Table 1	The study	population b	baseline data		
	total (n=20)	control group	patients	T/χ^2	Р
age (years, <u>x</u> ±S)	60.05 ± 6.37	59.70±6.84	60.40 ± 6.20	0.240	0.813
Sex [n(%)]					
male	12(60.0)	6(60.0)	6(60.0)	0.000	1.000
female	8(40.0)	4(40.0)	4(40.0)		
BMI (kg/m ²)	23.90 ± 2.37	23.80 ± 2.00	24.00 ± 2.80	0.184	0.856
Hypertension [n(%)]					
yes	7 (35.0)	3(30.0)	4(40.0)	0.220	0.639
no	13 (65.0)	7(70.0)	6(60.0)		
Diabetes [n(%)]					
yes	4(20.0)	1(10.0)	3(30.0)	0.313	0.576
no	16(80.0)	9(90.0)	7(70.0)		
Smoke [n(%)]					
yes	8(40.0)	4(40.0)	4(40.0)	0.000	1.000
no	12(60.0)	6(60.0)	6(60.0)		
Systolic pressure (mmHg, $\underline{x} \pm S$)	128.5 ± 11.74	129.30 ± 11.30	127.70 ± 12.76	-0.297	0.770
diastolic pressure (mmHg, $\underline{x} \pm S$)	70.45 ± 18.37	63.50 ± 23.05	77.40 ± 8.59	1.787	0.091
WBC(10 ⁹ /L)	6.37±1.99	6.16 ± 2.00	6.59 ± 2.07	0.472	0.643
RBC(10 ¹² /L)	4.29 ± 0.58	4.46 ± 0.51	4.13 ± 0.62	-1.312	0.206
PLT(10 ⁹ /L)	174.05 ± 90.66	254.90 ± 47.63	93.2 ± 23.65	-9.615	< 0.001
ALT(u/L)	21.90 ± 9.92	23.37 ± 8.86	20.44 ± 11.16	-0.652	0.523
CKMB(u/L)	10.65 ± 4.38	9.70 ± 4.02	11.60 ± 4.71	0.968	0.346
TG(mmol/L)	1.68 ± 2.65	1.25 ± 0.66	2.11 ± 3.74	0.713	0.485
LDL-C(mmol/L)	2.16 ± 0.84	2.34 ± 0.93	1.98 ± 0.75	-0.938	0.361
CHOL(mmol/L)	4.23 ± 1.20	4.28 ± 1.38	4.18 ± 1.05	-0.176	0.863
CREA(umol/L)	65.66±11.01	65.98±9.14	65.35±13.13	-0.126	0.901

Supplemental Figure 1. WBC count, RBC count and HGB content in the peripheral blood of mice. (A) mice treated with Ara-c intraperitoneally. (B) WBC count. (C) RBC count. (D) HGB content. Values are presented as means \pm SEM. n=20 mice/group. ***P* < 0.01 versus control. Ara-c: cytosine arabinoside.

Supplemental figure 2

Supplemental Figure 2. (A-D) Generation of *Creg1*^{pf4-cre} mice and tg-*Creg1* mice, and genotyped. (E-F) Quantitative real-time PCR (RT-PCR) and western blot confirmed the establishment of the model. Values are presented as means \pm SEM, n=3. ***P* < 0.01 versus *Creg1*^{fl/fl}.

Supplemental Figure 3. The lack of CREG1 attenuated TPO signaling pathway. (A) TPO levels were determined in the serum of murine blood by using ELISA. (n=18). (B-C) Western blot was used to analyze C-MPL. (D) Platelet count after treatment with TPO (2 µg/animal per day). (n=3). Values are presented as means \pm SEM. ***P* < 0.01 versus *Creg*^{*fl/fl*}, *&P* < 0.01 versus *Creg*^{*fl/fl*}, *dP* < 0.01 versus *Creg I p* < 0.01 versus *Creg P* < 0.01 versus *Creg*

Supplemental figure 4. Expression of CREG1 in Dami cells was increased when stimulated by PMA. (A-C) Expression of CD41 was determined by realtime PCR and western blot after PMA treatment for 1 to 4 days. (n=3). (D-F) Expression of CREG1 was determined by real-time PCR and western blot after PMA treatment for 1 to 4 days. (n=3). (G) The localization and expression of CREG1 in Dami cells were determined by performing immunofluorescence staining. (n=5). Values are presented as means \pm SEM. ***P* < 0.01 versus control, ##*P* < 0.01 versus 1 d, **P* < 0.01 versus 2 d.

А

Supplemental figure 5. CREG1 directly combined with MEK1/2 in 293T cell. (A) Immunofluorescence staining of MEK1/2 and CREG1 in 293T cells. (B) Co-immunoprecipitation of MEK1 and CREG1 in 293T cells. (n=3).

Supplemental figure 6. MEK1/2-ERK1/2 phosphorylation signaling pathways were abnormal when CREG1 silenced. (A) Expression of p-P38 and p-JNK was determined by western blot in *Creg1*^{pf4-cre} mice (n=3). (B-C) Expression of p-MEK1/2 and p-ERK1/2 was determined by western blot in Dami cells (n=3). (D-E) Expression of CREG1, CD41 and p-ERK1/2 was detected by western blot (n=3). Values are presented as means \pm SEM. ***P* < 0.01 versus control or 2 d, ##*P* < 0.01 versus 3 d.

A

Supplemental figure 7. (A-B) Expression of p-ERK1/2 phosphorylation was determined by western blot (n=3). Values are presented as means \pm SEM. **P < 0.01 versus $Creg1^{fl/fl}$, ##P < 0.01 versus $Creg1^{fl/fl}$ +Ara-c, $^{\&}P < 0.01$ versus $Creg1^{fl/fl}$ +Ara-c.

Supplemental Figure 8. A schematic picture was demonstrated how CREG1 regulated megakaryocytes differentiation and thrombopoiesis.