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Abstract 

Epstein-Barr virus (EBV) has been associated with several types of human cancers. In the host, EBV 
can establish two alternative modes of life cycle, known as latent or lytic and the switch from 
latency to the lytic cycle is known as EBV reactivation. Although EBV in cancer cells is found mostly 
in latency, a small number of lytically-infected cells promote carcinogenesis through the release of 
growth factors and oncogenic cytokines. This review focuses on the mechanisms by which EBV 
reactivation is controlled by cellular and viral factors, and discusses how EBV lytic infection 
contributes to human malignancies. 
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1. Introduction 
EBV is an oncogenic virus that is linked with 

several malignancies, including nasopharyngeal 
carcinoma (NPC), Hodgkin’s lymphoma (HL), 
Burkitt’s lymphoma (BL), and gastric carcinoma [1]. 
In the host, EBV can establish two types of infection 
known as latent and lytic. During latency, only a 
limited number of viral genes are expressed and the 
viral genome exists in the nucleus as an episome. 
Upon reactivation, EBV briefly passes through three 
consecutive lytic phases, including immediate early 
(IE), early (E), and late (L) [2]. The viral IE genes 
BZLF1 and BRLF1 are first transcribed to encode the 
transactivators, Zta and Rta, respectively, followed by 
expression of the early genes required for EBV 
genome replication. After EBV DNA replication, late 
genes are expressed that encode mainly viral 
structural proteins, including capsid antigens and 
membrane proteins, followed by viral genome 
encapsidation and the production of mature virions. 
Although all EBV-associated cancers involve the 
latent cycle of EBV, the viral lytic cycle also 

contributes to the development and maintenance of 
malignancies through the induction of growth factors 
and oncogenic cytokine production [3-5].  

In this review, we describe recent advances 
regarding the mechanisms underlying EBV 
reactivation, focusing on the control of the host and 
the virus itself, and discuss the contribution of viral 
lytic infection to EBV-associated malignancies.  

2. Zta and Rta synergistically trigger EBV 
reactivation 

Following various stimuli, such as 
12-O-tetradecanoylphorbol-13-acetate (TPA), sodium 
butyrate, anti-Ig, and transforming growth factor-beta 
(TGF-β), EBV reactivation can be triggered by two 
immediate early (IE) transactivators, Zta and Rta. 
Together, both IE proteins turn on the entire lytic viral 
cascade of gene expression and EBV replication. Zta, a 
member of the basic-region leucine zipper (bZIP) 
family of transcription factors, activates the 
expression of lytic EBV genes by binding to the 
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activator protein (AP)-1-like motif known as Zta 
response elements (ZREs) [6,7]. In addition, it also 
functions as a replication factor for EBV genomic 
DNA by binding the lytic origin of replication, oriLyt 
[8]. Similar to Zta, the Rta protein can transactivate 
lytic target promoters by direct binding to Rta 
response elements (RREs) [9]. Although Rta is unable 
to recognize oriLyt, it plays an indispensable role in 
the process of lytic DNA replication by activating the 
expression of the BHLF1 gene which encodes 
replication proteins [10]. This synergy is achieved 
because Zta and Rta activate both their own and one 
another's promoters, which greatly amplifies their 
lytic-inducing effects [11]. Zta can directly activate 
transcription from its own BZLF1 promoter (Zp), by 
binding to the ZIIIA and ZIIIB elements of Zp [12] and 
the BRLF1 promoter (Rp) by binding to three known 
ZREs (ZRE1, ZRE2 and ZRE3) within Rp [13]. 
However, Rta activates its own promoter through an 
indirect mechanism involving a direct interaction 
with specificity protein (Sp1) through an intermediary 
protein, MCAF1, to form a complex on Sp1-binding 
sites [14]. Rta also activates Zp indirectly through 
activation of the mitogen-activated protein kinase 
(MAPK) and phosphatidylinositol-3-kinase (PI3-K) 
pathways, resulting in phosphorylation of 
transcription factors that bind to a ZII cyclic AMP 
response element, such as activating transcription 
factor-2 (ATF-2) or c-Jun [15,16].  

