Supplementary Figure legends

Figure S1. Circ7379 is abundant in normal colorectal tissues and cells. Related to Figure 1.

(A) Microarray analysis showing the expression of *circ7379* and some other known downregulated circRNAs in 3 normal colorectal tissues.

(B) qRT–PCR showing the expression of *circ7379* and some other known downregulated circRNAs in a normal colon cell line (FHC).

The data are shown as the mean \pm SD. The *P* values were determined by a two-tailed unpaired Student's t test or one-way ANOVA; **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001.

Figure S2. Verification of the existence and circularization of *circ7379*. Related to Figure 2.

(A) Schematic representation of the design of divergent and convergent primers for *circ7379* using circPrimer software.

Figure S3. DHX9 regulates the biogenesis of *circ7379*. Related to Figure 3.

(A) Identification of highly matched RCMs in the upstream sequence and downstream sequence of *circ7379* using BLAST.

(B) The plasmid vector map for the *circ*7379 expression vector (GV367).

(C) qRT–PCR showing the significant knockdown of *DHX9* and *ADAR* in CRC cell lines by the transfection of corresponding siRNAs.

(D) qRT–PCR showing the expression of *circ7379* in CRC cell lines under control conditions (si-NC) or upon *ADAR* knockdown (si-ADAR).

(E) qRT–PCR showing the significant overexpression of *DHX9* in CRC cells by the transfection of vectors.

The data are shown as the mean \pm SD. The *P* values were determined by a two-tailed unpaired Student's t test; *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.

Figure S4. Silencing *circ7379* promotes the growth and metastasis of CRC cells in vitro and in vivo. Related to Figure 4.

(A) qRT–PCR showing the significant overexpression of *circ7379* in CRC cell lines by the transfection of circRNA-specific lentiviral plasmid.

(B) qRT–PCR showing the significant knockdown of *circ7379* in CRC cell lines by the transfection of siRNAs specifically targeting the BSJ sites of *circ7379*.

(C) CCK-8 assay showing the proliferation ability of CRC cell lines under control conditions (si-NC) or upon *circ7379* knockdown (si-*circ7379*).

(D) Plate clone formation assay showing the clone formation ability of CRC cell lines under control conditions (si-NC) or upon *circ7379* knockdown (si-*circ7379*).

(E) Transwell assay showing the migration and invasion abilities of CRC cell lines under control conditions (si-NC) or upon *circ*7379 knockdown (si-*circ*7379). Scale bar, 100 μm.

(F) In vivo xenograft models showing the tumorigenesis ability of CRC cells under control conditions (si-NC) or upon *circ7379* knockdown (si-*circ7379*). Top, images of tumors in mice in each group (n=5 mice/group). Bottom (left), tumor growth curves in mice in each group. Bottom (right), tumor weights in mice in each group.

(G) In vivo pulmonary metastasis models showing the metastatic ability of CRC cells under control conditions (si-NC) or upon *circ7379* knockdown (si-*circ7379*). Top, incidences of lung metastases

in mice in each group (n=10 mice/group). Bottom (left), representative lung and representative H&E staining of lung metastatic lesions (black arrow). Scale bar, 200 μ m. Bottom (right), the number of metastatic nodules formed in the lungs of mice in each group.

The data are shown as the mean \pm SD. The *P* values were determined by a two-tailed unpaired Student's t test (A, F and G), one-way ANOVA (B, D and F), two-way ANOVA (C and F), or chi-square test (G); **P*<0.05, ***P*<0.01, ****P*<0.001, ****P*<0.001.

Figure S5. Screening for the target genes of *circ7379*. Related to Figure 5.

(A) Volcano plot showing the expression profiles of SW480-vector cells and SW480-*circ7379* cells. The following conditions were applied to screen differences: Fold Change |>2, P<0.05. The red points in the plot indicate significantly upregulated genes, and the blue points indicate significantly downregulated genes.

(B) GO analyses of potential genes regulated by circ7379.

(C) qRT–PCR showing the expression of selected genes in CRC cells after the transfection of the control vector or *circ*7379 overexpression vector.

(D) qRT–PCR showing the expression of selected genes in CRC cells under control conditions (si-NC) or upon *circ7379* knockdown (si-*circ7379*).

(E) qRT–PCR showing the expression of *RUNX1* mRNA in 20 pairs of CRC tissues and adjacent normal tissues.

(F) qRT–PCR showing the expression of *RUNX1* mRNA in a normal colon cell line (FHC) and a series of CRC cell lines (HT29, HCT116, SW480, and SW620).

(G) Representative Western blot of RUNX1 protein in 4 pairs of CRC tissues and adjacent normal tissues.

(H) Representative Western blot of RUNX1 protein in a normal colon cell line (FHC) and a series of CRC cell lines (HT29, HCT116, SW480, and SW620).

(I) *RUNX1* expression was negatively correlated with *circ7379* expression in CRC tissues and cells. (J) CCK-8 assay showing the proliferation ability of CRC cells under control conditions (si-NC) or upon *circ7379* knockdown (si-*circ7379*) or cotransfection of si-*circ7379* + si-RUNX1.

(K) Transwell assay showing the migration and invasion abilities of CRC cells under control conditions (si-NC) or upon *circ7379* knockdown (si-*circ7379*) or cotransfection of si-*circ7379* + si-RUNX1. Scale bar, 100 μm.

