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Abstract 

Hormone-binding protein (HBP) is a kind of soluble carrier protein and can selectively and 
non-covalently interact with hormone. HBP plays an important role in life growth, but its function is 
still unclear. Correct recognition of HBPs is the first step to further study their function and 
understand their biological process. However, it is difficult to correctly recognize HBPs from more 
and more proteins through traditional biochemical experiments because of high experimental cost 
and long experimental period. To overcome these disadvantages, we designed a computational 
method for identifying HBPs accurately in the study. At first, we collected HBP data from UniProt to 
establish a high-quality benchmark dataset. Based on the dataset, the dipeptide composition was 
extracted from HBP residue sequences. In order to find out the optimal features to provide key 
clues for HBP identification, the analysis of various (ANOVA) was performed for feature ranking. 
The optimal features were selected through the incremental feature selection strategy. 
Subsequently, the features were inputted into support vector machine (SVM) for prediction model 
construction. Jackknife cross-validation results showed that 88.6% HBPs and 81.3% non-HBPs were 
correctly recognized, suggesting that our proposed model was powerful. This study provides a new 
strategy to identify HBPs. Moreover, based on the proposed model, we established a webserver 
called HBPred, which could be freely accessed at http://lin-group.cn/server/HBPred. 
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Introduction 
Hormone-binding proteins (HBPs) are proteins 

that selectively and non-covalently bind to hormone 
(as shown in Figure 1) and carry hormone to target 
tissues to produce a desired effect [1]. HBPs were first 
recognized in plasma of pregnant mouse, rabbit and 
man a decade ago. They are associated with the 
regulation of the hormone supply in the circulatory 
system and affect the metabolism or behavior of other 
cells possessing functional receptors for the hormone. 
The sex HBPs produced mainly in the liver bind to sex 
steroid hormones and thereby regulate their 
bioavailability [2]. The abnormal expression of HBPs 
always causes various diseases[3]. Thus, it is 
important to clarify the function of HBPs and their 
regulation mechanisms. 

 

 
Figure 1. Schematic diagram of human growth hormone (red) binding to two 
HBPs (yellow) [4] 
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The first step to study HBPs’ function is to 
accurately identify HBPs. However, with more and 
more proteins generated in the postgenomic age, it is 
difficult to determine HBPs with biochemical 
experiments due to expensive experimental materials 
and long experimental period. Computational 
methods are a good choice for timely and accurately 
identifying HBPs. Several machine learning methods, 
such as support vector machine (SVM), Mahalanobis 
discriminant (MD), increment of diversity (ID), neural 
network (NN) and random forest (RF), have been 
widely used in immunoglobulin prediction [5], 
apolipoprotein prediction [6], cell-penetrating 
peptides prediction [7], protein subcellular 
localization [8-14], conotoxin classification [15-17], ion 
channel prediction [18, 19], protein structure 
prediction [20-25], promoter prediction [26, 27], 
prediction of the origin of replication [28, 29] and the 
prediction of protein, DNA and RNA modification 
sites [30-33]. These methods do provide a great 
convenience to scholars. However, to the best of our 
knowledge, there is no computational method for 
HBP identification. The study aims to develop a new 
predictor for identifying HBPs. 

According to previous comprehensive methods 
[34], the following five steps were conducted in this 
work to establish a statistical predictor for HBP 
identification. Firstly, functional HBPs were selected 
to construct a valid benchmark dataset to train and 
test the proposed method. Secondly, dipeptide 
composition which could truly reflect the residue 
correlation was extracted to formulate the protein 
samples. Thirdly, analysis of various (ANOVA)-based 
technique was used to rank these features. Fourthly, a 
widely used engine in bioinformatics, support vector 
machine, was selected to perform the prediction. 
Fifthly, the jackknife cross-validation was then used 
to objectively evaluate the anticipated accuracy of the 
predictor. In addition, based on the proposed model, 
we established a user-friendly web-server called 
HBPred for the identification of HBPs. These steps are 
introduced below. 

