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Abstract 

Self-interacting proteins (SIPs) play a significant role in the execution of most important molecular 
processes in cells, such as signal transduction, gene expression regulation, immune response and 
enzyme activation. Although the traditional experimental methods can be used to generate SIPs 
data, it is very expensive and time-consuming based only on biological technique. Therefore, it is 
important and urgent to develop an efficient computational method for SIPs detection. In this study, 
we present a novel SIPs identification method based on machine learning technology by combing the 
Zernike Moments (ZMs) descriptor on Position Specific Scoring Matrix (PSSM) with Probabilistic 
Classification Vector Machines (PCVM) and Stacked Sparse Auto-Encoder (SSAE). More specifically, 
an efficient feature extraction technique called ZMs is firstly utilized to generate feature vectors on 
Position Specific Scoring Matrix (PSSM); Then, Deep neural network is employed for reducing the 
feature dimensions and noise; Finally, the Probabilistic Classification Vector Machine is used to 
execute the classification. The prediction performance of the proposed method is evaluated on 
S.erevisiae and Human SIPs datasets via cross-validation. The experimental results indicate that the 
proposed method can achieve good accuracies of 92.55% and 97.47%, respectively. To further 
evaluate the advantage of our scheme for SIPs prediction, we also compared the PCVM classifier 
with the Support Vector Machine (SVM) and other existing techniques on the same data sets. 
Comparison results reveal that the proposed strategy is outperforms other methods and could be 
a used tool for identifying SIPs. 

Key words: Deep learning; Zernike Moments; Probabilistic Classification Vector Machines 

Introduction 
As a manifestation of life, proteins do not exist in 

isolation, but by interacting with each other, they 
complete most of the cellular functions. SIPs 
(Self-interacting proteins) are usually considered a 
particular case of protein interactions [1]. SIPs have 
the same arrangement of amino acids. This leads to 
the formation of homodimer. Research have shown 
that SIPs play a more vital role in the evolution of 
cellular function and protein interaction networks. 
Understanding whether proteins can react with 

themselves is sometimes crucial for clarifying the 
function of proteins, having an insight into the 
regulation function of protein and predicting and 
preventing disease. The homo-oligomerization have 
proven to play a significant role in the wide-ranging 
biological processes, for instance, immunological 
reaction, signal transduction, activation of enzyme, 
and regulation of gene expression. Ispolatov et al. 
point out that SIPs hold an important place in the 
protein interaction networks (PINs), which 
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demonstrated that self-interaction of protein is an 
important factor in protein functions rule and have 
great potentials to interact with other proteins [2]. 
Many studies have shown that the diversity of 
proteins can be extended by SIPs without growing 
genome size. SIPs have an ability to improve the 
stability of protein and avoid the denaturation of 
proteins and reduce its superficial area. As a result, 
there is a strong requirement to develop an effective 
and reliable method of machine learning for detecting 
SIPs.  

In recent years, some method based on 
computational technology have been proposed for 
protein interaction prediction. For example, Zaki et al. 
[3] developed an efficient and simple to predict PPIs 
based on similarity theory by using structural 
property. Zhou et al. [4] designed a way for predicting 
PPIs named as CCPPI which used Support Vector 
Machine model based on frequency difference of 
codon pair. You et al. [5] designed a prediction model 
to detect PPIs uses only proteins sequence 
information. Zahiri et al. [6] put a feature extraction 
algorithm based on evolutionary characteristics using 
the evolutionary feature of protein. Shi et al. [7] 
presented a method that combined SVM with CC 
(Correlation Coefficient) transformation. These 
methods usually consider certain information about 
protein pairs, for instance, colocalization, 
coexpression and coevolution. Yet, that information is 
not applicable to the treatment of SIPs. Nevertheless, 
such feature is not applicable to deal with SIPs 
problems. Besides, the PPIs data sets adopted in 
above approaches do not cover SIPs. For these 
reasons, above computational methods unsuited for 
SIPs prediction. Therefore, it is an imperative task to 
design an efficient and reliable method to predict SIPs 
[8-14]. 

