

Supplementary Figure 1. The concentrations of IL6 and IL17 in the supernatant of cell culture of CASC2-KD and CASC2-OE cells

The Control-KD, CASC2-KD1, CASC2-KD2, Control-OE and CASC2-OE cells were cultured in DMEM medium for 24 h . Cell cultures were collected and centrifuged, and the supernatant was used to measure the concentrations of IL6 and IL17. **P <0.001 and $* * * P<0.001$.

Supplementary Figure 2. IL6 and IL17 were positively correlated with CASC2 expression
The Pearson correlation coefficient (r) and associated probability (P) were performed to determine the correlation between IL6 (A), IL17 (B) and IL13 (C) using the circulating concentrations of cytokines and the relative mRNA level of CASC2 from the same AP patients.

Supplementary Figure 3. The protein levels of transcription factors in their corresponding knockdown and overexpression cell lines
(A) The protein level of c-MYC. Total cell extracts from Control-KD, c-MYC-KD1, c-MYCKD2, Control-OE, and c-MYC-OE cells were applied to immunoblots to measure c-MYC protein level. (B) The relative protein level of c-MYC. The protein signals in (A) were quantified using Image J and normalized to their corresponding GAPDH level. $* * P<0.01$ and $* * * P<0.001$. (C) The protein level of SP1. Total cell extracts from Control-KD, SP1-KD1, SP1-KD2, Control-OE, and SP1-OE cells were applied to immunoblots to measure SP1 protein level. (D) The relative protein level of SP1. The protein signals in (C) were quantified using Image J and normalized to their corresponding GAPDH level. ${ }^{*} P><0.01$ and $* * * P<0.001$. (E) The protein levels of NF-кB subunits. Total cell extracts from Control-KD, p50-KD1, p50-KD2, p65-KD1, p65-KD2, Control-OE, p50-OE and p65-OE cells were applied to immunoblots to measure the protein levels of p50 and p65. (F) The relative protein levels of NF-кB subunits. The protein signals in (E) were quantified using Image J and normalized to their corresponding GAPDH level. $* * P<0.01$ and $* * * P<0.001$. (G) The protein level of c-JUN. Total cell extracts from Control-KD, c-JUN-KD1, c-JUN-KD2, Control-OE, and c-JUN-OE cells were applied to immunoblots to measure c-JUN protein level. (H) The relative protein level of c-JUN. The
protein signals in (G) were quantified using Image J and normalized to their corresponding GAPDH level. ${ }^{* *} P<0.01$ and $* * * P<0.001$.

Supplementary Figure 4. The CPM complex specifically bond to the promoter of CASC2
(A) Knockdown of c-MYC decreased the occupancies of CFM components in the promoter of CASC2. The Control-KD, c-MYC-KD1 and c-MYC-KD2 cells were subjected to ChIP assays using IgG, anti-CtBP1, anti-CtBP2 and anti-c-MYC antibodies, respectively. ${ }^{* *} P<0.01$ and *** $P<0.001$. (B) Overexpression of $c-M Y C$ increased the occupancies of CFM components in the promoter of CASC2. The Control-OE and c-MYC-OE cells were subjected to ChIP assays using IgG, anti-CtBP1, anti-CtBP2 and anti-c-MYC antibodies, respectively. $* * * P<0.001$.

Supplementary Figure 5. CtBP1 and CtBP2 were positively correlated with CASC2 expression

The Pearson correlation coefficient (r) and associated probability (P) were performed to determine the correlation between $\mathrm{CtBP} 1(\mathbf{A})$ and $\mathrm{CtBP} 2(\mathbf{B})$ using their relative mRNA levels in the same AP patients.

Supplementary Figure 6. Knockdown or overexpression of DNMTs changed the expression of $\boldsymbol{C t B P s}$

(A) Knockdown of DNMTs increased the expression of CtBPs. The Control-KD, DNMT1-KD1, DNMT1-KD2, DNMT3a-KD1, DNMT3a-KD2, DNMT3b-KD1 and DNMT3b-KD2 cells were subjected to RNA isolation, followed by qRT-PCR analyses to measure the mRNA levels of DNMT1, DNMT3a, DNMT3b, CtBP1 and CtBP2. ***P < 0.001. (B) Overexpression of DNMTs decreased the expression of CtBPs. The Control-OE, DNMT1-OE, DNMT3a-OE and DNMT3bOE cells were subjected to RNA isolation, followed by qRT-PCR analyses to measure the mRNA levels of $D N M T 1, D N M T 3 a, D N M T 3 b, C t B P 1$ and $C t B P 2$. $* * * P<0.001$. (C) The effects of knockdown or overexpression of DNMTs on CtBP protein levels. The DNMT-KD and DNMT-OE cells used in (A) and (B) were subjected to immunoblots to examine protein levels of DNMT1, DNMT3a, DNMT3b, CtBP1 and CtBP2. GAPDH was used as a loading control. (D) The relative protein levels of CtBPs in DNMT-KD and DNMT-OE cells. The protein signal intensity in (C) was quantified and normalized to GAPDH. ${ }^{*} P<0.05$, ${ }^{* *} P<0.01$ and ${ }^{* * * P} P<$ 0.001 .

