**Supplementary Material**

**Table S1.** Analysis of Ct values of seven candidate housekeeping genes in all samples.

**Table S2.** Pairwise comparison of candidate housekeeping genes based on the analysis by the comparative ΔCt method.

**Table S3.** Statistical analyses of seven selected candidate housekeeping genes based on the BestKeeper algorithm.

**Table S4.** Reference gene selection in arthropod species.

**Figure S1.** Validation of seven selected candidate housekeeping genes. (A) The PCR products of selected housekeeping genes amplified under conditions described in Materials and Methods were resolved on a 2% agarose gel, stained with SYBR® safe DNA gel stain (ThermoFisher Scientific, Massachusetts, USA). (B) Melting curves of seven selected candidate housekeeping genes including three technical replicates in a 96-well plate with 4 cDNA samples.

![Figure S1](image-url)
Table S1. Analysis of \( Ct \) values of seven candidate housekeeping genes in all samples.

<table>
<thead>
<tr>
<th>Gene</th>
<th>N(^a)</th>
<th>Median</th>
<th>Lowest</th>
<th>Lower quartile</th>
<th>Higher quartile</th>
<th>Highest</th>
<th>Mean</th>
<th>SD(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actin</td>
<td>84</td>
<td>18.70</td>
<td>17.41</td>
<td>18.21</td>
<td>20.24</td>
<td>23.41</td>
<td>19.25</td>
<td>1.41</td>
</tr>
<tr>
<td>Rp49</td>
<td>84</td>
<td>16.41</td>
<td>15.17</td>
<td>16.14</td>
<td>17.98</td>
<td>21.14</td>
<td>17.19</td>
<td>1.66</td>
</tr>
<tr>
<td>GAPDH</td>
<td>84</td>
<td>16.67</td>
<td>15.40</td>
<td>16.27</td>
<td>18.29</td>
<td>21.31</td>
<td>17.46</td>
<td>1.75</td>
</tr>
<tr>
<td>TUB</td>
<td>84</td>
<td>17.40</td>
<td>16.28</td>
<td>16.18</td>
<td>18.94</td>
<td>24.44</td>
<td>18.38</td>
<td>2.06</td>
</tr>
<tr>
<td>CycA</td>
<td>84</td>
<td>16.96</td>
<td>16.22</td>
<td>16.78</td>
<td>18.56</td>
<td>22.32</td>
<td>17.88</td>
<td>1.79</td>
</tr>
<tr>
<td>Ef1α</td>
<td>84</td>
<td>15.42</td>
<td>14.59</td>
<td>15.12</td>
<td>17.40</td>
<td>23.48</td>
<td>16.55</td>
<td>2.31</td>
</tr>
<tr>
<td>Rpl18</td>
<td>84</td>
<td>16.65</td>
<td>15.73</td>
<td>16.43</td>
<td>18.09</td>
<td>21.30</td>
<td>17.44</td>
<td>1.58</td>
</tr>
</tbody>
</table>

\(^a\) N: number of \( Cts \); \(^b\) SD: standard deviation.