Materials and Methods 
Benchmark Dataset 

In a statistical predictor, enough related 
functional data should be collected to obtain prior 
knowledge. Thus, it is important to construct an 
objective benchmark dataset to guarantee the 
robustness of the model. However, to our knowledge, 
no database for HBP was published. Thus, we 
searched and collected HBPs from the Universal 
Protein Resource (UniProt) [35], which provide a 
stable, comprehensive, and freely accessible central 

resource of protein sequences and functional 
annotations. Firstly, we selected the hormone-binding 
keyword in molecular function item of Gene 
Ontology (GO) to generate original HBP dataset. 
Then, a total of 2460 HBPs were obtained. 
Subsequently, in order to improve the reliability of the 
dataset, the 2104 HBPs which were not manually 
annotated or reviewed were excluded. Finally, in 
order to avoid the redundancy which affected the 
accuracy estimation of the prediction model, we used 
CD-HIT [36], which had been widely used to cluster 
and compare protein or nucleotide sequences, to 
remove highly similar HBP sequences by setting the 
cutoff threshold to 0.6. In fact, a more objective dataset 
could be produced when the cutoff threshold was set 
to 0.25. However, in this study, we did not use such a 
stringent criterion because the currently available 
data did not allow the strict criterion. Otherwise, the 
number of proteins would be too few to have 
statistical significance. As a result, a total of 123 HBPs 
were obtained and regarded as positive data. As a 
control, non-HBPs were obtained by using the similar 
selection strategy. For the purpose of keeping a 
balance between positive data and negative data and 
providing an objective evaluation model, 123 
non-HBPs were randomly selected from UniProt as 
negative data. The identity between any two 
sequences in non-HBPs was also less than 60%. The 
positive and negative datasets can be formulated as 

𝐃𝐃 = 𝐃𝐃P ⋃𝐃𝐃N ,     (1) 

where the subset 𝐃𝐃P  contains 123 HBPs; 𝐃𝐃N 
contains 123 samples of non-HBPs; the symbol ⋃ 
represents the union in the set theory. All the data can 
be obtained from our website http://lin-group.cn/ 
server/HBPred/download.html. 

Sample descriptions 
For a HBP P with L residues, how do we 

translate it into a mathematical expression for 
statistical prediction? This is the second important 
step to develop a predictor for identifying HBP. Based 
on a widely accepted viewpoint that the protein 
sequence contains key information which could 
determine the protein’s structure and function, we 
extracted the features from the primary sequence of 
HBPs and non-HBPs. The most straightforward 
method is to formulate a HBP P with L residues by 
using the residue sequence as: 

P=R1 R2 R3 R4 … RL,     (2) 

where R1 represents the 1st residue of the HBP; 
R2 the 2nd residue of the protein, and so forth. 

A straightforward method to perform statistical 
prediction is to utilize the search tools based on 
sequence similarity, such as FASTA and BLAST. 
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However, when there is no similar sequence in the 
training dataset for a query HBP, the similarity-based 
method fails. Machine learning methods can 
overcome such disadvantage. However, in these 
machine learning-based methods, protein samples 
should be translated into vectors with the same 
dimension. Generally, a simple vector used to 
represent a protein sample is its amino acid 
composition (AAC) or residue composition: 

𝐏𝐏 = [𝑓𝑓1, 𝑓𝑓2,⋯ , 𝑓𝑓𝑖𝑖 ,⋯ , 𝑓𝑓20]𝐓𝐓,   (3) 

where T is the transpose operator; 𝑓𝑓𝑖𝑖(𝑖𝑖 =
1, 2,⋯ ,20) is the normalized occurrence frequency of 
the i-th type of native residue in the protein chain and 
can be calculated as 

𝑓𝑓𝑖𝑖 = 𝑛𝑛(R𝑖𝑖)
∑ 𝑛𝑛(R𝑖𝑖)
20
𝑖𝑖=1

= 𝑛𝑛(R𝑖𝑖)
𝐿𝐿

;     (4) 

where 𝑛𝑛(R𝑖𝑖)  is the occurrence number of i-th 
residue in the protein P. 