3. Host factors contributing to the 
regulation of EBV reactivation 
3.1. The role of post-translational 
modifications in the functional activities of Zta 
and Rta 

The balance between EBV latent and lytic 
infection in host cells is initially implicated in 
transcriptional control of the BZLF1 and BRLF1 genes. 
Cellular transcription factors and their binding motifs 
within Zp and Rp have been well-studied [17,18]. 
However, activation of both IE promoters is not 
sufficient for induction of EBV reactivation. The 
ability of Zta and Rta to trigger EBV reactivation is 
also regulated through post-translational 
mechanisms. Among them, phosphorylation is the 
most common post-translational modification and 
modulates the transcriptional potential of 
transcription factors regardless of whether they are 
encoded by the host cell or the virus. Phosphorylation 
of serine residue 173 (Ser173), located in the DNA 
binding domain of Zta, promotes viral replication by 
enhancing Zta’s affinity for DNA, but is not required 
for activation of early lytic genes [19]. Ser186 of Zta is 
phosphorylated by protein kinase C after stimulation 

with TPA. The phosphorylation of Ser186 is essential 
for the full functional activity of Zta during the lytic 
cycle [20]. In addition to Ser173 and Ser186, Zta was 
shown to be constitutively phosphorylated at 
multiple sites [21]. Nonetheless, the role of 
phosphorylation in the functional activity of Zta 
remains largely unknown. Unlike phosphorylation, 
sumoylation modification often negatively affects Zta 
transcriptional activity [22,23]. Recent evidence 
revealed that sumoylation of lysine 12 results in Zta 
repression of viral gene expression, promoting EBV 
latency and, also, that the EBV-encoded protein 
kinase (EBV-PK) reverses the sumoylation of Zta 
during EBV reactivation [22]. Subsequently, Murata et 
al. demonstrated that the inhibitory effect of 
sumoylation on Zta activity is mainly mediated by 
recruiting histone deacetylase (HDAC) complexes 
[23].  

In addition, post-translational modifications 
have been shown to affect Zta and Rta activities 
through protein-protein interactions. In EBV-infected 
cells, the transcription factors Ikaros, Oct-1, and TAF4 
and the retinoblastoma (Rb) protein directly interact 
with Rta, and the interactions are thought to be 
important for Rta-mediated disruption of viral latency 
[14,24-26]. Mutation analysis revealed that the 
interactions require the DNA-binding/dimerization 
domain of Rta. Transducer of regulated CREB protein 
2 (TORC2) and C/EBP have been identified as 
co-activators for Zta to activate its own promoter, Zp 
[27,28]. Interestingly, both EBV IE transactivators, Zta 
and Rta, have been shown to interact with cAMP 
response element binding (CREB)-binding protein 
(CBP), which exhibits histone acetylase activity. The 
interactions enhance Zta and Rta transactivator 
activity and increase their ability to induce the lytic 
form of EBV infection in latently-infected cells [29]. 
Alternatively, protein-protein interactions are also 
related to the reduced transcriptional activity and 
weak affinity for DNA of IE proteins. For example, the 
cellular transcription factors, Oct-2, Pax-5, NF-κB, and 
c-Myc, inhibit the induction of EBV lytic reactivation 
by interacting with Zta [30-33].  

3.2. Cellular signaling pathways involved in 
EBV reactivation 

In the human host, B-cell receptor (BCR) antigen 
stimulation is known to reactivate EBV latency. An 
accumulation of data demonstrated that the PKC, 
MAPK, and PI3-K signaling pathways are involved in 
BCR induction of the EBV lytic cycle [34]. Eventually, 
a network with crosstalk of these signaling pathways 
leads to activation of several positive transcription 
factors on Zp or Rp, thereby stimulating the 
latent-lytic switch (Figure 1). 
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Figure 1. Signaling pathways of BZLF1 promoter activation. EBV reactivation can be induced by BCR-mediated signaling pathways or cellular stress (e.g., 
DNA damage). PKC, MAPK (ERKs, JNKs, and p38), and PI3K pathways as well as ATM-dependent mechanisms appear to be involved. A network with crosstalk of 
four major signaling pathways leads to activation of several positive transcription factors, followed by transcription from Zp. 

 
Gao et al. first reported the involvement of the 

PKC pathway in the latent-lytic switch [35]. The 
switch, marked by Zta expression, can be induced by 
active NF-κB and AP-1 through PKC. This report was 
followed by similar reports from other groups [36,37]. 
The MAPK family consists of 3 member cascades, 
extracellular signal regulated kinases (ERKs), c-Jun 
NH2-terminal kinases (JNKs), and p38 and is usually 
activated as a partner of the PKC signaling pathway. 
JNK signaling leads to the phosphorylation of c-Jun 
and c-Jun/c-Fos cooperate with Smads proteins to 
bind the AP-1 motif and the Smad4-binding element 
within Zp, followed by expression of the BZLF1 gene 
[38]. By inducing the phosphorylation of c-Jun/ATF2, 
the MAPK signaling pathways are also required for 
Rta-mediated activation of Zp [25]. Iwakiri and 
colleagues demonstrated that PI3-K/Akt signal 
transduction contributes to transcription from the 
promoters of the BZLF1 gene [39], which is consistent 
with our recent study showing that the PI3-K/Akt 
and ERKs pathways are involved in the EBV 
spontaneous lytic cycle cascade [40]. PI3-K/Akt 
signaling has been shown to activate cellular 

