveal 
MSCs-derived exosomes exert protective effects 
against CVDs through inhibition of inflammation 
reaction. 

 
 

 
Fig. 2. Exosomes mediates beneficial effects of MSCs on hearts. MSCs 
secret exosomes containing miR-22 and miR-221 to target Mecp2 and 
PUMA, and thus exert anti-apoptotic effects. Anti-inflammatory effect of 
MSCs is mediated by exosomes as well as MVs. Exosomes are also re-
sponsible for anti-cardiac remodeling of MSCs. Cardiac regeneration 
property of MSCs has been proved, but whether exosomes are involved in 
this process remains unclear.  
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Anti-cardiac remodeling 
Cardiac remodeling, a compensatory conse-

quence of CVDs such as myocardial hypertrophy and 
fibrosis, usually develops into heart failure without 
proper treatments [59]. Autologous MSCs transplan-
tation has been shown to reduce infarct size, improve 
left ventricular ejection fraction (LVEF) and reverse 
remodeling after chronic myocardial infraction [60]. 
Recent study uncovered that exosomes derived from 
MSCs was able to enhance myocardial viability and 
prevent adverse remodeling after myocardial ische-
mia-reperfusion injury via activating pro-survival 
signaling, restoring bioenergetics and reducing oxi-
dative stress [58]. Though anti-cardiac remodeling 
effect of MSCs-derived exosomes was confirmed, 
mechanisms of exosomes-mediated protection have 
not been verified. 

Cardiac regeneration 
Necrosis and apoptosis of CMCs due to patho-

logical microenvironment or damaged factors is 
causal to heart failure while conventional therapies 
such as medications, surgeries and even intervention 
have certain limitations. Cardiac regeneration by 
MSCs and cardiac stem cells (CSCs) differentiation is 
raised as a novel strategy for curing CVDs [61-63]. It 
has been found that MSCs had ability to induce en-
dogenous cardiac regeneration [28] (Fig. 2). MVs and 
exosmes released by cardiomyocyte progenitor cells 
(CPCs) could induce cardiac regeneration and im-
prove cardiac function by promoting migration of ECs 
and secretion of VEGF resulting in angiogenesis 
[64-65]. The combination of human MSCs and human 
cardiac stem cells have a better impact on the reduc-
tion of infarct size and improve cardiac functions than 
MSCs alone [66]. However, whether exosomes take 
part in cardiac regeneration of MSCs still remains 
unclear, and the role of exosomes in cardiac regener-
ation needs further investigations. 

3.2. Vascular benefits of exosomes 

Neovascularization  
Neovascularization is one of multiple effects of 

exosomes involving arteriogenesis, vasculogenesis 
and angiogenesis which are associated with prolifera-
tion and migration of ECs and VSMCs, differentiation 
into ECs and VSMCs, and formation of ECs from 
formerly existing vessels [28, 67]. Exosomes from 
placental mesenchymal stem cells (pMSCs) induced 
by hypoxia are major participator in facilitating mi-
gration and vascularization of placental microvascu-
lar endothelial cells (PMEC) [67]. Adipose mesen-
chymal stem cells (ASCs) can secret extracellular ves-
icles including both exosomes and microvesicles, 
which are critical for angiogenesis both in vitro and in 

vivo following internalization by human microvascu-
lar endothelial cells (HMECs), while platelet-derived 
growth factor (PDGF) strengthens this positive influ-
ence by means of irritating ASCs to release exosomes 
and microvesicles which are rich in pro-angiogenic 
molecules [44] (Fig. 3). Exosomes released by human 
umbilical cord MSCs under hypoxic condition deliver 
mRNAs and miRNAs to target cells, and promote 
proliferation of umbilical cord endothelial cells (Fig. 
3), therefore leading to angiogenic action, enhanced 
blood flow restoration and capillary network for-
mation [50]. Exosomes secreted by MSCs are impli-
cated in the stimulation of tumor growth via upregu-
lating VEGF level in tumor cells and consequent an-
giogenic effect, but it also has been reported the 
property of MSCs-derived exosomes to inhibit angi-
ogenic process in breast cancer tissues [48, 68]. Het-
erogeneity of MSCs, dosage of MSCs administration, 
tumor types and impurity of MSCs might be respon-
sible for inverse impacts of MSCs-derived exosomes 
on the development of tumor [69]. 