The AAC feature has been widely used in 
protein bioinformatics [12, 37-39]. However, AAC 
feature does not contain the sequence order 
information so that the prediction quality is always 
far from satisfactory. To include the correlation 
information between two residues, we consider the 
dipeptide composition which describes the 
correlation between two most contiguous amino acid 
residues. Thus, a HBP P can be expressed as a 
400-dimensional vector (20×20=400): 

𝐏𝐏 = �𝜑𝜑1,𝜑𝜑2,⋯ ,𝜑𝜑𝑗𝑗 ,⋯ ,𝜑𝜑400�
𝐓𝐓

,    (5) 

where the component 𝜑𝜑𝑗𝑗(𝑗𝑗 = 1, 2,⋯ ,400) and T 
is the transpose operator. Each component is given by 
 

𝜑𝜑𝑗𝑗 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝜑𝜑1 = 𝑚𝑚(AA)

𝐿𝐿−1
 when 𝑗𝑗 = 1 

𝜑𝜑2 = 𝑚𝑚(AC)
𝐿𝐿−1

 when 𝑗𝑗 = 2 
⋮  ⋮ 

𝜑𝜑20 = 𝑚𝑚(AY)
𝐿𝐿−1

 when 𝑗𝑗 = 20 

𝜑𝜑21 = 𝑚𝑚(CA)
𝐿𝐿−1

 when 𝑗𝑗 = 21 
⋮  ⋮ 

𝜑𝜑399 = 𝑚𝑚(YW)
𝐿𝐿−1

 when 𝑗𝑗 = 399

𝜑𝜑400 = 𝑚𝑚(YY)
𝐿𝐿−1

 when 𝑗𝑗 = 400

 , (6) 

where A, C, …, W, and Y are respectively the 
single letter codes of 20 native amino acids; 𝑚𝑚(AA) is 
the occurrence number for the dipeptide AA in the 
protein sequence (Eq. (2)); 𝑚𝑚(AC)  for the dipeptide 
AC, and so forth. 

Feature ranking technique 
From Eqs. (5-6), a total of 400 dipeptide 

frequencies were calculated. In previous studies 

[40-46], some features were noise or redundant 
information. In fact, in statistical learning, for 
high-dimensional features, it is widely accepted that 
many features have no or even negative contribution 
to the classification. Thus, it is necessary to rank the 
features and evaluate the contribution of every feature 
to the classification. According to the statistical 
theory, ANOVA can be used to investigate the 
statistical significance of ratio of between groups 
variance and within groups variance [47]. Thus, the 
ratio called F-score is used to describe the contribution 
of each feature as: 

𝐹𝐹(𝑘𝑘) =
𝐃𝐃P×�𝜑𝜑𝑘𝑘

P����−𝜑𝜑��
2
+𝐃𝐃N×�𝜑𝜑𝑘𝑘

N�����−𝜑𝜑��
2

�∑ �𝜑𝜑𝑖𝑖
P−𝜑𝜑P�����

2𝐃𝐃P
𝑖𝑖=1 +∑ �𝜑𝜑𝑖𝑖

N−𝜑𝜑N������
2𝐃𝐃N

𝑖𝑖=1 �× 1
(𝐃𝐃P+𝐃𝐃N−2)

,  (7) 

where 𝜑𝜑� , 𝜑𝜑𝑘𝑘P����, and 𝜑𝜑𝑘𝑘N���� are the means of dipeptide 
k frequencies in all samples, HBP samples and 
non-HBP samples, respectively. Thus, the numerator 
and denominator in Eq. (7) denote the variances 
between groups and within groups, respectively. It is 
obvious that the larger the F(k) is, the better prediction 
capability the feature k has. Thus, the 400 dipeptides 
can be ranked according to their F-scores. 

Support vector machine (SVM) 
In the construction of a predictor of HBPs, the 

third important step is to discriminate HBPs from 
non-HBPs with a powerful predictive algorithm. The 
powerful and popular SVM in bioinformatics [48-56] 
was utilized in the study. The method was developed 
by Vapnik and his colleagues based on the statistical 
learning theory [57]. By projecting samples with 
low-dimensional feature into a high-dimension 
Hilbert space, it searches and constructs a separating 
hyperplane which could classify positive and 
negative samples with the maximal margin in the 
space by using the decision function: 