Supplementary Figure 7. The expression of CASC2, IL6 and IL17 in DNMT-KD and DNMT-OE cells

Total RNA from Control-KD, DNMT1-KD1, DNMT1-KD2, DNMT3a-KD1, DNMT3a-KD2, DNMT3b-KD1, DNMT3b-KD2, Control-OE, DNMT1-OE, DNMT3a-OE and DNMT3b-OE cells were subjected to qRT-PCR analyses to measure the expression of CASC2, IL6 and IL17. ** $P<0.01$ and ${ }^{* * *} P<0.001$.

Supplementary Figure 8. The expression of DNMTs was negatively correlated with CASC2 expression

The Pearson correlation coefficient (r) and associated probability (P) were performed to determine the correlation between DNMT1 (A), DNMT3a (B) and DNMT3b (C) using their relative mRNA levels in the same AP patients.

Supplementary Figure 9. The IHC staining results of CPM components and DNMTs in pancreatic tissues

Three-paired pancreatic tissues from controls (stage 0 pancreatic cancer patients) and AP patients were subjected to IHC staining assays using anti-CtBP1, anti-CtBP2, anti-PCAF, anti-c-MYC, anti-IL6, anti-IL17, anti-DNMT1 and anti-DNMT3a, respectively. The representative pictures from the same control and AP patient were shown. Bars $=100 \mu \mathrm{~m}$. Histoscore was calculated by a semi-quantitative assessment of both the intensity of staining and the percentage of positive cells. *** $P<0.001$.

Supplementary Figure 10. Inflammation and DNA methylation coactivated the expression of CtBPs
(A) Combined effects of DNMT1 knockdown and IL6 (or TNF- α) treatment on CtBP mRNA levels. The Control-KD and DNMT1-KD cells were treated with or without $50 \mathrm{ng} / \mathrm{mL}$ IL6 or TNF- α. The resulting cells were used for RNA isolation, followed by qRT-PCR analyses to determine the mRNA levels of $C t B P 1$ and $C t B P 2$. $* * * P<0.001$. (B) Combined effects of DNMT1 knockdown and IL6 (or TNF- α) treatment on CtBP protein levels. Cells used in (A) were subjected to immunoblots to examine protein levels of CtBP1 and CtBP2. GAPDH was probed as a loading control. (C) The relative protein levels of CtBPs. The protein bands in (B)
were quantified and normalized to GAPDH. ${ }^{* * * P}<$ 0.001. (D) Combined effects of $D N M T 1$ knockdown and IL6 (or TNF- α) treatment on the expression of CASC2, IL6 and IL17. RNA samples used in (A) were subjected to examine mRNA levels of CASC2, IL6 and IL17 by qRTPCR analyses. ${ }^{* * * P<0.001 .}$

Supplementary Figure 11. Knockdown of DNMTs and IL6/TNF- α treatment increased the occupancies of CPM components on the promoter of CASC2
The Control-KD, DNMT1-KD1 and DNMT1-KD2 cells were treated with or without $50 \mathrm{ng} / \mathrm{mL}$ IL6 and TNF- α, respectively. The treated cells were applied to ChIP assays with anti-CtBP1, anti-CtBP2, anti-PCAF, anti-c-MYC, and IgG (negative control), respectively. The purified DNA was used for qRT-PCR analyses to measure the occupancies of CPM components on the promoter of $C A S C 2$. ${ }^{* *} P<0.01$ and $* * * P<0.001$.

Supplementary Table-1. The basic information of pancreatic cancer patients (Control, $n=48$) and acute pancreatitis patients (AP, $n=48$)

Parameters	Control	AP
Mean age	59.3 ± 6.3	53.4 ± 4.5
Gender	$30 \mathrm{M} / 18 \mathrm{~F}$	$33 \mathrm{M} / 15 \mathrm{~F}$
Cancer stage	0	NA