transcription factors c-Jun, ATF2, CREB, Sp1, and 
myocyte-specific enhancer factor 2D (MEF2D) that 
activate Zp and/or Rp [18]. Moreover, in cells that are 
not responsive to BCR-mediated EBV reactivation, 
active PI3-K activates signaling cascades for the ERKs 
and p38 pathways, resulting in initiation of the EBV 
lytic cycle [39].  

Recently, the ataxia telangiectasia mutated 
(ATM) activation that occurs in response to DNA 
damage or oxidative stress has been shown to induce 
EBV reactivation through a p53-dependent 
mechanism [41,42]. ATM and downstream signaling 
pathways p38 and JNKs are responsible for 
phosphorylation of p53 at multiple sites, and the 
activated p53 protein mediates expression of the 
BRLF1 gene by directly binding Rp.  

3.3 Epigenetic regulation of EBV reactivation  
Epigenetic factors, including viral genome 

methylation and histone modifications, also play an 
important role in regulating the state of EBV infection 
in host cells.  
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Figure 2. Epigenetic control of EBV lytic reactivation. a. During latency, EBV lytic promoters are silenced by host-driven methylation. The IE protein Zta 
preferentially binds to methylated ZREs (meZREs) in lytic promoters to initiate replication from this epigenetic repressed state. b. The IE promoters Zp and Rp are 
controlled by several repressive histone modifications during EBV latent infection. After nucleosomes are removed locally, activating histone marks are established 
and allow the access of transcription factors to induce expression of both IE genes. 

 

DNA methylation 
In latently-infected cells, the promoters of EBV 

lytic genes are intensively repressed and silenced by 
host-driven DNA methylation [43]. The repressive 
epigenetic player, CpG DNA methylation of the viral 
genome decreases the ability of Rta to activate most 
early lytic promoters [44]. Importantly, the virus has 
evolved a strategy to overcome the silencing of DNA 
methylation and withdraw into a latent state. The 
unique ability of Zta to bind preferentially and 
activate methylated CpG-containing ZREs is essential 
for initiating EBV reactivation in cells latently infected 
with a methylated viral genome (Figure 2). Of note, 
Ser186 is required for Zta activation of the methylated 
form of EBV lytic promoters [45]. 

Histone modifications 
Histone modifications have a central epigenetic 

role in regulating activation of BZLF1 and BRLF1 
genes. The local acetylation state of histones H3 and 
H4 around Zp and Rp, such as histone H3 Lys27 
acetylation (H3K27ac), H3K9ac, and H4K8ac, help to 
establish the open chromatin configuration so as to 
allow access of transcription factors, followed by 

transcription of the BZLF1 and BRLF1genes [46-48]. In 
contrast, the methylation modifications of histones 
were suggested to be marks of heterochromatin 
formation and transcriptional repression. Repressive 
histone modifications, such as H3K27me3, 
H3K9me2/me3, and H4K20me3 have been identified 
at Zp or Rp, and correlate with inactivation of both IE 
promoters, maintaining viral latency. Nevertheless, 
H3K4me3 allows the virus to express Zta [49-51] 
(Figure 2).  

3.4 Cellular stresses contributing to EBV 
reactivation 

Increasing evidence suggests that severe host cell 
stress in response to many different toxic stimuli, 
including chemotherapy and γ irradiation, can induce 
lytic EBV infection, which ensures that the 
virus spreads from host to host.  

Oxidative stress 
Oxidative stress, generally induced by 

chemotherapy and irradiation (IR), leads to EBV 
reactivation through the induction of BZLF1 gene 
expression [52]. Increasing evidence suggests a role 
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for reactive oxygen species (ROS), resulting from 
oxidative stress, as intermediates of intracellular 
signal transduction pathways [53]. Huang, et al. 
demonstrated a novel signaling mechanism by ROS 
for induction of EBV reactivation [42]. They found 
that various signaling pathways including ATM, p38 
and JNKs are activated by ROS and involved in the 
induction of EBV reactivation in a p53-dependent 
manner. Also, phosphorylation of the ATF2 
transcription factor by p38 and JNKs has been 
reported to activate Zp [16], implying deregulated 
ROS signaling might similarly induce EBV 
reactivation from latency through modification of 
other redox-sensitive transcription factors that 
activate Zp and/or Rp, such as early growth response 
1 (EGR1) [54,55], Sp1 [56], Stat3 [57], and c-Jun [58].  