In this study, a novel machine learning 
technique is proposed for detecting SIPs from protein 
sequence., consisting of a new feature extraction 
scheme combined with a PCVM classifier. More 
specific, each protein sequence transformed into 
Position Specific Scoring Matrix (PSSM), which 
contains the evolutionary information about proteins. 
Then, a novel feature extractor named as Zernike 
Moments (ZMs) is used to obtain 1260-dimensional 
feature vector from PSSM. The last step of the feature 
extraction scheme is to use Stacked Sparse 
Auto-Encoder (SSAE) to eliminate noise and reduce 
the feature dimension. At last, the PCVM model is 
employed to finish classification. The method we 
proposed was performed on S.erevisiae and Human 
SIPs data sets, the accuracies of 92.55% and 97.47% 
shown that our method achieves satisfactory results. 
For further demonstrate the advantage of this 

technique that is compared with other methods that 
have combined our feature extraction strategy with 
SVM, other (named as SLIPPER, CRS, SPAR 
DXECPPI, PPIevo and LocFuse). The validations and 
comparisons illustration that our method is superior 
to the previous proposed methods. These 
experimental results clearly show that this model 
provides high accuracy, good flexibility and strong 
stability [15-20]. 

Dataset 
The UniProt database provides 20,199 Human 

sequence proteins for download [21]. The data come 
from a variety of resources, including from a variety 
of resources, including BioGRID, DIP, MatrixDB, 
InnateDB and IntAct [22-26]. In this study, we 
extracted interacting protein data containing only 
SIPs whose interaction type is ‘’direct interaction’’ in 
the databas. As a result, we obtained 2,994 Human 
proteins sequences that having self-interacting in this 
experience. In order to ensure reliable experiments, 
the choice of experimental data is strictly followed by 
the following three steps: (1) The protein sequence 
with below 50 and above 5000 residues was detached 
from the entire Human protein; (2) The selection of 
protein data for positive self-interaction must match 
one of the following conditions: (a) At least two mass 
experiments or one small scale experiment have 
shown that this protein sequence can interact with 
itself; (b) the protein must be homooligomer in 
UniProt; (c) the self-interaction of this protein have 
been reported by more than one publication; (3) For 
the sake of establish negative data set, all known SIPs 
were deleted from the whole Human proteome. 

As a result, we selected 17,379 protein pairs to 
establish a Human SIPs dataset, in which the number 
of negative SIPs and positive SIPs were 15,938 and 
1,441, respectively. In addition, the effectiveness of the 
proposed method is further evaluated on S.erevisiae 
dataset, which contain 5,511 negative non-SIPs and 
710 confident SIPs by use of the same strategy. 

Method  
Position Specific Scoring Matrix 

The Position Specific Scoring Matrix (PSSM) was 
always adopted for obtaining evolutionary and 
conservative information about proteins. A PSSM can 
used to predict folding patterns of protein, RNA 
binding sites and protein structural classes [27-29]. In 
this work, the PSSM was adopted for predicting SIPs. 
A PSSM is an T╳20 matrix P={tij: i=1… T  and 
j=1…20} for a given amino acid sequence, where the T 
represents the size of the protein sequence and the 
number of columns of T matrix denotes 20 amino 
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acids. The score Tij is expressed as Tij=∑20 
k=1c(a, k)╳v(b, 

k), where (a, k) is the probability that the kth amino 
acid appears at position a, and (b, k) is a matrix whose 
elements represent the mutation value between two 
different amino acids. Thus, high scores represent a 
conservative position; conversely, low scores mean a 
weak conservative position [30]. The PSI-BLAST 
(Position specific iterated BLAST) was employed for 
creating PSSMs, for obtaining highly and broadly 
homologous sequences, the e-parameter of PSI-BLAST 
was set as 0.13, and we perform 3 iterations.  

Zernike moments 
 The ZMs are frequently utilized for many image 

processing and computer vision tasks. Because it has 
the power to extract information from different 
depths. In this work, the ZMs was used for extracting 
key information on PSSM of a protein [31,32]. 

