Supplementary Figure 1. FOXM1 associated with β-Catenin in the cytoplasm and the nucleus.
(A) Increased FOXM1 and β-Catenin levels were identified in both the cytoplasm and the nucleus. The cytoplasmic or nuclear extracts from hFOB1.19, U2OS, MG63, Saos-2 and HOS cells were analyzed to determine the levels of FOXM1 and β-Catenin. Tubulin and TFIIb were used as controls for cytoplasmic and nuclear fractions, respectively. (B) Wnt3a treatment enhanced the nuclear translocation of FOXM1 and β-Catenin. U2OS cells were treated with Wnt3a (20 ng/ml) for 0, 30, 60 and 90 min, then the cytoplasmic or nuclear extracts were analyzed to determine the levels of FOXM1 and β-Catenin.

Supplementary Figure 2. The mRNA levels of c-Myc and Cyclin D1 in osteosarcoma cells upon knockdown of FOXM1 or β-Catenin.
(A-D) Knockdown of FOXM1 in hFOB1.19, U2OS and MG63 cells decreased the expression of c-Myc and Cyclin D1. The mRNAs from cells used in Figure 3A were analyzed to determine the expression of c-Myc and Cyclin D1 by qRT-PCR. Expression was normalized against β-Actin in each cell line, and the resulting ratios in cells transfected control-shRNA were arbitrarily defined as 1-fold. (E-H) Knockdown of β-Catenin in U2OS and MG63 cells decreased c-Myc and Cyclin D1 expression. The mRNAs from cells used in Figure 3A were analyzed to determine the expression of c-Myc and Cyclin D1 by qRT-PCR. Expression was normalized against β-Actin in each cell line, and the resulting ratios in cells transfected control-shRNA were arbitrarily defined as 1-fold. Representative data from three independent experiments are shown. **P<0.001.

Supplementary Figure 3. Effect of pharmacological treatments on the levels of proteins of the Wnt/β-Catenin signaling pathway.
(A) Wnt3a treatment activated the expression of proteins of the Wnt/β-Catenin signaling pathway. Cells used in Figure 5A were analyzed to determine the protein levels of FOXM1, β-Catenin, c-Myc and Cyclin D1. (B-D) Treatment with FDI-6 and PKF118-310, but not treatment with 10058-F4, inhibited the expression of proteins of the Wnt/β-Catenin signaling pathway. Cells used in Figures 5B-5D were analyzed to determine protein levels of FOXM1, β-Catenin, c-Myc and Cyclin D1.

Supplementary Figure 4. AZA treatment inhibited the colony formation ability.
The hFOB1.19, U2OS and MG63 cells were seeded onto 6-well plates, and cultured with 0.1 ml DMEM medium supplemented with AZA (1 µM) for two weeks. Then, cells were stained with 0.5% crystal violet and pictures were taken.
Supplementary Figure 3

A

<table>
<thead>
<tr>
<th></th>
<th>hFOB1.19</th>
<th>U2OS</th>
<th>MG63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wnt3a</td>
<td>0 30 60</td>
<td>0 30</td>
<td>0 30</td>
</tr>
</tbody>
</table>

- **β-catenin**
- **FOXM1**
- **c-Myc**
- **GAPDH**

B

<table>
<thead>
<tr>
<th></th>
<th>hFOB1.19</th>
<th>U2OS</th>
<th>MG63</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDI-6</td>
<td>0 1 3 6</td>
<td>0 1 3</td>
<td>0 1 3</td>
</tr>
</tbody>
</table>

- **β-catenin**
- **FOXM1**
- **c-Myc**
- **GAPDH**

C

<table>
<thead>
<tr>
<th></th>
<th>hFOB1.19</th>
<th>U2OS</th>
<th>MG63</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKF118-744</td>
<td>0 1 3 6</td>
<td>0 1 3 6</td>
<td>0 1 3 6</td>
</tr>
</tbody>
</table>

- **β-catenin**
- **FoxM1**
- **c-Myc**
- **GAPDH**

D

<table>
<thead>
<tr>
<th></th>
<th>hFOB1.19</th>
<th>U2OS</th>
<th>MG63</th>
</tr>
</thead>
<tbody>
<tr>
<td>10058-F4</td>
<td>0 1 3 6</td>
<td>0 1 3 6</td>
<td>0 1 3 6</td>
</tr>
</tbody>
</table>

- **β-catenin**
- **FoxM1**
- **c-Myc**
- **GAPDH**

Supplementary Figure 4

Comparison of DMSO and AZA treatments in hFOB1.19, U2OS, and MG63 cell lines.

- **DMSO**
- **AZA**

hFOB1.19

U2OS

MG63