𝑓𝑓(𝑥⃗𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠[∑ 𝑦𝑦𝑖𝑖𝛼𝛼𝑖𝑖 ∙ 𝐾𝐾(𝑥⃗𝑥,𝑥⃗𝑥𝑖𝑖) + 𝑏𝑏𝑁𝑁
𝑖𝑖=1 ] ,  (8) 

where 𝑥⃗𝑥 is the i-th training vector; 𝑦𝑦𝑖𝑖 represents 
the type of the i-th training vector; 𝐾𝐾(𝑥⃗𝑥,𝑥⃗𝑥𝑖𝑖) is called a 
kernel function which defines an inner product in a 
high dimensional feature space. The radial basis 
kernel function (RBF) defined as 𝐾𝐾(𝑥⃗𝑥,𝑥⃗𝑥𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒 �−𝛾𝛾�𝑥⃗𝑥𝑖𝑖−𝑥⃗𝑥𝑗𝑗�

2� was used in the work because it 
was more suitable for nonlinear classification than 
other kernel functions. A free software package 
LibSVM, which could be freely downloaded from 
http://www.csie.ntu.edu.tw/~cjlin/libsvm [58], was 
used to implement the SVM. Grid search was 
performed with a miscellaneous tool based on 
LIBSVM called grid.py for optimizing the 
regularization parameter C and kernel parameter 𝛾𝛾. 
The search spaces for C and 𝛾𝛾 are: 
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� 2−5 ≤ 𝐶𝐶 ≤ 215 with step ∆𝐶𝐶 = 2 
2−15 ≤ 𝛾𝛾 ≤ 2−5 with step ∆𝛾𝛾 = 2−1

 ,  (9) 

where ∆𝐶𝐶 and ∆𝛾𝛾 denote the step gaps for C and 
𝛾𝛾, respectively. 

Performance Evaluation 
A suitable statistical test is extremely important 

in the performance evaluation of the proposed model. 
In the study, the jackknife cross-validation test is used 
to evaluate the proposed model because it is more 
suitable for small sample sizes and always yields a 
unique result for a given benchmark dataset [59-62]. 
The following three indexes called Sensitivity (Sn), 
Specificity (Sp) and Overall Accuracy (OA) were used:  

⎩
⎪
⎨

⎪
⎧ 𝑆𝑆𝑆𝑆 = 𝐃𝐃P

+

𝐃𝐃P
 

𝑆𝑆𝑆𝑆 = 𝐃𝐃N
−

𝐃𝐃N
 

𝑂𝑂𝑂𝑂 = 𝐃𝐃P
++𝐃𝐃N

−

𝐃𝐃P+𝐃𝐃N

  (10) 

where 𝐃𝐃P
+ and 𝐃𝐃N

− are the number of the correctly 
identified HBPs (also called true positives) and the 
number of the correctly identified non-HBPs (also 
called true negatives), respectively.  

Results 
Prediction Performance 

We firstly investigated the prediction 
performance of 400 dipeptide compositions on the 
discrimination between HBPs and non-HBPs through 
the jackknife cross-validation test. We found that the 
overall accuracy reached maximum (75.6%) when C=2 
and 𝛾𝛾 = 0.03125. 

Generally, high-dimensional features contain 
more information for HBPs. However, these features 
also contain noise or redundant information, which 
results in the poor predictive capabilities on HBP 
prediction in the cross-validation test [11]. We 
thought that the HBP prediction accuracy could be 
further improved by noise exclusion. Therefore, we 
used ANOVA-based feature selection technique to 
find out the best feature subset which produced the 
maximum accuracy for distinguishing HBPs from 
non-HBPs. The F-scores of 400 dipeptides were 
calculated according to Eq. (7). Then, we ranked the 
400 dipeptides according to the decreasing order of 
their F-scores: 

𝐃𝐃 = [𝐷𝐷1,𝐷𝐷2,⋯ ,𝐷𝐷𝐷𝐷,⋯ ,𝐷𝐷400]𝐓𝐓 , (11) 

where the 𝐷𝐷1  is the first dipeptide with the 
maximum F-score; 𝐷𝐷2 is the second dipeptide with 
the second maximum F-score; 𝐷𝐷3  is the third 
dipeptide with the third maximum F-score and so 
forth; T is the transpose operator. 

 

 
Figure 2. IFS curve for discriminating HBPs from non-HBPs. When the top 73 
dipeptides were used to perform prediction, the overall success rate (Red dot) 
reaches an IFS peak of 84.9% in jackknife cross-validation. Another IFS peak 
(Blue dot) is observed when the abscissa is 86 (namely, 86 features). The green 
dot denotes the results obtained with 20 features. 