 A set of complex polynomials is introduced by 
Zernike, which is a complete orthogonal set over the 
within of the unit circle, the set of these polynomials is 
represented as {𝑉𝑉𝑛𝑛𝑛𝑛(𝑥𝑥, 𝑦𝑦)}, which has the following 
form: 

Vuv(x, y)= Vuv(ρ, θ) =Ruv(ρ)ejvθ for ρ≤1                 (1) 

where u is zero or positive integer, v is negative and 
positive integer, and it satisfies |v| ＜ u, where u - 
|v| is an even number.  𝜃𝜃  is angle that vector 𝜌𝜌 
deviated counterclockwise from the X axis, 𝜌𝜌 is the 
length from (0, 0) to the pixel (x, y). 𝑅𝑅𝑢𝑢𝑢𝑢(𝜌𝜌) is 
represented as: 

Ruv(ρ) = ∑(u-|v|/2) 
s=0 (-1)s (u - 

s)!/(s!(((u+|v|)/2)-s)!(((u-|v|)/2)-s)!) ρu-2s   (2)             

Note that Ru,-v(ρ)= Ruv(ρ). These polynomials are 
orthogonal and satisfy: 

                   ∫2π 
0 ∫1 

0 V * 
uv(ρ,θ)Vpq(ρ,θ)ρdρdθ=π/n+δuρδvρ  (3)              

with 

𝛿𝛿𝑎𝑎𝑎𝑎 = �1 
0          𝑎𝑎=𝑎𝑎

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                              (4) 

ZMs of order u with repetition v are finally 
defined as 

  Auv=(u+1/π) ∫2π 
0 ∫1 

0 f (ρ,θ)V * 
uv(ρ,θ) ρdρdθ                 (5) 

where f (ρ, θ) represents the image function. As we 
can see (5), the method for producing ZMs is calculate 
inner product between the Zernike basis function and 
the image function [33,34]. The ZMs of a digital image 
was computed by the summations. The digital image 
must be mapped in a unit circle. Figure 1 shows a 
wide-ranging case of the mapping transform. As 
Figure 1, Points that fall outside the circle are not used 
for calculation of the Zernike moments. Accordingly, 

the form of the ZMs of a digital image is expressed as 
follows:  

 Auv=(u+1/π) ∑(ρ,θ)∈unit circle∑f (ρ,θ)V * 
uv(ρ,θ)               (6) 

We use the ZMs information to design a novel 
feature descriptor. Let the ZMs be sorted by u and v in 
order. According to ZMs theory, the greater the value 
of U and V, the more information we get, because the 
lower-order moments extract gross information and 
the higher-order moments capture high details 
information. In this work, the maximum order U and 
maximum repetition V are set to 70. Hence, the 1,260 
features of protein can be obtained by utilizing the 
ZMs. The sorted ZMs form feature vector 𝐹𝐹�⃗ as 
follows: 𝐹𝐹�⃗ =[|A11|,|A11|,… …, |AUV|]T, where |Auv| is the 
absolute value of Zernike moments. The zeroth order 
moments are not computed because they do not 
contain any valuable information and ZMs without 
considering m<0, since they are inferred through An, -m 

= A* 
nm [22]. 

Stacked Sparse Auto-Encoder  
 Deep learning is a significant concept in the 

machine learning theory at present. It is the focus of 
academic and industrial research. The Stacked Sparse 
Auto-Encoder (SSAE) is multilayer neural networks, 
which achieves the approximation of nonlinear 
function, and has the strong ability to extract the 
intrinsic features of training data. In this paper, the 
SSAE is adopted for feature reduction by data 
reconstruction. 

The outputs of the current layer neuron of SSAE 
are fed to the connectivity layer neuron. The aim of 
SSAE is to learn a distinctive representation for 
Zernike moments feature, typically for the purpose of 
noise elimination and dimensionality reduction. The 
first layer is in charge of rough integration original 
input. The second layer is responsible for extracting 
and integrating the features learned earlier. Higher 
successive layers will be inclined to produce low 
dimensional, low noise, high cohesion features. In this 
work, the SSAE was used for obtaining more 
distinctive and stable representation from ZMs 
features [35-38].  

