

Figure S1 miR-552 is inversely correlated with fibrotic and inflammatory genes of MAFLD patients from GSE89632
(A) Correlation between miR-552 content and the mRNA levels of COL1A1 and COL4A2 in the liver of patients with MAFLD ($n=39$) and healthy controls ($n=18$). (B) Correlation between miR- 552 content and the mRNA levels of CCL1 and TNF in the liver of patients with MAFLD $(\mathrm{n}=39)$ and healthy controls ($\mathrm{n}=18$).
A

B

C

Figure S2 MiR-552-3p downregulates p-Smad3 in LX-2 cells after TGF- $\beta 1$ treated for less than 3h
(A) Relative mRNA levels of miR-552-3p (1 nM) in LX-2 cells after transfected for 24, 48 and 72 h . (B)

The cell livability of LX-2 cells after treated with LPS ($800 \mathrm{ng} / \mathrm{ml}$) for 8 h . (C) The protein levels of p-

Smad3 and t-Smad3 in LX-2 cells after treated with TGF- $\beta 1$ for $15 \mathrm{~min}, 30 \mathrm{~min}$ and $3 \mathrm{~h} .{ }^{* *} \mathrm{P}<0.01$, ***P <0.001 vs. $\mathrm{NC} ;$ ns, non-significant.

Figure S3 MiR-552-3p doesn't affect the expression of TGF- $\beta 1$, TGFBR1, SMAD2, SMAD4 and

TLR4 in LX-2 cells

(A) Relative mRNA levels of TGF- $\beta 1$, TGFBR1, SMAD2 and SMAD4 of TGF- $\beta 1 /$ Smad3 signaling pathway in LX-2 cells transfected with miR-552-3p (1 nM) for 48 h . (B) Relative mRNA level of TLR4 in LX-2 cells transfected with miR-552-3p (1 nM) for 48 h .
A

B

C

E

F
Control
miR-552-3p

Figure S4 MiR-552-3p regulates glycolipid metabolism disorders in HFHFrHC diet-induced

NASH mouse model

(A-C) The content of LDL-C in serum, fasting blood glucose and HOMA-IR index of HFHFrHC diet induced NASH mouse model. (D) The body weight of mice. (E) The inflammatory score of HFHFrHC diet induced NASH model with or without miR-552-3p. (F) The F4/80 and Ly6G staining of liver tissues in HFHFrHC diet induced NASH model. Data are presented as the mean \pm SEM. $\mathrm{n}=10$, ${ }^{* *} \mathrm{P}<0.01$, *** $\mathrm{P}<0.001$ vs. Control.

Figure S5 MiR-552-3p relieves the liver fibrosis and inflammation in CCl_{4} induced animal model overexpressed by AAV8.
(A) Schematic diagram of CCl_{4}-induced animal experiment. (B) Relative level of miR-552-3p in the liver
tissues. (C) HE, Sirius red, Masson and α-SMA staining of liver samples. Scale bar: $100 \mu \mathrm{~m}$. (D-F) The positive area of Sirius red, Masson and α-SMA staining. (G-H) ALT and AST levels in mouse serum tested every one week. (I) The content of hydroxyproline in mouse livers. (J-K) Relative mRNA levels of fibrotic and inflammatory genes in mouse livers. (L-M) Protein expression levels of Collagen I, pSmad3 and t-Smad3 in mouse livers. (N) Relative mRNA levels of Tgfbr2 and Smad3 in mouse livers. Data are presented as the mean $\pm \mathrm{SEM} . \mathrm{n}=10,{ }^{*} \mathrm{P}<0.05,{ }^{* *} \mathrm{P}<0.01,{ }^{* * *} \mathrm{P}<0.001$ vs. Control.

Figure S6 The inhibitory effect of miR-552-3p on the proliferation of LX-2 cells is dependent on its seed sequence
(A) The protein levels of p -Smad3 and t -Smad3 in the LX-2 cells after treated with TGF- $\beta 1$ for 15 min .
(B) The cell livability of LX-2 cells transfected with NC, miR-552-3p, miR-552-3p-5mut, miR-552-3p3mut or miR-552-3p-tmut (1 nM) for 48, 72, 96 and 120 h .

Table S1: Sequences of siRNAs and miRNAs

Name	Sequence
si-IPO8-1	UUAGUGAGAGUCCAAUUAAUT
si-IPO8-2	UGAGCUCAAUCUAAGAAAUUT
Anti-NC	UCACAACCUCCUAGAAAGAGUAGA
Anti-miR-552-3p	AACAGGUGACUGGUUAGACAA
Negative Control (NC)	UUCUCCGAACGUGUCACGUTT

Table S2: Information of real time PCR specific primers used in this study

Gene	Forward ($5^{\prime} \rightarrow 3^{\prime}$)	Reverse ($5^{\prime} \rightarrow 3$ ')
h-ACTA2	AAAAGACAGCTACGTGGGTGA	GCCATGTTCTATCGGGTACTTC
h-COL1A1	GCTTCACCTACAGCGTCACTGTCG	AGAGGAGTTTACAGGAAGCAGACAG
h-COL3A1	GGAGCTGGCTACTTCTCGC	GGGAACATCCTCCTTCAACAG
h-TIMP-2	AAGCGGTCAGTGAGAAGGAAG	GGGGCCGTGTAGATAAACTCTAT
h-MMP-2	TACAGGATCATTGGCTACACACC	GGTCACATCGCTCCAGACT
h-IL-6	ACTCACCTCTTCAGAACGAATTG	CCATCTTTGGAAGGTTCAGGTTG
h-CCL2	CAGCCAGATGCAATCAATGCC	TGGAATCCTGAACCCACTTCT
h-GAPDH	GGAGCGAGATCCCTCCAAAAT	GGCTGTTGTCATACTTCTCATGG
m-Collal	GCTCCTCTTAGGGGCCACT	ATTGGGGACCCTTAGGCCAT
m-Col3a1	CTGTAACATGGAAACTGGGGAAA	CCATAGCTGAACTGAAAACCACC
m-Timp-2	TCAGAGCCAAAGCAGTGAGC	GCCGTGTAGATAAACTCGATGTC
$\mathrm{m}-\mathrm{Mmp}-2$	ACCTGAACACTTTCTATGGCTG	CTTCCGCATGGTCTCGATG
m-Il-6	CTGCAAGAGACTTCCATCCAG	AGTGGTATAGACAGGTCTGTTGG
$\mathrm{m}-\mathrm{Ccl} 2$	TAAAAACCTGGATCGGAACCAAA	GCATTAGCTTCAGATTTACGGGT
m-Gapdh	AGGTCGGTGTGAACGGATTTG	GGGGTCGTTGATGGCAACA