Anti-vascular remodeling 
Vascular remodeling is an adaptive reaction in 

response to hemodynamic changes involving hyper-
plasia, hypertrophy, apoptosis and migration of vas-
cular cells as well as generation and degradation of 
extracellular matrix [70-74]. Some documents report-
ed that paracrine activity is responsible for an-
ti-vascular remodeling effect of MSCs in rats suffering 
from pulmonary hypertension by inhibiting Smad2, 
which is indicated by reduced pulmonary arterial 
pressure and symptoms amelioration [72]. Notably, 
MSCs-derived exosomes have been recently shown to 
block expression of hypoxia-induced mitogenic factor 
(HIMF) induced by hypoxia to inhibit proliferation, 
and it suggests MSCs-derived exosomes play an es-
sential role in anti-vascular remodeling [57,73-74] 
(Fig. 3). But molecular mechanisms of anti-vascular 
remodeling effect of MSCs-derived exosomes need to 
be defined precisely. 

 
Fig. 3. Effects of MSCs on vasculature. MSCs secrete exosomes to facili-
tate PMECs migration, and thus contribute to vascularization. Angiogenic 
action of MSCs is mediated by MSCs-secreting EVs and MVs. MSCs gen-
erate exosomes and paracrine factors to inhibit HIMF and Smad2, and 
exert anti-vascular remodeling effect.  
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3.3. Roles of exosomes in MSCs therapy of 
CVDs 

Myocardial infarction (MI) 
MI, a detrimental consequence of acute or per-

sistent coronary occlusion, is featured by myocardial 
necrosis and cardiomyocyte loss [75]. It has been re-
vealed that MSCs transplantation into infarcted re-
gion is able to improve cardiac function, and this ef-
ficacy could be enhanced in the case of MSCs modifi-
cation with upregulation of miR-1 by promoting 
MSCs survival and differentiation into CMCs [76]. 
Interestingly, exosomes derived from MSCs contain 
the increased amount of miR-22 under ischemic con-
dition, and can be centralized to CMCs to protect 
against apoptosis by miR-22 targeting Mecp2. More-
over, cardiac fibrosis is also antagonized by exosomes, 
which indicates exosomes-mediating critical protec-
tion for MI [52]. So, it was proposed that there exists a 
feed-forward loop network mediated by exosomes 
between ischemic hearts and other tissues: exosomes 
released by damaged myocardium transfer proteins 
and miRNAs which include ischemic signal to distant 
tissues or organs such as bone marrow (BM), leading 
to changes in the microenvironment of BM after MI; 
At the same time, exosomes from adjusted BM and 
progenitor cells are also delivered back to ischemic 
regions to trigger regeneration and repair processes 
[77]. 

Reperfusion injury 
It is well documented that ischemia-reperfusion 

may result in irreversible structural damage and 
dysfunction of organs, which would be greatly at-
tributed to generation of excessive free radicals [78]. 
In spite of Vitamin E and its analogues discovered as 
ideal antioxidants against ischemia-reperfusion inju-
ry, few studies refer to relevant applications in clinical 
trials [79-81]. Hopefully, great interest has arisen in 
the consideration of MSCs as a prospective agent for 
ischemia-reperfusion injury due to involvement of 

MSCs in both myogenesis and angiogenesis to gener-
ate protective effects including reduction of infarct 
size, remarkable amelioration of left ventricular per-
formance and increased amount of capillary vessels 
[82]. Intact exosomes secreted by MSCs were found to 
reduce oxidative stress, increase ATP and NADH, 
control inflammatory activities and activate PI3K/Akt 
pathway, leading to protective influences on CMCs 
survival and retention of left ventricular function after 
ischemia-reperfusion injury, which indicates exo-
somes as a supplemental entity for ische-
mia-reperfusion therapy [58].  