 

 
Figure 1. General case of mapping transforms. 
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In order to clearly understand the SSAE, we 
must first explain the SAE (Sparse Auto Encoder). The 
basic SAE is a three-layer neural network fully 
connected imposing sparsity on the hidden units 
during training, including the encoding part and the 
decoding part. In the coding stage, the primary data x 
is mapped onto hidden layer. This process can be 
represented as z =σ1(w1x+b1), which maps the input x
∈ɌN to z∈ɌK, K＜N, and the hidden layer z can be a 
new feature representation. These parameters (σ1, w1, 
b1) are represent a function, weight matrix and bias, 
respectively. After that the original data is 
reconstructed by the decoding function x’ 
=σ2(w2x+b2), where parameters (σ2, w2, b2) are 
represent a function, weight matrix of decoding and 
bias. The purpose of SAE is to make the output as 
close as possible to the input by a loss function L: 
θ=argmin(1/n)∑n 

i=1L(xi, yi). 
In this work, we build a SSAE with two hidden 

layers. The structure is shown in Figure 2. For 
simplicity, the decoder parts of SSAE has not shown 
in the Figure 2. Just like SAE, training SSAE is to find 
best parameter input in the case of minimizing the 
reconstructed difference. Once the optimal 
parameters θ are obtained, the SSAE yield function 
𝑅𝑅𝑑𝑑𝑥𝑥 → 𝑅𝑅𝑑𝑑ℎ(2)  that transforms original data to a low 
dimensional space [39,40]. 

 

 
Figure 2. Illustration of the architecture of SSAE. 

 

Related classification Models 
 Support vector machines (SVMs) have high 

reputation in the field of pattern recognition machine 
learning and classification. Extensive comparisons 
also have shown that SVMs obtain good 
generalization performance on various dataset. 
However, this approach has some obvious 
drawbacks: (1) The count of support vector increases 
approximately in a line with the scale of training set; 
(2) SVM do not generate probabilistic outputs; (3) 
Cross validation based kernel parameter optimization 
strategy takes up a large amount of computing 
resources. Based on Bayesian theory, RVM (relevance 
vector machine) have been developed that can solve 
these problems in SVMs. The RVMs method takes 
advantage by the zero mean Gauss a priori, partial 
training of the Bayesian inference and the prior of 
weight 𝑤𝑤𝑒𝑒  follow a zero-mean Gaussian distribution. 
However, the RVM has the potential to produce some 
unreliable vectors that lead to system error decisions. 
Because the weights of the negative class and the 
positive class are given samples that non-interacting 
might be assigned confident weights, and vice versa. 
To tackle this problem, the Probabilistic Classification 
Vector Machine (PCVM) approaches have been put 
forward that gives different priors to samples of 
different classes. the positive class is associated with 
right-truncated Gaussian and the negative class is 
associated with left-truncated Gaussian. Besides the 
high prediction accuracy, the PCVM method has the 
following advantages: (1) PCVM produces sparse 
predictive models and has better efficiency in the 
testing phase. (2) PCVM provides probabilistic results 
for each output. (3) The parameter optimization 
scheme based on Expected Maximum (EM) algorithm 
saves PCVM's efforts of grid search during training 
phase and improves the predictive performance of the 
test phase. [41-43]. 

Probabilistic Classification Vector Machine 
(PCVM) provide a sparse prediction tool proposed for 
solving the stability problem of RVM. Like most 
classification models, the goal of PCVM is to generate 
a predictive model f (x; w) by learning a set of labeled 
data {X, Y}, where X is data set, Y corresponds to the 
label of each data. The model is determined by a set of 
parameters learned and expressed as: 

 f (x; w) = ∑N 
i=1wi OI,θ (x)+b                        (11) 

here, { O1,θ (x),… … ON,θ (x)} are basis functions 
(wherein 𝜃𝜃  is the parameter of a basis function), 
parameters(wi,… …, wi ; b) are the weight of the 
prediction model. 

 For the two-classification problem, the Gaussian 
cumulative distribution function 
∀(𝑥𝑥) = ∫ 𝑁𝑁(𝑡𝑡|0,1)𝑥𝑥

−∞ 𝑑𝑑𝑡𝑡  is used to generate the final 
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results. After incorporating (11) with the∀(𝑥𝑥) , the 
model becomes: 

L (x; w, b) = ∀�∑ 𝑤𝑤𝑒𝑒∅𝑒𝑒,𝜃𝜃(𝑥𝑥) + 𝑏𝑏𝑁𝑁
𝑒𝑒=1 �= ∀(Φ𝜃𝜃(𝑋𝑋)𝑊𝑊 + 𝑏𝑏) 

(12) 

Each weight 𝑤𝑤𝑒𝑒 is assigned a prior by a truncated 
Gaussian distribution, as follow: 