 
Subsequently, we utilized the incremental 

feature selection (IFS) strategy [5, 18, 19] to find out 
the optimal features which are the best for HBP 
prediction based on the following steps. Firstly, we 
obtained 400 feature subsets. The first feature subset 
only contained the first dipeptide in the ranked set D 
and arbitrary sample can be formulated as 𝐏𝐏 = [𝜓𝜓𝐷𝐷1]𝐓𝐓. 
The second feature subset contains the first and 
second dipeptides in the ranked set and arbitrary 
sample can be formulated as 𝐏𝐏 = [𝜓𝜓𝐷𝐷1,𝜓𝜓𝐷𝐷2]𝐓𝐓, and so 
on. It is obvious that the 400th feature subset contains 
400 dipeptides whose accuracy has been achieved 
above. Secondly, all the 400 feature subsets were 
inputted into SVM for classification. The jackknife 
cross-validation test was used to evaluate all 400 
models. A total of 400 OAs were obtained. The 
maximum OA can be easily observed by plotting the 
ISF curve in Figure 2. When the top 73 dipeptides 
were used as inputs, the maximum OA of 84.9% could 
be obtained. We also noticed that the 86th feature 
subset could also produce the OA of 84.9% in the 
jackknife cross-validation test (Blue dot in Figure 2). 
Here, we used the 73th feature subset to construct the 
final prediction model because it contained fewer 
features than the 86th feature subset. These 73 
dipeptides had the higher F-scores, meaning that they 
had the high confidence level and could give more 
reliable information for classification. In addition, we 
investigated the Sn and Sp, which were 88.6% and 
81.3%, respectively. The parameters C and 𝛾𝛾 were 8 
and 0.03125, respectively. 

In general, the dipeptides with high F-score give 
more reliable information for classification. Thus, we 
extracted the top 20 dipeptides with the maximum 
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F-score to investigate their performance on HBP 
prediction. The OA reached 80.1% in jackknife 
cross-validation test (Green dot in Figure 2). 
However, the number of features is too small to 
provide enough information, thus resulting in the 
poor performance of 20 best dipeptides compared 
with 73 best dipeptides. 

Feature analysis 
To provide a visible and direct analysis on the 

contributions of different dipeptides in the prediction 
model, we drew a heat map (Figure 3) representing a 
matrix in which the elements represented the features 
and were encoded with different colors according to 
their 𝐹𝐹0(𝑥𝑥) defined as [6, 47] 

𝐹𝐹0(𝑘𝑘) = 𝐹𝐹(𝑘𝑘)−𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚−𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

× 𝐬𝐬𝐬𝐬𝐬𝐬(𝜑𝜑𝑘𝑘P���� − 𝜑𝜑𝑘𝑘N����), (12) 

where Fmin and Fmax are the minimum and 
maximum F-scores of the 400 dipeptides; 𝜑𝜑𝑘𝑘P���� and 𝜑𝜑𝑘𝑘N���� 
are the average frequencies of the kth dipeptide in HBP 
dataset and non-HBP dataset, respectively; sgn is the 
sign function. Thus, the upper limit and lower limit of 
𝐹𝐹0(𝑥𝑥) are 1 and -1, respectively. The first and second 
residues of 400 dipeptides are respectively listed in 
the row and column of the heat map. It is obvious that 
if 𝐹𝐹0(𝑘𝑘) > 0, the kth dipeptide prefers HBP, otherwise 
it prefers non-HBP. In Figure 3, the dipeptides in red 
and blue boxes are positively and negatively 
correlated with HBPs, respectively. The redder the 
element is, the more highly relevant with HBPs it is, 
and vice versa. From the figure, we found that HBPs 
contained the more abundant residues of Cys (C), His 
(H), Lys (K), Thr (T), Asn (N) and Arg (R) (red) than 
non-HBPs, whereas non-HBPs contained the more 
abundant residues of Leu (L), Phe (F), Trp (W), and 
Tyr (Y) (blue). 