Hypoxia 
Hypoxia-inducible factor 1 (HIF-1) is a 

transcription factor that consists of α and β subunits, 
and is responsible for hypoxia induction of EBV 
reactivation [59]. In hypoxic conditions, HIF-1 
accumulates to a high level, consequently the α 
subunit up-regulates expression of the BZLF1 gene by 
binding to HIF-1-responsive elements (HREs) in Zp 
(Kraus RJ, Yu X, Sathiamoorthi S, Ruegsegger N, 
Nawandar DM, Kenney SC, et al. Unpublished data. 
n.d.).  

Autophagy  
Although autophagy normally serves as a 

defense mechanism against viral infection, recent 
research findings showed that EBV manipulates this 
mechanism to promote viral replication [60-63]. 
Results from various studies reveal that autophagic 
activation through the Rta-mediated ERKs pathway 
[60] and the PKCθ-p38 signaling axis [61] promotes 
viral lytic development in the early phase of EBV 
reactivation, but is soon inhibited by the early lytic 
products so as to prevent viral degradation in the 
degradative phases of autophagy [62,63]. 

Inflammation  
Inflammatory responses against viral infection is 

one of the predisposing factors associated with 
virus-mediated tumorigenesis [64]. In the case of EBV, 
lytic reactivation induces expression of inflammatory 
cytokines, including interleukin-6 (IL-6), IL-8, IL-10, 
and IL-13, contributing to pathogenesis of NPC or 
lymphomas [65-68]. In a recent study, Gandhi, et al. 
elucidated the role of inflammation in EBV lytic 
reactivation [69]. They found that COX-2, a key 
mediator of inflammatory processes, induces EBV 
lytic reactivation through prostaglandin E2 (PGE2) by 
modulating the prostaglandin EP receptor-signaling 
pathway. 

4. The viral self-regulation of EBV 
reactivation 
4.1. Viral encoded proteins tend to maintain 
the temporal modes of EBV infection 

In latent infection, the EBV latent membrane 
protein 1 (LMP1), a viral mimic of constitutively 
active CD40, intensifies latency in part through NF-κB 
activity [70]. LMP2A blocks BCR-induced EBV 
reactivation by inhibiting activation of tyrosine 
kinases by BCR [71,72]. And yet, some EBV early lytic 
proteins affect the activities of Zta or Rta through 
interactions between EBV proteins [73-75]. For 
example, the BRRF1 (Na)-Rta interaction enhances 
induction of viral lytic replication [73]. Unlike Na, the 
interaction of LF2 with Rta is critical for altering Rta 
subcellular localization and consequent functional 
repression [74,75]. In an earlier study, the BMRF1 
protein was found to directly interact with Zta in vitro 
as well as in vivo, enhancing transcription from their 
common early BHLF1 promoter [76]. Similarly, EBV 
tegument protein BGLF2, encoded in the late phase of 
the lytic cycle, was suggested to enhance Zta 
expression through activation of the p38 signaling 
pathway [77].  

EBV nuclear antigen1 (EBNA1) is expressed in 
both latent and lytic modes of EBV infection. Notably, 
two roles for EBNA1 in the EBV latent-lytic switch 
have been identified. First, EBNA1 is known to be 
required for maintenance of latency; and second, 
when the lytic cycle is induced, it also has a role in 
viral reactivation and lytic infection [78,79]. For 
example, EBNA1 was shown to organize the oriP 
regions into replication domains for lytic replication 
and transcription [78], and induce EBV reactivation by 
overcoming the PML protein- and nuclear body 
(NB)-suppression of lytic infection [79].  

These results indicate that the viral proteins 
preferentially maintain the modes of EBV infection, 
which is most likely to facilitate viral optimal 
replication in host cells.  