F: female; M: male

Supplementary Table-2. Primers used for qRT-PCR analyzes

Gene	Forward Primers	Reverse primers
CtBP1	5'- AGGCGGATAGAGACCACGCCA -3'	5'-CTCTGCAGTGCCAGGGCCACC-3'
CtBP2	5'-TGGAGAAGTTCAAGGCCCTGA-3'	5'-GGCAGATGGTAGAGTCCGCT-3'
DNMT1	5'- AGCAAAGTGAAAGTCATCTACA-3'	5'-GGACTCGAATCTCGCGTAG-3'
DNMT3a	5'-TGAGCGCACAAGAGAGCGGCT-3'	5'-GCACACTCCAGAAAGCAGTT-3'
DNMT3b	5'-GACTCGAAGACGCACAGCTG-3'	5'-GTTGGCAACATCTGAAGCCA-3'
SP1	5'-GTGAGTCTTCCAAGAATCGCAC-3'	5'-CGGTCTGGAACTGTGGGATTA-3'
c-MYC	5'-CAGCAGCAGCAGCAGAGCGAGC-3'	5'-AAGGGTGTGACCGCAACGTAG-3'
IL6	5'- ACCTAGAGTACCTCCAGAACAG-3'	5'- AGATGAGTTGTCATGTCCTGCA-3'
IL17	5'-CTGCTACTGCTGCTGAGCCTGG-3'	5'-TGAGGACCTTTTGGGATTGG-3'
p65	5'-AGTGCGGGACCCATCAGGCA-3'	5'- TCATCCCCACCGAGGCAGCT-3'
p50	5'-AGCTAATCCGCCAAGCAGCT-3'	5'-TTTCAAGTTGGATGCATTGG-3'
c-Jun	5'-GCCTTCGTTAACTGTGTAT-3'	5'- AACACTGGGCAGGATACCC-3'
CDH1	5'- CACCACTGGGCTGGACCGAG-3'	5'-TGGGATTGAAGATCGGAGGA-3'
SOX4	5'-GGAGAAGAAGGTGAAGCGCGT-3'	5'-CTGGGCGCGTCGGGCGAGCA-3'
ALT1	5'-CGCCTTCTCCTTTTCGCAATG-3'	5'-TGTGCAGTTTCAGCAAAGCTC-3'
$\begin{gathered} \text { ADPGK- } \\ \text { AS1 } \\ \hline \end{gathered}$	5'-GCCGATGTCGACACAAGCG-3'	5’-AGCAAATGTGTTCCCATCCCT-3'
lincIRX5	5'-TCCTGGCTCTCCATGGAGAAG-3'	5'-CCTTCATAGTTGATGACCACCTC-3'
CASC2	5'-GCTGATCAGAGCACATTGGA-3'	5'-ATAAAGGTGGCCACAACTGC-3'
LincROR	5'-CTCCAGCCTAGATGACAGA-3'	5'-CACAGCAGCACTATTCCTAT-3'
MRUL	5'-ACCCACAGACAACTGTGGACCC-3'	5'-GCCGCCCCTATTGTTGCCCA-3'
β-Actin	5'- AGAGCTACGAGCTGCCTGAC-3'	5'- AGCACTGTGTTGGCGTACAG -3'

Supplementary Table-3. Primers used for vector constructions

Gene	Forward Primers	Reverse primers
CtBP1	5’-CGGGATCCATGGGCAGCTCGCACTTGCTCA3'	```5'- CGGAATTCCTACAACTGGTCACTGGCGTGGT3'```
CtBP2		```5'- CGGAATTCCTATTGCTCGTTGGGGTGCTCTCGA- 3'```
PCAF	5’-CGGGATCCATGTCCGAGGCTGGCGGGGCC-3'	5'-CGGAATTCTCACTTGTCAATTAATCCAGC-3'
DNMT1	5’-CGGGATCCATGCCGGCGCGTACCGCCCCA-3'	5’-CGGAATTCCTAGTCCTTAGCAGCTTCCTC-3'
DNMT3a	```5'-CGGGATCCATGCCCGCCATGCCCTCCAGCG- 3'```	```5'- CGGAATTCTTACACACACGCAAAATACTCCTTC- 3'```
DNMT3b	```5'- CGGGATCCATGAAGGGAGACACCAGGCATCT-3'```	5'-CGGAATTC CTATTCACATGCAAAGTAGTCC3'
SP1	5'-CGGGATCCATGAGCACCAAGATCACTCCATG3'	5'-CGGAATTCTCAGAAGCCATTGCCACTGATA3'
c-MYC	5'-CGGGATCCATGCCCCTCAACGTTAGCTTCA-3'	5'-CGGAATTCTTACGCACAAGAGTTCCGTAGC3'
p65	5'-CGGGATCCATGGACGAACTGTTCCCCCTC-3'	5'-CGGAATTCTGCTGAGTCAGATCAGCTCCTAA- 3^{\prime}
p50	5’-CGGGATCCATGGCAGAAGATGATCCATATT-3'	5'-CGGAATTCCTAAATTTTGCCTTCTAGAGGTC3'
c-JUN	```5'- CGGGATCCATGACTGCAAAGATGGAAACGAC- 3'```	5'-CGGAATTCTCAAAATGTTTGCAACTGCTGC3'

Supplementary Table-4. Primers used for qMSP assays.