𝑝𝑝(W|𝛼𝛼)= ∏ 𝑝𝑝(𝑤𝑤𝑒𝑒|𝛼𝛼𝑒𝑒) =𝑁𝑁
𝑒𝑒=1 ∏ 𝑁𝑁𝑜𝑜(𝑤𝑤𝑒𝑒|0,𝛼𝛼𝑒𝑒−1)𝑁𝑁

𝑒𝑒=1           (13) 

the bias b is assigned a zero-mean Gaussian 
prior, as follow: 

𝑝𝑝(b|𝛽𝛽) =N(b|0, 𝛽𝛽−1)                             (14) 

where the 𝑁𝑁𝑜𝑜(𝑤𝑤𝑒𝑒|0,𝛼𝛼𝑒𝑒−1)  denotes truncated 
Gaussian function, 𝛼𝛼𝑒𝑒  means the precision of the 
corresponding parameter 𝑤𝑤𝑒𝑒 , 𝛽𝛽  determines the 
magnitude of the normal distribution. When 𝑦𝑦𝑒𝑒 = +1, 
the left-truncated Gaussian is used for giving a 
non-negative prior, and when 𝑦𝑦𝑒𝑒 = −1 , the 
right-truncated Gaussian is used for giving a 
non-positive prior. It is denoted as 

𝑝𝑝(𝑤𝑤𝑒𝑒|𝛼𝛼𝑒𝑒) = �2𝑁𝑁(𝑤𝑤𝑒𝑒|0,𝛼𝛼𝑒𝑒−1)
0

        𝑦𝑦𝑖𝑖𝑒𝑒𝑖𝑖≥0𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒          (15) 

Those parameters (α, β) are hyper prior that are 
assigned by the gamma distribution. The parameters, 
w, b and θ, are assigned by the expectation 
maximization method [44-47]. 

The performance of PCVMs is affected by unique 
restriction θ, which is repeatedly adjusted by the 
system after manual determination. However, the 
parameter optimization strategy based on EM 
algorithm makes the parameters sensitive to initial 
values and converges to local minima. An effective 
way that avoid this problem is to use an ingenious 
initialization method. The specific parameter selection 
procedure is as follows: (1) A model was trained with 
ten different θ, due to use of the 5-fold experiment, we 
obtained a 5 × 10 output matrix. (2) For each row, we 
determined a value with the least error rate. (3) The 
average of five selected points as the final θ. In this 
work, the 𝜃𝜃 of S.erevisiae and Human dataset is set to 
3.6, 3.8, respectively. 

Results and Discussion 
Criterion 

Our predictor is evaluated by calculating the 
Accuracy (Acc), Sensitivity (Sn), specificity (Sp), and 
Matthew`s Correlation Coefficient (Mcc). They are 
defined as: 

Acc = 𝑇𝑇𝑁𝑁+𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                (16) 

Sn = 𝑇𝑇𝑇𝑇
𝐹𝐹𝑁𝑁+𝑇𝑇𝑇𝑇

                              (17) 

Sp = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇

                              (18) 

Mcc = (𝑇𝑇𝑇𝑇×𝑇𝑇𝑁𝑁)+(𝐹𝐹𝑇𝑇×𝐹𝐹𝑁𝑁)
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)×(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)×(𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁)×(𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇)

              (20) 

Where TP means those samples that interact with 
themselves are predicted correctly, FP represents 
those samples, true non-interacting with themselves, 
are predicted to be interaction. TN are those samples, 
true non-interacting with themselves, are predicted 
correctly. FN represents those samples, true 
interacting with themselves, are judged to be 
non-interacting. Furthermore, the Receiver Operating 
Characteristic (ROC) is portrayed to assess the 
performance of a set of classification results and the 
area under ROC (AUC) is computed as a significant 
evaluation indicator [48,49]. 

Assessment of method 
The proposed method was performed in 

S.erevisiae and Human datasets. In order to avoid 
overfitting, the cross-validation method was used in 
this paper. 

