International Journal of Biological Sciences

Impact factor
3.873

ISSN 1449-2288

News feeds of IJBS published articles
My Manuscript
My Account

Journal of Biomedicinenew

Theranostics

International Journal of Medical Sciences

Journal of Cancer

Oncomedicine

Journal of Genomics

Journal of Bone and Joint Infection (JBJI)

Nanotheranostics

PubMed Central Indexed in Journal Impact Factor

Int J Biol Sci 2018; 14(1):1-9. doi:10.7150/ijbs.23165

Research Paper

Vital Roles of β-catenin in Trans-differentiation of Chondrocytes to Bone Cells

Yan Jing1✉#, Junjun Jing3#, Ke Wang2, Kevin Chan2, Stephen E. Harris4, Robert J. Hinton2, Jian Q. Feng2✉

1. Department of Orthodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
2. Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
3. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China, 610041.
4. Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
# Both authors contribute equally to this work.

Abstract

A recent breakthrough showing that direct trans-differentiation of chondrocytes into bone cells commonly occurs during endochondral bone formation in the growth plate, articular cartilage, and mandibular condylar cartilage suggests that chondrogenesis and osteogenesis are likely one continuous biological process instead of two separate processes. Yet, gene regulation of this cell transformation is largely unclear. Here, we employed cartilage-specific β-catenin loss-of-function (β-catenin fx/fx) and gain-of-function (β-catenin fx(exon3)/ fx(exon3)) models in the R26RTomato background (for better tracing the cell fate of chondrocytes) to study the role of β-catenin in cell trans-differentiation. Using histological, immunohistochemical, and radiological methods combined with cell lineage tracing techniques, we showed that deletion of β-catenin by either Acan-CreERT2 or Col10a1-Cre resulted in greatly reduced cell trans-differentiation with a significant decrease in subchondral bone volume during mandibular condylar growth. Molecular studies demonstrated severe defects in cell proliferation and differentiation in both chondrocytes and bone cells. The gain of function studies (constitutive activation of β-catenin with Acan-CreERT2 at ages of postnatal day 7, 4-weeks and 6-months) led to more bone cell trans-differentiation of chondrocytes in the mandibular condyle due to increased proliferation and accelerated chondrocyte differentiation with incipient osteogenic changes within the cartilage matrix, resulting in an increased volume of poorly-formed immature subchondral bone. These results support the notion that chondrogenesis and osteogenesis are one continuous process, in which β-catenin signaling plays an essential role in the cell trans-differentiation of chondrocytes into bone cells during mandibular condylar development and growth.

Keywords: chondrocyte, osteoblast, cartilage, cell signaling, growth/development

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
How to cite this article:
Jing Y, Jing J, Wang K, Chan K, Harris SE, Hinton RJ, Feng JQ. Vital Roles of β-catenin in Trans-differentiation of Chondrocytes to Bone Cells. Int J Biol Sci 2018; 14(1):1-9. doi:10.7150/ijbs.23165. Available from http://www.ijbs.com/v14p0001.htm