Table S2. Pairwise comparison of candidate housekeeping genes based on the analysis by the comparative \( \Delta Ct \) method.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Pair Gene</th>
<th>Acaricide resistance selection</th>
<th>Host plant shift</th>
<th>Both conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean ( \Delta Ct )</td>
<td>SD</td>
<td>Mean ( \Delta Ct )</td>
</tr>
<tr>
<td>Rp49</td>
<td>Actin</td>
<td>2.34</td>
<td>0.37</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>GAPDH</td>
<td>2.16</td>
<td>0.31</td>
<td>1.30</td>
</tr>
<tr>
<td></td>
<td>TUB</td>
<td>1.16</td>
<td>0.34</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>CycA</td>
<td>1.62</td>
<td>0.32</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>Ef1α</td>
<td>3.17</td>
<td>0.45</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>Rpl18</td>
<td>1.98</td>
<td>0.44</td>
<td>1.60</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>-</td>
<td>0.37</td>
<td>-</td>
</tr>
<tr>
<td>Rp49</td>
<td>Actin</td>
<td>-2.34</td>
<td>0.37</td>
<td>-1.70</td>
</tr>
<tr>
<td></td>
<td>GAPDH</td>
<td>-1.18</td>
<td>0.21</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>TUB</td>
<td>-1.18</td>
<td>0.38</td>
<td>-1.21</td>
</tr>
<tr>
<td></td>
<td>CycA</td>
<td>-0.72</td>
<td>0.23</td>
<td>-0.67</td>
</tr>
<tr>
<td></td>
<td>Ef1α</td>
<td>0.83</td>
<td>0.37</td>
<td>0.38</td>
</tr>
<tr>
<td></td>
<td>Rpl18</td>
<td>-0.36</td>
<td>0.20</td>
<td>-0.10</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>-</td>
<td>0.29</td>
<td>-</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Actin</td>
<td>-2.16</td>
<td>0.31</td>
<td>-1.30</td>
</tr>
<tr>
<td></td>
<td>Rp49</td>
<td>0.18</td>
<td>0.21</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>TUB</td>
<td>-1.00</td>
<td>0.33</td>
<td>-0.80</td>
</tr>
<tr>
<td></td>
<td>CycA</td>
<td>-0.54</td>
<td>0.22</td>
<td>-0.27</td>
</tr>
<tr>
<td></td>
<td>Ef1α</td>
<td>1.01</td>
<td>0.38</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Rpl18</td>
<td>-0.18</td>
<td>0.22</td>
<td>0.30</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>-</td>
<td>0.28</td>
<td>-</td>
</tr>
<tr>
<td>TUB</td>
<td>Actin</td>
<td>-1.16</td>
<td>0.34</td>
<td>-0.49</td>
</tr>
<tr>
<td></td>
<td>Rp49</td>
<td>1.18</td>
<td>0.38</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>GAPDH</td>
<td>1.00</td>
<td>0.33</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>CycA</td>
<td>0.46</td>
<td>0.29</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>Ef1α</td>
<td>2.01</td>
<td>0.34</td>
<td>1.58</td>
</tr>
<tr>
<td></td>
<td>Rpl18</td>
<td>0.82</td>
<td>0.40</td>
<td>1.10</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>-</td>
<td>0.34</td>
<td>-</td>
</tr>
<tr>
<td>CycA</td>
<td>Actin</td>
<td>-1.62</td>
<td>0.32</td>
<td>-1.03</td>
</tr>
<tr>
<td></td>
<td>Rp49</td>
<td>0.72</td>
<td>0.23</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>GAPDH</td>
<td>0.54</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>TUB</td>
<td>-0.46</td>
<td>0.29</td>
<td>-0.54</td>
</tr>
<tr>
<td></td>
<td>Ef1α</td>
<td>1.55</td>
<td>0.30</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>Rpl18</td>
<td>0.36</td>
<td>0.23</td>
<td>0.57</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>-</td>
<td>0.27</td>
<td>-</td>
</tr>
<tr>
<td>Ef1α</td>
<td>Actin</td>
<td>-3.17</td>
<td>0.45</td>
<td>-2.08</td>
</tr>
<tr>
<td></td>
<td>Rp49</td>
<td>-0.83</td>
<td>0.37</td>
<td>-0.38</td>
</tr>
<tr>
<td></td>
<td>GAPDH</td>
<td>-1.01</td>
<td>0.38</td>
<td>-0.78</td>
</tr>
<tr>
<td></td>
<td>TUB</td>
<td>-2.01</td>
<td>0.34</td>
<td>-1.58</td>
</tr>
<tr>
<td></td>
<td>CycA</td>
<td>Rpl18</td>
<td>Mean SD</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.55</td>
<td>-1.19</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.30</td>
<td>0.41</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.05</td>
<td>-0.48</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.22</td>
<td>1.52</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.33</td>
<td>-0.89</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.86</td>
<td>1.09</td>
<td>0.92</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rp49</th>
<th>Rpl18</th>
<th>Actin</th>
<th>Mean SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-1.98</td>
<td>-1.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.44</td>
<td>0.96</td>
</tr>
<tr>
<td>Rp49</td>
<td>0.36</td>
<td>0.40</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>0.10</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>0.01</td>
<td>0.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GAPDH</th>
<th>Actin</th>
<th>Rp49</th>
<th>Mean SD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.18</td>
<td>0.18</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>0.22</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>-0.30</td>
<td>-0.30</td>
<td>0.43</td>
</tr>
<tr>
<td>TUB</td>
<td>-0.82</td>
<td>0.82</td>
<td>-0.94</td>
</tr>
<tr>
<td></td>
<td>-0.40</td>
<td>-0.40</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>-1.10</td>
<td>-1.10</td>
<td>-</td>
</tr>
<tr>
<td>Cycl</td>
<td>-0.36</td>
<td>0.36</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>0.23</td>
<td>0.23</td>
<td>-0.45</td>
</tr>
<tr>
<td></td>
<td>-0.57</td>
<td>-0.57</td>
<td>0.36</td>
</tr>
<tr>
<td>Ef1α</td>
<td>1.19</td>
<td>1.19</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.41</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>0.48</td>