4.2. The inhibitory effects of EBV-encoded 
microRNAs on reactivation from latency  

EBV is the first virus found to encode 
microRNAs (miRNAs) [80]. The miRNAs encoded by 
EBV can be divided into two clusters, including 29 
miRNAs located in the introns of the viral BART gene 
and 3 located adjacent to the BHRF1 gene [81]. By 
identifying target genes, the roles of miRNAs in EBV 
latent-lytic switch have been established (Figure 3). 
For instance, the cellular miR-200b and miR-429, 
members of the miR200 family, are able to induce lytic 
replication by targeting ZEB1/2 and blocking their 
repressive effect on Zp [82,83]. On the other hand, 
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miR-155 inhibits BMP-mediated lytic reactivation by 
targeting multiple members of the BMP signaling 
pathway, including SMAD1, SMAD5, and CEBPB 
[84]. As for EBV-encoded miRNAs, the fact that a 
subset of viral miRNAs is present at high copy 
numbers in latently-infected cells implicates them in 
establishing and maintaining latency [81,85]. This 
occurs by inhibiting expression of viral lytic genes 
that play essential roles in the latent-lytic switch 
[86,87]. Barth, et al. demonstrated that EBV-encoded 
miR-BART2 directly targets the transcript of the viral 
DNA polymerase BALF5 to inhibit the transition from 
latent to lytic viral replication [86]. A recent study 
demonstrated that the EBV-encoded miR-BART20-5p 
directly targets the transcripts of the lytic switch 
proteins, Zta and Rta [87]. The EBV-encoded miRNAs 
also enhance latency by targeting host transcripts 
[88,89]. For example, EBV-encoded miR-BART5 
counteracts the pro-apoptotic function of the 
p53/PUMA pathway by targeting transcripts of 
PUMA, optimizing cellular conditions for EBV 
latency [88]. Additionally, EBV-encoded 
miR-BART18-5p directly targets the transcript of 
MAPKKK2 (MAP3K2), which modulates the MAPK 
signaling pathways that are known to be important in 
EBV reactivation [89]. 

5. The pathogenic role of lytic infection in 
EBV-associated malignancies  

Previous studies have focused on the 
contributions of EBV latent infection in the 
pathogenesis of EBV-induced malignancies and 
revealed that LMP1 is an essential oncoprotein [90]. In 
recent years, the viral lytic cycle has been shown to 

play an important role in carcinogenesis through 
several potential mechanisms. By enhancing 
transmission of the virus from cell to cell, EBV lytic 
infection may increase the total number of 
latently-infected cells and thus is an essential aspect of 
viral pathogenesis. A small subset of lytically-infected 
cells is commonly detected in biopsies of 
EBV-associated malignancies [91-93], suggesting a 
potential role for viral lytic infection in promoting 
tumor growth in vivo. Furthermore, some studies 
indicated that the viral lytic cycle in a fraction of B 
cells promotes the transformation of B-lymphocytes in 
vitro [94] and growth of B cell lymphoma in vivo [7,95] 
through the release of paracrine growth factors and 
angiogenic factors. Focusing on the study of NPC, 
Wu, et al. found that recurrent EBV reactivation 
promotes genome instability, invasiveness and 
tumorigenesis of NPC cells, and that the contribution 
of the lytic cycle is more profound than latent 
infection [5,96,97]. Additionally, lytic replication 
enhances secretion of the angiogenic factor, vascular 
endothelial growth factor (VEGF), in NPC cells, 
contributing to angiogenesis and consequent 
metastasis or relapse of NPC after remission [98]. 
Clinical and epidemiological studies have revealed 
that individuals with elevated plasma EBV DNA load 
and antibody titers against the lytic viral capsid 
antigen (VCA) and early antigen (EA) have a high risk 
of NPC [99,100]. These studies also show that 
fluctuation of EBV antibody titers occurs prior to the 
onset of NPC [101,102]. These results suggest the 
importance of lytic infection for the initiation, 
progression, and metastasis or relapse of NPC 
(Figure 4).  

 
 

Figure 3. Schematic 
indicating the role of 
cellular and EBV miRNAs 
in EBV latency and 
reactivation. Cellular 
miRNAs have distinct 
functions in EBV latency and 
lytic reactivation by directly 
targeting transcription factors 
on Zp or regulating the 
signaling pathway related to 
expression of Zta. 
Nevertheless, the 
EBV-encoded miRNAs inhibit 
the transition from latent to 
lytic viral replication, which 
occurs both through 
modulation of specific signaling 
pathways as well as through 
the restriction of its own gene 
expression. Notably, the 
EBV-encoded mi-BART20-5p 
can directly target the 
transcripts of the BZLF1 and 
BRLF1 genes. 
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Figure 4. The pathogenic role of EBV lytic infection in NPC carcinogenesis. After primary infection, EBV establishes latent infection in B cells. Upon 
reactivation, lytically-infected B cells travel through the nasopharynx tissue, followed by infection of the nasopharyngeal epithelial cells by cell-to-cell contact. Similar 
to the LMP1 oncoprotein, the presence of a limited number of lytically-infected epithelial cells induces genome instability and release of oncogenic cytokines, 
consequently promoting NPC carcinogenesis. Although NPC is sensitive to radiotherapy, extensive resistance to radiation often causes tumor metastasis or relapse 
after remission. IR –induced recurrent expression of lytic proteins is a potential factor that mediates the impact of EBV on NPC relapse. The fluctuation of EBV 
antibody titers reflects tumor progression of NPC. 