The prediction results obtained by integrating 
ZMs feature extraction with SSAE neural net and 
PCVM classifier are given in Table 1-2, from which we 
can see that the proposed approach achieved high 
accuracy on two datasets. More specific, The average 
Acc of S.erevisiae dataset are over 92%, and average 
Sn, Sp, and Mcc are 43.92%, 98.71% and 58.22%, 
respectively. We have also achieved a high average 
value of AUC of 0.8937 using the proposed method on 
S.erevisiae dataset, as shown in Figure 3. Similarly, the 
pleasing result (Table 2) was obtained by use of the 
proposed approach on Human dataset, whose average 
accuracies of cross-validation are above 97%, and 
average Acc, Sn, Sp and Mcc are 97.47%, 69.54%, 
100%, and 82.24%, respectively. When our method is 
executed on the Human dataset, the AUC value 
obtained is close to 1 (Figure 4).  

 

Table 1. Fivefold results by means of our scheme on S.erevisiae 
dataset. 
Testing Set Acc (%) Sn (%) Sp(%) Mcc (%) 
1 92.96 39.84 98.39 53.11 
2 92.85 43.70 98.83 58.41 
3 92.20 40.41 99.09 57.07 
4 92.60 51.02 98.18 61.97 
5 92.13 44.65 99.08 60.56 
Average 92.55 ± 0.3 43.92 ± 4.4 98.71± 0.4 58.22 ± 3.4 

Table 2. Five-fold results by means of our scheme on human 
dataset. 
Testing Set Acc (%) Sn (%) Sp(%) Mcc (%) 
1 97.55 70.07 100 82.61 
2 97.55 69.53 100 82.30 
3 97.29 68.98 100 81.85 
4 97.90 74.65 100 85.43 
5 97.07 64.46 100 79.03 
Average 97.47 ± 0.3 69.54 ± 3.6 100 82.24 ± 2.2 
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Figure 3. ROC curves performed by our scheme on the S.erevisiae dataset. 

 

 
Figure 4. ROC curves performed by our scheme on the Human dataset. 

 
Promising predictive performance should be 

attributed to powerful PCVM classifiers and feature 
extraction strategy. The major advantage of 
employing the proposed strategy lies in the following 
four reasons: (1) PSSM, representing a given protein 
sequence, which not only retains enough prior 
knowledge, but also expresses the order information. 
(2) As a feature extraction method, ZMs be good at 
capturing useful information from multiple angles. (3) 
SSAE is a kind of deep learning, used to eliminate 
noise and reduce feature dimensions. (4) PCVM 
provides reliable and stable predictive capabilities. 

Comparison PCVM with the SVM 
We verify the performance of our classifier by 

compare it with the Support Vector Machine (SVM) 
classifier representing the most advanced technology. 
To be fair, the same feature extraction process was 
executed on S.erevisiae and Human datasets. We used 
LIBSVM tools [50] to implement the classification of 

SVM. The SVM parameters of c and g are 0.5 and 0.6 
by the grid search method [51-58].  

The performances of the two predictors 
(PCVM-based and SVM-based) have been compared 
by calculating the AUC, sensitivity, accuracy, 
specificity and Mcc. The results are provided in Table 
3-4 and Figure 5-6. The average accuracies obtained 
by SVM-based method are 90.85± 0.3% and 96.82± 
0.2%, respectively. The AUC obtained by SVM-based 
method are 0.8728 and 0.9159. However, the average 
accuracies by use of PCVM-based method are 92.55± 
0.3% and 97.47± 0.3%, respectively. The AUC 
obtained by PCVM-based method are 0.8937 and 
0.9987. The prediction performance obtained by 
PCVM-based technique are significantly better than 
that of the SVM-based. At the same time, the 
corresponding ROC curve of the PCVM classifier 
(Figure 3-4) are also significantly better than those of 
the SVM classifier (Figure 5-6). Better prediction 
results are achieved by the PCVM method, due to 
mainly the two reasons: (1) PCVM has an obvious 
advantage of employing truncated Gauss priors to 
produce sufficient robustness and sparse patterns, 
which narrow complexity of prediction model, but 
also computation is eased. (2) The kernel optimization 
strategy derived from probabilistic reasoning enables 
PCVM to save grid search time. 