<td>0.48</td>
<td>1.09</td>
</tr>
<tr>
<td>Mean SD</td>
<td>0.32</td>
<td>0.32</td>
<td>0.88</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.67</td>
</tr>
</tbody>
</table>
### Table S3. Statistical analyses of seven selected candidate housekeeping genes based on the BestKeeper algorithm.

<table>
<thead>
<tr>
<th>Acaricide resistance selection</th>
<th>Actin</th>
<th>Rp49</th>
<th>GAPDH</th>
<th>TUB</th>
<th>CycA</th>
<th>Ef1α</th>
<th>Rpl18</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>GM [Ct]</td>
<td>18.47</td>
<td>16.13</td>
<td>16.31</td>
<td>17.31</td>
<td>16.85</td>
<td>15.30</td>
<td>16.49</td>
</tr>
<tr>
<td>AM [Ct]</td>
<td>18.47</td>
<td>16.13</td>
<td>16.31</td>
<td>17.31</td>
<td>16.85</td>
<td>15.30</td>
<td>16.49</td>
</tr>
<tr>
<td>Min [Ct]</td>
<td>17.41</td>
<td>15.17</td>
<td>15.40</td>
<td>16.68</td>
<td>16.22</td>
<td>14.85</td>
<td>15.73</td>
</tr>
<tr>
<td>Max [Ct]</td>
<td>19.36</td>
<td>16.77</td>
<td>17.01</td>
<td>17.87</td>
<td>17.47</td>
<td>15.88</td>
<td>17.15</td>
</tr>
<tr>
<td>SD [± Ct]</td>
<td>0.35</td>
<td>0.25</td>
<td>0.24</td>
<td>0.18</td>
<td>0.20</td>
<td>0.19</td>
<td>0.26</td>
</tr>
<tr>
<td>CV [% Ct]</td>
<td>1.92</td>
<td>1.56</td>
<td>1.47</td>
<td>1.05</td>
<td>1.21</td>
<td>1.25</td>
<td>1.59</td>
</tr>
<tr>
<td>[r]</td>
<td>0.828</td>
<td>0.858</td>
<td>0.911</td>
<td>0.504</td>
<td>0.894</td>
<td>0.332</td>
<td>0.790</td>
</tr>
<tr>
<td>P-value</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.021</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Host plant shift</th>
<th>Actin</th>
<th>Rp49</th>
<th>GAPDH</th>
<th>TUB</th>
<th>CycA</th>
<th>Ef1α</th>
<th>Rpl18</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>GM [Ct]</td>
<td>20.23</td>
<td>18.52</td>
<td>18.92</td>
<td>19.64</td>
<td>19.16</td>
<td>18.01</td>
<td>18.62</td>
</tr>
<tr>
<td>AM [Ct]</td>
<td>20.29</td>
<td>18.59</td>
<td>18.99</td>
<td>19.80</td>
<td>19.26</td>
<td>18.21</td>
<td>18.69</td>
</tr>
<tr>
<td>Min [Ct]</td>
<td>18.06</td>
<td>16.34</td>
<td>16.62</td>
<td>16.28</td>
<td>16.54</td>
<td>14.59</td>
<td>16.43</td>
</tr>
<tr>
<td>SD [± Ct]</td>
<td>1.34</td>
<td>1.45</td>
<td>1.48</td>
<td>2.09</td>
<td>1.69</td>
<td>2.27</td>
<td>1.46</td>
</tr>
<tr>
<td>CV [% Ct]</td>
<td>6.59</td>
<td>7.78</td>
<td>7.77</td>
<td>10.55</td>
<td>8.76</td>
<td>12.49</td>
<td>7.79</td>
</tr>
<tr>
<td>[r]</td>
<td>0.838</td>
<td>0.953</td>
<td>0.989</td>
<td>0.963</td>
<td>0.973</td>
<td>0.980</td>
<td>0.949</td>
</tr>
<tr>
<td>P-value</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Both conditions</th>
<th>Actin</th>
<th>Rp49</th>
<th>GAPDH</th>
<th>TUB</th>
<th>CycA</th>
<th>Ef1α</th>
<th>Rpl18</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>GM [Ct]</td>
<td>19.20</td>
<td>17.11</td>
<td>17.38</td>
<td>18.27</td>
<td>17.80</td>
<td>16.41</td>
<td>17.37</td>
</tr>
<tr>
<td>AM [Ct]</td>
<td>19.25</td>
<td>17.19</td>
<td>17.46</td>
<td>18.38</td>
<td>17.88</td>
<td>16.55</td>