 
In addition, understanding the function of the 

EBV lytic proteins in malignancies is clearly essential 
in determining the role of lytic infection in the 
carcinogenic process (Table 1). The IE protein Zta 
triggers paracrine secretion of the angiogenic factor 
VEGF [98] and several oncogenic and inflammatory 
cytokines, including IL-6, IL-8, IL-10, and IL-13 
[3,94,95,103], and thereby, participates in the 
tumorigenesis of EBV-associated malignancies. Some 
lytic proteins, such as BGLF4 protein kinase (EBV-PK) 
and BGLF5 nuclease (EBV DNase), have been 
reported to promote genomic instability and enhance 
tumor progression of NPC cells [96,104]. Intriguingly, 
EBV encodes a series of important proteins that show 
homology to diverse human anti-apoptotic molecules 
and oncogenic cytokines. For example, early gene 
BCRF1, also known as viral interleukin-10 (vIL-10), 
encodes a homolog of IL-10 that functions as a 
paracrine growth factor in EBV-associated 
lymphomas [105]. BHRF1 exhibits homology to the 
human oncoprotein Bcl-2 and delays cell death during 
EBV lytic replication [106,107]. Chiu, et al. 
demonstrated that BALF3, a homologue to terminase, 
is not only involved in the induction of host genomic 

instability, but also mediates the impact of EBV on 
NPC relapse [108]. Another early gene BARF1 
encodes a homologue to the colony-stimulating 
factor-1 (CSF-1) receptor, which is a product of the 
human oncogene, c-fms. BARF1 inhibits apoptosis by 
activating Bcl-2 [109], hence contributing to the 
tumorigenicity of NPC cells [110,111]. Thus, effective 
strategies that inhibit EBV lytic reactivation might be 
valuable in the prevention or treatment of 
EBV-associated malignancies and improve the clinical 
outcome.  

Table 1. EBV lytic proteins and tumorigenic functions a 

Lytic 
protein 

Lytic phase Human 
homologue 

Tumorigenic function 

Zta Immediate  
Early 

—  Induction of IL-6, IL-8, IL-10, IL-13, 
and VEGF secretion 

BARF1 Early C-fms receptor Anti-apoptosis 
BHRF1 Early Bcl-2 Anti-apoptosis 
BALF3 Early Terminase Induction of genomic instability 
BCRF1 Early IL-10 Anti-apoptosis 
BGLF4 Early — Induction of chromosomal 

abnormality and DNA damage 
DNase Early — Induction of genomic instability 
a 

Summarized from references 3, 94-96, 98, 103-111. 
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6. Conclusions  
Focusing on host and viral factors, this review 

has covered recent advances with respect to the 
mechanisms underlying EBV reactivation. In host 
cells, in addition to transcription control, 
post-transcriptional modifications, signal 
transduction, and epigenetic regulation, can together 
determine whether EBV infection remains latent or 
becomes lytic. Simultaneously, the virus has evolved 
strategies to exploit cell epigenetic machinery to 
establish a lifelong latent infection and use a strategy 
to escape from the latent state. To propagate, EBV 
spontaneously enters into lytic replication under 
severe cellular stress, and this adds to our 
understanding of how these host-viral interactions 
modulate the microenvironment contributing to EBV 
reactivation. In addition, regulation of the latent-lytic 
switch in the EBV life cycle is dependent partly on 
gene products encoded by the virus itself. 
Importantly, identification of lytic proteins that result 
in tumorigenesis determines the pathogenic role for 
lytic infection in human malignancies. In summary, a 
better understanding of the mechanisms beneath EBV 
lytic reactivation and the pathogenic role of viral lytic 
infection in carcinogenesis helps in the design of new 
virus-targeted therapies aiming at lytic cycle for 
EBV-associated malignancies.  
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