 

Table 3. Fivefold results by means of the SVMs on S.erevisiae 
dataset. 
Testing Set Acc (%) Sn (%) Sp(%) Mcc (%) 
1 91.24 30.01 99.86 32.85 
2 91.08 40.64 96.48 53.17 
3 90.51 30.92 99.64 42.47 
4 90.51 30.41 99.91 42.37 
5 90.92 40.14 98.08 55.27 
Average 90.85 ± 0.3. 34.42 ± 5.4 98.79±1.5 45.22 ± 9.1 

 

Table 4. Fivefold results by means of the SVMs on Human dataset. 
Testing Set Acc (%) Sn (%) Sp(%) Mcc (%) 
1 97.06 64.08 100 78.80 
2 96.69 58.78 100 75.33 
3 96.60 61.06 100 76.72 
4 96.81 61.46 100 77.06 
5 96.95 63.07 100 78.13 
Average 96.82 ± 0.2 61.69 ± 2.0 100 77.21 ± 1.3 

 

Table 5. The prediction results of different methods on the 
S.erevisiae dataset. 
Model Acc (%) Sn (%) Sp(%) MCC (%) AUC 
SLIPPER [11] 71.90 69.72 72.18 28.42 0.7723 
DXECPPI [8] 87.46 29.44 94.93 28.25 0.6934 
PPIevo [9] 66.28 60.14 87.46 18.01 0.6728 
LocFuse [10] 66.66 55.49 68.10 15.77 0.7087 
CRS [52] 72.69 59.58 74.37 23.68 0.7115 
SPAR [52] 76.96 53.24 80.02 24.84 0.7455 
Our method 92.55 34.42 98.71 45.22 0.8937 
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Figure 5. ROC curves performed by SVM-based on the S.erevisiae dataset. 

 

 
Figure 6. ROC curves performed by SVM-based on the Human dataset. 

 

Table 6. The prediction results of different methods the Human 
dataset. 
Model Acc (%) Sn (%) Sp(%) MCC (%) AUC 
SLIPPER [11] 91.10 47.26 95.06 41.97 0.8723 
DXECPPI [8] 30.90 87.08 25.83 8.25 0.5806 
PPIevo [9] 78.04 87.83 25.82 20.82 0.7329 
LocFuse [10] 80.66 50.83 80.50 20.26 0.7087 
CRS [52] 91.54 34.17 96.72 36.33 0.8196 
SPAR [52] 92.09 33.33   94.70 38.36 0.8229 
Our method 97.47 69.54 100.00 82.24 0.9987 

 

Comparison with other methods 
To validate the advantage of our method for SIPs 

prediction, computations were performed on 
S.erevisiae and Human datasets by using six existing 
predictors (SLIPPER, CRS, SPAR, DXECPPI, PPIevo 
and LocFuse). The results achieved are given in Table 
5-6, from which we can find that the overall 
performance obtained by the proposed approach in 
this paper using ZMs feature extraction, SSAE neural 
net and PCVM classified is remarkably better than 

those by the other well-known predictors. The 
performance of the proposed predictor (Table 5) has 
been found to be the best with 92.55 % 
cross-validation accuracy versus 71.90%, 87.46%, 
66.28%, 66.66%, 72.69% and 76.96%. At the same time, 
we achieved the highest AUC with 0.8937. The same 
good results were obtained when we compared the 
cross-validation accuracies on Human dataset (Table 
6). The performance of the proposed predictor 
achieves the best accuracy of 97.47%, 5.38% higher 
than the SPAR method. Another important indicator, 
AUC, is close to 1. These results illustrations that our 
predictor can obviously improve the prediction 
accuracy of SIPs.  

Conclusion 
Prediction of self-interacting proteins (SIPs) is 

helpful for dissecting the execution of most important 
molecular processes in cells. A number of 
computational approaches have been developed to 
detect SIPs. However, there are still some limitations 
existing in these methods. In this study, we developed 
a two-step procedure to integrate protein 
evolutionary information with machine learning 
method to improve SIPs prediction. We designed a 
novel feature extraction scheme which unite Zernike 
moments with stacked sparse auto-encoder. Then, the 
probabilistic classification vector machine was 
employed to perform predictive tasks. The 
experimental result indicated that the proposed 
predictor achieved high accuracies of 92.55% and 
97.47% on S.erevisiae and Human data sets, 
respectively. To further highlight the advantage of 
our method for SIPs prediction, SVM-based method 
and other six methods were also implemented on 
S.erevisiae and Huamn data sets. Comparison results 
show that our predictor performs better than other 
competing methods. 
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