<td>17.44</td>
</tr>
<tr>
<td>Min [Ct]</td>
<td>17.41</td>
<td>15.17</td>
<td>15.40</td>
<td>16.28</td>
<td>16.22</td>
<td>14.59</td>
<td>15.73</td>
</tr>
<tr>
<td>SD [± Ct]</td>
<td>1.14</td>
<td>1.36</td>
<td>1.42</td>
<td>1.61</td>
<td>1.41</td>
<td>1.82</td>
<td>1.26</td>
</tr>
<tr>
<td>CV [% Ct]</td>
<td>5.94</td>
<td>7.89</td>
<td>8.16</td>
<td>8.77</td>
<td>7.88</td>
<td>10.97</td>
<td>7.24</td>
</tr>
<tr>
<td>[r]</td>
<td>0.901</td>
<td>0.973</td>
<td>0.987</td>
<td>0.967</td>
<td>0.984</td>
<td>0.979</td>
<td>0.969</td>
</tr>
<tr>
<td>P-value</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

N: number of Cts; GM [Ct]: geometric means of the threshold cycle (Ct); AM [Ct]: the arithmetic mean of Ct; Min [Ct] and Max [Ct]: the extreme values of Ct; SD [± Ct]: the standard deviation of the Ct; CV [% Ct]: the coefficient of variance expressed as a percentage at the Ct level; [r]: Pearson correlation coefficient.
Table S4. Reference gene selection in arthropod species.

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Scientific name</th>
<th>Common name</th>
<th>No. of housekeeping gene</th>
<th>No. of algorithm</th>
<th>Experimental condition</th>
<th>Best reference genes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Apis mellifera</td>
<td>Western honey bee&lt;sup&gt;a&lt;/sup&gt;</td>
<td>11</td>
<td>3</td>
<td>Head gene expression following bacterial challenge</td>
<td>RPS18, GAPDH</td>
<td>Scharlaken et al. 2008*</td>
</tr>
<tr>
<td>2</td>
<td>Apis mellifera</td>
<td>Cimex kuscheli</td>
<td>4</td>
<td>3</td>
<td>Larva and pupa stages, tissues, and after juvenile hormone exposure</td>
<td>Actin, Tbp-af, Rp49; Ef1α, GammaEF1α, Tbp-af, Actin</td>
<td>Lourenço et al. 2008*</td>
</tr>
<tr>
<td>3</td>
<td>Apis mellifera</td>
<td>Delphacodes melanogaster</td>
<td>3</td>
<td>3</td>
<td>Tissues in workers</td>
<td>GAPDH, Rp32, Ef1α</td>
<td>Reim et al. 2013*</td>
</tr>
<tr>
<td>4</td>
<td>Bombus mori</td>
<td>Silkworm&lt;sup&gt;a&lt;/sup&gt;</td>
<td>12</td>
<td>2</td>
<td>Developmental stages</td>
<td>TF3, Proteasome β; TF4</td>
<td>Wang et al. 2008*</td>
</tr>
<tr>
<td>5</td>
<td>Schistocerca gregaria</td>
<td>Desert locust</td>
<td>7</td>
<td>2</td>
<td>Brains of nymphs and adults</td>
<td>Rp49, Ef1α, Actin; GAPDH, Ubiquitin, Ef1α</td>
<td>van Hiel et al. 2009*</td>
</tr>
<tr>
<td>6</td>
<td>Rhipicephalus appendiculatus</td>
<td>Brown ear-tick</td>
<td>9</td>
<td>2</td>
<td>All developmental stages</td>
<td>Ef1α, GAPDH, H3F3α, PPIA, RPL4, TBP</td>
<td>Nijhof et al. 2009*</td>
</tr>
<tr>
<td>7</td>
<td>Rhipicephalus microplus</td>
<td>Southern cattle tick</td>
<td>9</td>
<td>2</td>
<td>All developmental stages</td>
<td>Ef1α, GAPDH, H3F3α, PPIA, RPL4, TBP</td>
<td>Nijhof et al. 2009*</td>
</tr>
<tr>
<td>8</td>
<td>Folsomia candida</td>
<td>White springtail</td>
<td>10</td>
<td>2</td>
<td>PH, temperature, desiccation, cadmium phenanthrene treatments</td>
<td>SDHA, ETIF, Ef1α; YWHAZ, SDHA, GAPDH, H3F3α, PPIA, RPL4, TBP</td>