Gene	Forward Primers	Reverse primers
CpG1-	5'-TTGGTTGAGGGTTTAGTATTGTTAG-3'	5^{\prime}-AATAATTACATAATTTCAAAAACCAC-3'
CtBP1		
CpG2-	5'-AGTTTTTGGGTGAGTAGGTTTAGTG-3'	5^{\prime}-AAATTCAAAACTAAAAAACCCCTTC-3'
CtBP1		
CpG1-	5^{\prime} '-TATTTGTAGTATAGAGGGTTTTTTTT-3'	5^{\prime} - AACTCCAACTTCCTCCTAATACC-3'
CtBP2		
CpG2-	5'- TTTTAAATGGTTTTGAATTAATGAAGG-	5^{\prime} - TCTCAAATCAAAAAACAAAACAATC-3'
CtBP2	3^{\prime}	

Supplementary Table-5. The aberrantly expressed IncRNAs in AP tissues

Ensembl Gene ID	IncRNA name	Average fold change	P Value	Expression
ENSG00000231607	ALT1	-13.4	0.0024	Down
ENSG00000260105	ACO4	-11.1	0.00043	Down
ENSG00000233026	AC026166.2-001	-10.2	0.00041	Down
ENSG00000227033	AC105461.1	-9.3	0.00033	Down
ENSG00000233588	AC026904.1	-8.5	0.00065	Down
ENSG00000267296	CEBPA-AS1	-6.7	0.00099	Down
ENSG00000260898	ADPGK-AS1	-5.9	0.00021	Down
ENSG00000281406	BLACAT1	-5.2	0.00046	Down
ENSG00000280977	lincIRX5	-4.5	0.0013	Down
ENSG00000177640	CASC2	14.8	0.00024	Up
ENSG00000213453	FTH1P3	13.7	0.00022	Up
ENSG00000234741	GAS5	11.3	0.00076	Up
ENSG00000228630	HOTAIR	10.4	0.0083	Up
ENSG00000275874	LINC00162	9.4	0.0024	Up
ENSG00000224559	LINC01133	8.6	0.00016	Up
ENSG00000172965	AWPPH	7.8	0.00054	Up
ENSG00000281183	lncRNA-LET	7.6	0.00025	Up
ENSG00000258609	linc-RoR	6.7	0.00065	Up
ENSG00000246582	LOC389641	5.4	0.00041	Up
ENSG00000225783	Gomafu	5.3	0.00066	Up
ENSG00000135164	MRUL	4.5	0.00084	Up

Supplementary Table-6. The aberrantly expressed genes dependent on CASC2

Gene	CASC2-KD1	CASC2-KD2	CASC2-KD3	CASC2-OE1	CASC2-OE2	CASC2-OE3
IL6	-12.1	-9.3	-9.1	12.1	13.5	14.1
IL17	-10.4	-11.1	-8.6	11.1	10.4	12.1
S100A8	-9.3	-8.5	-7.2	9.4	10.1	11.2
S100A9	-8.8	-8.2	-7.1	8.5	7.7	9.3
RUNX1	-6.5	-5.4	-6.6	5.7	4.6	6.3
IDO1	-5.9	-4.5	-5.4	5.1	5.5	5.7
NCF2	-5.4	-4.1	-4.9	4.8	4.2	4.4
PDLIM4	-4.8	-3.6	-4.2	4.5	3.6	2.5
GBP2	-4.1	-3.1	-3.6	3.7	2.9	2.3
SOX4	8.6	7.3	5.3	-6.5	-7.4	-8.3
CDH1	7.2	5.7	4.3	-5.3	-6.9	-6.2
PDZD8	5.4	6.6	3.7	-5.1	-5.4	-5.6
DAND5	4.3	5.3	4.6	-4.8	-4.5	-5.1
PITX3	3.7	4.1	3.5	-4.3	-4.2	-5.0
SYVN1	3.6	4.1	3.5	-4.2	-4.1	-4.7
SLC18A2	3.5	4.0	3.4	-4.1	-4.0	-4.2
CACUL1	3.4	4.0	3.2	-3.9	-3.9	-4.0
PAX5	3.4	3.9	3.1	-3.9	-3.9	-3.7
CSF2	3.1	3.8	3.2	-3.7	-3.8	-3.6
GNB1	3.1	3.6	3.0	-3.6	-3.4	-3.5
SETD2	3.1	3.5	2.9	-3.6	-3.3	-3.3
RTN4R	2.9	3.2	2.8	-3.4	-3.3	-3.2
GSTP1	2.7	3.1	2.6	-3.3	-3.1	-2.9
CBR1	2.6	2.8	2.5	-3.2	-3.0	-2.7
LMO2	2.4	2.5	2.4	-2.8	-2.9	-2.2