Pulmonary hypertension 
PH is a kind of malignant pulmonary vascular 

diseases and characterized by an increase in pulmo-
nary artery pressure, which may lead to right heart 
failure and even death. Pulmonary inflammation in-
duced by hypoxia and bronchopulmonary dysplasia 
induced by hyperoxia may account for the develop-
ment of PH [57, 83]. Administration of MSCs has been 
proved to confer a better prognosis of PH than medi-
cines applied in clinics now, and has been widely 
tested in PH rats to uncover its underlying mecha-
nisms [84-85]. 

PH following pulmonary vascular remodeling is 
highly correlated with pulmonary inflammation 
caused by hypoxia [57, 86]. MSCs-derived exosomes 
(MEX) treatment directly suppress activation of hy-
poxic signal pathway and then result in interference 
with alternative activated alveolar macrophages by 
targeting Th1/Th2 balance and down-regulation of 
proliferative miR-17 superfamily by shifting the bal-
ance of proliferation to inhibit PH. Moreover, MEX 
might disturb STAT3-miR-204-STAT3 feedback to 
ameliorate vascular remodeling. The findings above 
elucidate that MEX are protective for PH through the 
suppression of early pulmonary inflammation and 
vascular remodeling [57].  

 

Table 1. Origins and functions of exosomes derived from mesenchymal stem cells. 
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4. Exosomes as a new therapeutic strategy 
for CVDs 

The above studies reveal that MSCs-derived ex-
osomes play an essential role in MSCs-based therapy 
of CVDs including MI, reperfusion injury and PH. 
The detailed mechanisms underlying benefits of exo-
somes in MSCs transplantation of these CVDs require 
further investigations. Administration of exosomes 
from MSCs instead of MSCs transplantation has dis-
played therapeutic potential on CVDs including in-
creasing survival of cardiomyocytes as well as to in-
hibiting apoptosis. Thus, exosomes derived from 
MSCs represents a promising approach for the treat-
ment of CVDs [58]. Compared to traditional MSCs 
therapies, MSCs-exosomes therapies will decrease 
injury from MSCs transplantation surgery, avoid the 
risk of unexpected differentiation into other cell types 
such as osteoblasts, adipocytes and chondrocytes as 
well as vascular calcification, and reduce possibility of 
favoring tumor growth by MSCs. Accordingly, ad-
ministration of in vitro purified MSCs-derived exo-
somes becomes more attractive than conventional 
stem cells transplantation. Effects of MSCs-derived 
exosomes on cardiovascular system should be largely 
attributed to functional cytokines, miRNAs and pro-
teins in exosomes. Nevertheless, how to preserve bi-
ological activity of cytokines, miRNAs and proteins in 
exosomes and deliver them to target sites is a big 
challenge for us now [30]. Following investigations 
are needed to solve the troubles of MEX therapy and 
make MEX become a promising entity for CVDs.  

5. Conclusions 
Much interest has been generated in exploring 

the role of exosomes in stem cell-based therapy of 
CVDs since they were discovered. Transferring char-
acteristic of exosomes suggests its involvement in 
regulating cell-to-cell communication [87-89]. Nota-
bly, the possibility of exosomes as a diagnostic bi-
omarker in clinics has been proposed due to their de-
rived cell developmental stage-dependent and 
source-dependent features [90]. Though MEX possess 
more advantages than MSCs for CVDs therapy, fur-
ther investigations are required to explore detailed 
mechanisms of generation, secretion, shuttle and ac-
tion of MSCs-derived exosomes. Exosomes will be a 
new promising therapeutic strategy for CVDs in the 
future. 
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