<td>de Boer et al. 2009 [1]</td>
</tr>
<tr>
<td>9</td>
<td>Orchesella cincta</td>
<td>Hairy-back girdled springtail</td>
<td>10</td>
<td>2</td>
<td>Cadmium, temperature, desiccation, starvation treatments</td>
<td>EF1a, ACTh, YWHAZ, ACTh, GAPDH, Ef1α; Tba, SDHA, YWHAZ</td>
<td>de Boer et al. 2009 [1]</td>
</tr>
<tr>
<td>10</td>
<td>Tribolium castaneum</td>
<td>Red flour beetle&lt;sup&gt;b&lt;/sup&gt;</td>
<td>8</td>
<td>2</td>
<td>Four time points after fungal challenge in larva</td>
<td>RPS3, RPS18, RPL13α, Syntaxin1&amp;6, E-cadherin</td>
<td>Lord et al. 2010 [2]</td>
</tr>
<tr>
<td>11</td>
<td>Tribolium castaneum</td>
<td>Large earth bumblebee&lt;sup&gt;b&lt;/sup&gt;</td>
<td>5</td>
<td>1</td>
<td>All developmental stages</td>
<td>Rp49, GAPDH, Actin</td>
<td>Bai et al. 2011*</td>
</tr>
<tr>
<td>12</td>
<td>Bombus terrestris</td>
<td>Large earth bumblebee&lt;sup&gt;b&lt;/sup&gt;</td>
<td>7</td>
<td>2</td>
<td>The labial gland and fat body in different ages</td>
<td>Ef1α, GAPDH, H3F3α, PPIA, RPL4, TBP</td>
<td>Hornáková et al. 2010*</td>
</tr>
<tr>
<td>13</td>
<td>Bombus lucorum</td>
<td>White-tailed bumblebee</td>
<td>7</td>
<td>2</td>
<td>The labial gland and fat body in different ages</td>
<td>Ef1α, GAPDH, H3F3α, PPIA, RPL4, TBP</td>
<td>Hornáková et al. 2010*</td>
</tr>
<tr>
<td>14</td>
<td>Lucilia cuprina</td>
<td>Australian sheep blowfly&lt;sup&gt;b&lt;/sup&gt;</td>
<td>11</td>
<td>2</td>
<td>All developmental stages</td>
<td>18S rRNA, 28S rRNA, l(3)02640, 28S rRNA, TBP</td>
<td>Bagnall and Kotze, 2010 [3]</td>
</tr>
<tr>
<td>15</td>
<td>Bactrocera dorsalis</td>
<td>Oriental fruit fly</td>
<td>10</td>
<td>2</td>
<td>Tissues from both females and males</td>
<td>α-TUB with ACT5 or ACT3 or ACT2 or ACT1</td>
<td>Shen et al. 2010 [4]</td>
</tr>
<tr>
<td>16</td>
<td>Liposcelis bostrychophila</td>
<td>Booklouse</td>
<td>4</td>
<td>1</td>
<td>All developmental stages, deltamethrin induction</td>
<td>β-actin1, GAPDH, Tubulin</td>
<td>Jiang et al. 2010 [5]</td>
</tr>
<tr>
<td>17</td>
<td>Tetranychus cinnabarinus</td>
<td>Carmine spider mite</td>
<td>6</td>
<td>2</td>
<td>All developmental stages, susceptible and three acaricide resistant populations</td>
<td>RPS18, 3.8S rRNA, 5.8S rRNA</td>
<td>Sun et al. 2010*</td>
</tr>
<tr>
<td>18</td>
<td>Rhodinus prolixus</td>
<td>Kissing bug&lt;sup&gt;c&lt;/sup&gt;</td>
<td>7</td>
<td>2</td>
<td>Tissues in adult females 4 days after a blood meal</td>
<td>RPS18, Ef1α, MIP, Actin</td>
<td>Majerowicz et al. 2011*</td>
</tr>
<tr>
<td>19</td>
<td>Rhodinus prolixus</td>
<td>Kissing bug&lt;sup&gt;c&lt;/sup&gt;</td>
<td>5</td>
<td>3</td>
<td>Tissues before and after feeding blood, infection with vectors</td>
<td>18S, TUB, ACT, TUB</td>
<td>Pain et al. 2012 [6]</td>
</tr>
<tr>
<td>20</td>
<td>Daphnia pulex</td>
<td>Water flea&lt;sup&gt;b&lt;/sup&gt;</td>
<td>6</td>
<td>3</td>
<td>Predator exposure</td>
<td>Xbp1, Tbp, CAPON, Sstx16</td>
<td>Spanier et al. 2010 [7]</td>
</tr>
<tr>
<td>21</td>