 

 
Figure 3. Heat map or chromaticity diagram for the F-scores of the 400 
dipeptides. Red elements indicate the dipeptides enriched in HBPs, whereas 
blue elements indicate the dipeptides enriched in non-HBPs. 

Discussion 
The purpose of the work is to develop a 

powerful tool to accurately recognize HBPs. 
Currently, the approaches for protein function 
prediction mainly contain two kinds of strategies. The 
one is based on similarity search. Another is on the 
basis of machine learning method. In the first strategy, 
the query sequence is aligned with the sequences in 
benchmark dataset to find out highly similar 
sequences or homologues. Some famous tools such as 
BLAST and FASTA are generally used to perform the 
sequence alignment. Their advantage is not affected 
by sequence length. Although this kind of sequence 
model is straightforward and intuitive, unfortunately, 
it fails when a query sequence does not have 
significant similarity to any of the peptide sequences 
in the training dataset. 

The machine learning-based method can 
overcome the disadvantage by transferring any 
sequence into a vector with the same dimension. 
Many feature models, such as amino acid composition 
(AAC) [37], n-mer peptide composition [8, 50, 63, 64], 
g-gap dipeptide composition [6, 12, 47], and pseudo 
amino acid composition (PseAAC) [5, 9, 10, 43, 65, 66], 
have been proposed to formulate protein sequences. 
For the purpose of improving protein function 
prediction, some scholars used Position-Specific 
Scoring Matrix (PSSM) [3, 67-71] and gene ontology 
(GO) [72-74] to describe protein samples. Although 
PSSM and GO always produced the high accuracy for 
protein classification, formulating protein samples 
with the methods generally led to significant flaws. 
PSSM is generated with the software PSI-BLAST [75], 
a similarity search tool. Therefore, it is necessary to 
search for a query protein in a big dataset (usually 
UniProt or SwissProt) by using PSI-BLAST. In most 
cases, the big dataset contains the query protein. Thus, 
the cross-validated results with machine learning 
method are not objective or strict. If the dataset did 
not contain the query sequence, but there was similar 
sequence in the dataset, we accepted the 
cross-validated results. However, it is 
time-consuming and not necessary to input PSSM into 
classifier because the BLAST or FASTA can give more 
accurate and straightforward results. Furthermore, if 
the dataset did not contain query sequence or similar 
sequence, the PSSM could not correctly reflect the 
consensus motif, thus resulting in wrong prediction. 

We also thought that GO information was not 
suitable for the HBP prediction due to the following 
factors. The GO is designed to describe gene function 
along three aspects: molecular functions (molecular 
activities of gene products), cellular components 
(where gene products are active) and biological 
processes (pathways and processes of the activities of 
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multiple gene products). The computational 
approaches of identifying protein type aim to 
determine protein functions. In other words, our 
computational approaches should be able to predict 
the GO information of proteins. If the GO information 
of one protein or its homologues has been annotated, 
it is not necessary to predict the function of the 
protein. Thus, using GO information to predict 
protein function likes putting the cart before the 
horse. Besides, the dimension of GO information can 
increase when new GO node is added. Thus, any old 
GO-based model cannot handle such feature. 
Therefore, the two features are not adopted in our 
model. In fact, the sequence information is the most 
objective feature in sample descriptions, which also 
obey the theoretical biology route (also called reverse 
biology route) that sequence determines structure, 
and structure determines function. 

To provide the convenience for the most of 
wet-experimental users, a user-friendly web-server 
called HBPred was established based on above 
calculations. The web server can be freely accessed at 
http://lin-group.cn/server/HBPred. The prediction 
page is shown in Figure 4. One may firstly upload a 
sequence file or paste protein sequences in the FASTA 
format into the input box. Then, after clicking the 
button of “submit”, the predicted results will be 
obtained. 

Conclusion  
We constructed an effective predictor to identify 

HBPs. Encouraging accuracy was achieved. We also 

discussed why PSSM or GO information was not 
suitable for HBP prediction. A free webserver could 
provide convenience to most of wet-experimental 
scholars [76-80]. Thus, finally, we established a new 
tool, called HBPred, to accurately predict potential 
novel HBPs. We expect that the tool will help scholars 
to improve drug development in relevant diseases. In 
the future, we will perform the prediction on the 
subtypes of HBPs. 
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