International Journal of Biological Sciences

Impact factor
3.873

ISSN 1449-2288

News feeds of IJBS published articles
My Manuscript
My Account

Journal of Biomedicinenew

Theranostics

International Journal of Medical Sciences

Journal of Cancer

Oncomedicine

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Biol Sci 2016; 12(1):87-99. doi:10.7150/ijbs.13229

Research Paper

Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury

Yulong Zhou1,2, Hongyu Zhang2, Binbin Zheng1,2, Libing Ye2, Sipin Zhu1,2, Noah R Johnson3, Zhouguang Wang2, Xiaojie Wei4, Daqing Chen5, Guodong Cao6, Xiaobing Fu7, Xiaokun Li 2, Hua-Zi Xu1, Jian Xiao2 ✉

1. Department of Orthopaedics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
2. Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035 China
3. Department of Bioengineering and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
4. Department of Neurosurgery, Cixi People's Hospital, Wenzhou Medical University, Ningbo, 315300, China
5. Department of Emergency, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
6. Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
7. Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing 100853, China
The first two authors contributed equally to this study.

Abstract

Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption.

Keywords: blood-spinal cord barrier (BSCB), retinoic acid (RA), autophagy, endocytoplasmic reticulum (ER) stress, spinal cord injury (SCI)

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Zhou Y, Zhang H, Zheng B, Ye L, Zhu S, Johnson NR, Wang Z, Wei X, Chen D, Cao G, Fu X, Li X, Xu HZ, Xiao J. Retinoic Acid Induced-Autophagic Flux Inhibits ER-Stress Dependent Apoptosis and Prevents Disruption of Blood-Spinal Cord Barrier after Spinal Cord Injury. Int J Biol Sci 2016; 12(1):87-99. doi:10.7150/ijbs.13229. Available from http://www.ijbs.com/v12p0087.htm