<td>Drosophila melanogaster</td>
<td>Fruit fly&lt;sup&gt;c&lt;/sup&gt;</td>
<td>7</td>
<td>3</td>
<td>Injury, heat-shock stress, diet variations</td>
<td>Ef1α, Actin, Tubulin, RPL32</td>
<td>Ponton et al. 2011 [8]</td>
</tr>
<tr>
<td>22</td>
<td>Drosophila melanogaster</td>
<td>Three acaricide resistant populations</td>
<td>20</td>
<td>1</td>
<td>Ageing related head samples</td>
<td>GAPDH2, RPL13A, L(3)02640</td>
<td>Ling and Salvaterra 2011 [9]</td>
</tr>
<tr>
<td>23</td>
<td>Delphacodes kuscheli</td>
<td>Delphacodes planthopper</td>
<td>7</td>
<td>3</td>
<td>Virus-infected and naïve planthoppers</td>
<td>UBI, 18S, Actin</td>
<td>Maroniche et al. 2011 [10]</td>
</tr>
<tr>
<td>24</td>
<td>Cimex lectularius</td>
<td>Common bed bug&lt;sup&gt;c&lt;/sup&gt;</td>
<td>8</td>
<td>3</td>
<td>Developmental stages, tissues, pesticide exposure</td>
<td>RPL18, Ef1α</td>
<td>Mamiyada et al. 2011 [11]</td>
</tr>
<tr>
<td>#</td>
<td>Organism</td>
<td>Life Stage</td>
<td>Tissues/Conditions</td>
<td>Genes</td>
<td>References</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
<td>------------</td>
<td>------------------------------------------------------------------------------------</td>
<td>--------------------------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Cimex lectularius</td>
<td>4</td>
<td>All developmental stages in susceptible and resistant strains</td>
<td>RPL8, RPS16, HSP70, RPL11</td>
<td>Zhu et al. 2012*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Chortoicetes terminifera</td>
<td>8</td>
<td>Tissues in 5th instar nymphs under three rearing densities</td>
<td>Efiα</td>
<td>Chapuis et al. 2011 [12]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Aphis glycines</td>
<td>7</td>
<td>Tissues, developmental stages, fed on susceptible and host plant-resistant soybean</td>
<td>TBP, RPS9, Efiα</td>
<td>Bansal et al. 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Agrilus planipennis</td>
<td>6</td>
<td>Larval tissues, developmental stages, diet variations</td>
<td>TEF1α, RPL7</td>
<td>Rajapalu et al. 2012 [13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Panonychus citri</td>
<td>7</td>
<td>Developmental stages, abiotic stresses (thermo stress, UV irradiation, acid rain stress, acaricide stress), and both</td>
<td>GAPDH; Efiα, GAPDH</td>
<td>Niu et al. 2012*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Amblyomma maculatum</td>
<td>5</td>
<td>All developmental stages, tissues</td>
<td>β-actin, β-actin, GAPDH</td>
<td>Browning et al. 2012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Leptinotarsa decemlineata</td>
<td>3</td>
<td>Larva fed in vivo and in vitro expressed double-stranded RNA (dsRNA) of 5 target genes</td>
<td>RP4, β-actin, RP18</td>
<td>Zhu et al. 2011*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Leptinotarsa decemlineata</td>
<td>5</td>
<td>Susceptible and resistant adults, tissues, developmental stages, control and induction beetles</td>
<td>RPL4, Efiα, RPL18, HSP70, NADH</td>
<td>Zhu et al. 2016*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Leptinotarsa decemlineata</td>
<td>9</td>
<td>All developmental stages, tissues, larval tissues, and after insecticide treatments</td>
<td>ARF1, RP18; RP4, RP18</td>
<td>Shi et al. 2013 [14]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Isodes scapularis</td>
<td>6</td>
<td>Two tissues in female ticks in multiple blood-feeding phases</td>
<td>18S/SDHA, GST, Tubulin, GAPDH</td>
<td>Su et al. 2013*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Bemisia tabaci</td>
<td>9</td>
<td>Developmental stages, tissues, bacterium and insecticide treatments</td>
<td>HSP90, RPL29, Efi1a, HSP90, RPL29, NADH, HSP90, RPL29</td>
<td>Li et al. 2013*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Bemisia tabaci</td>
<td>15</td>
<td>Developmental stages, host plants, nonviruliferous and viruliferous flies, tissues, biotypes, photoperiods, temperature variations, susceptible and thiamethoxam resistant</td>
<td>HSP90, RPL29, Efi1a, HSP90, RPL29, NADH, HSP90, RPL29</td>
<td>Li et al. 2013*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Bemisia tabaci</td>
<td>8</td>
<td>Insecticide treatments</td>
<td>Efi1a, Tubulin, GAPDH</td>
<td>Liang et al. 2014*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Spodoptera litura</td>
<td>5</td>
<td>Developmental stages, castes, tissues</td>
<td>RPL18, Efiβ</td>
<td>Cheng et al. 2013 [16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Spodoptera exigua</td>
<td>8</td>
<td>All developmental stages, tissues, geographic populations, temperature stresses, pesticide induction, diets induction and starvation</td>
<td>RPS13, RPS32, Efi1a, RPL32, RPS23, Efiα, Actin, GAPDH, Actin, GAPDH, RPL32, RPS13, Efi1a, RPL32, RPS13, RPS32, RPS23, Efiα, Actin, GAPDH</td>
<td>Lu et al. 2013 [17]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Plutella xylostella</td>
<td>10</td>
<td>All developmental stages, tissues, strains, temperature variations, photoperiods, insecticide treatment, mechanical injury</td>
<td>RPS15, RPS11, TUB, RPS15, RPS11</td>
<td>Fu et al. 2013*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Spodoptera exigua</td>
<td>9</td>
<td>All developmental stages, sexes, tissues in three larval physiological stages</td>
<td>L10, EF2, L17A, SOD, ACT2, GAPDH, Efi1, ACT1, ACT2, L10, GAPDH, ACT1, ACT2, SOD, L17A, EF2, SOD</td>
<td>Zhu et al. 2014 [18]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Nilaparvata lugens</td>
<td>8</td>
<td>All developmental stages, body parts, geographic populations, temperature stresses, pesticides induction, diets induction</td>
<td>RPS15, RPS11, TUB, RPS15, RPS11</td>
<td>Yuan et al. 2014 [19]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Diabrotica virgifera virgifera</td>
<td>5</td>
<td>Developmental stages, tissues, dsRNAs exposure, Bt toxins exposure</td>
<td>β-Actin, RPS9, Efi1α</td>
<td>Rodrigues et al. 2014*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>