(L) Immunohistochemistry (IHC) showing the expression of RUNX1 protein in xenografts in mice in each group. Scale bar, 50 μ m (left), 20 μ m (right).

(M) The incidences of lung metastases in mice in each group (n=10 mice/group). ^a Vector vs. Circ7379, ^b Circ7379 vs. Circ7379+RUNX1.

(N) Immunohistochemistry (IHC) showing the expression of RUNX1 protein in lung metastatic lesions in mice in each group. Scale bar, $100 \mu m$ (left), $20 \mu m$ (right).

The data are shown as the mean \pm SD. The *P* values were determined by a two-tailed paired (E) or unpaired Student's t test (C, D and K), one-way (F) or two-way ANOVA (J), Pearson correlation analysis (I), or chi-square test (M); **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001.

Figure S6. Screening for potential proteins interacting with circ7379. Related to Figure 6.

(A) qRT–PCR showing the enrichment of *circ7379*, *ciRS-7* (positive control), and *circNDUFB2* (negative control) in a representative anti-AGO2 RIP assay of CRC cells. IgG was used as a control.

(B) qRT–PCR showing the enrichment of *miRNAs* upon *circ*7379 pull-down in CRC cell lysates.

(C) Screening for potential proteins interacting with *circ7379* using the catRAPID online database.

(D) Screening for potential proteins interacting with *circ7379* using the RNA–Protein Interaction Prediction (RPISeq) online website.

(E) qRT–PCR showing the expression of *RUNX1* mRNA in CRC cells under control conditions (si-NC) or upon *KSRP* knockdown (si-*KSRP*), *LN28B* knockdown (si-*LN28B*), or *ELAV1* knockdown (si-*ELAV1*).

The data are shown as the mean \pm SD. The *P* values were determined by a two-tailed unpaired Student's t test; *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.

Figure S7. Prediction of the interacting motif and domain between *circ7379* and KSRP. Related to Figure 7.

(A) Prediction of the binding motif of *circ7379* with KSRP using the MEME database.

(B) Prediction of the binding motif of *circ*7379 with KSRP using the catRAPID database.

(C) qRT–PCR showing the significant overexpression of *circ7379* fragments in CRC cells after the transfection of the corresponding vectors.

(D) Schematic representation of a consensus recognition element for KSRP.

(E) Prediction of the binding motif of *circ7379* with KSRP using the RNA-Binding Protein DataBase (RBPDB).

(F) Schematic representation of the four RNA-binding KH domains of KSRP.

(G) Prediction of the binding domain of KSRP with *circ7379* using the catRAPID database.

(H) Representative Western blot of Flag-tagged truncation mutants of KSRP in CRC cells.

The data are shown as the mean \pm SD. The *P* values were determined by a two-tailed unpaired Student's t test; *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.

Figure S8. *Circ7379* and KSRP collaboratively modulate *pri-miR-320a* and *pre-miR-320a* processing. Related to Figure 8.

(A) qRT–PCR showing the expression of *miR-320a* and *miR-1276* in CRC cells after the transfection with the control vector or *KSRP* vector.

(B) qRT–PCR showing the expression of *miR-320a* and *miR-1276* in CRC cells after the transfection with the control vector or *circ7379* vector.

(C) Potential interacting sequence between *circ7379* and *pri-miR-320a* and between *circ7379* and *pre-miR-320a* shown by BLAST.

(D) qRT–PCR showing the enrichment of *pri-miR-320a* and *pre-miR-320a* upon *circ7379* pull-down in CRC cells under control conditions (si-NC) or upon *KSRP* knockdown (si-*KSRP*).

The data are shown as the mean \pm SD. The *P* values were determined by a two-tailed unpaired Student's t test; **P*<0.05, ***P*<0.01, ****P*<0.001, ****P*<0.001.

Figure S9. miR-320a targets RUNX1 and inhibits its expression. Related to Figure 9.

(A) qRT–PCR showing the significant overexpression of *miR-320a* in CRC cell lines by the transfection of *miR-320a* mimics.

(B) qRT–PCR showing the significant knockdown of *miR-320a* in CRC cell lines by the transfection of *miR-320a* inhibitors.

(C) qRT-PCR showing the expression of RUNX1 mRNA in CRC cell lines after the transfection of

control mimics or miR-320a mimics.

(D) Representative Western blot of RUNX1 protein in CRC cell lines after the transfection of control mimics or *miR-320a* mimics.

(E) qRT–PCR showing the expression of *RUNX1* mRNA in CRC cell lines after the transfection of control inhibitors or *miR-320a* inhibitors.

(F) Representative Western blot of RUNX1 protein in CRC cell lines after the transfection of control inhibitors or *miR-320a* inhibitors.

(G) Prediction of the binding sites of RUNX1 3'UTR with miR-320a using the TargetScan website.

(H) Schematic representation of the construction of the WT or MUT *RUNX1* 3'UTR luciferase reporter vector.

(I) Transwell assay showing the migration and invasion abilities of CRC cells after the transfection of the control vector, *circ7379* vector, or *miR-320a* inhibitors or cotransfection of *circ7379* vector + miR-320a inhibitors.

The data are shown as the mean \pm SD. The *P* values were determined by a two-tailed unpaired Student's t test or one-way ANOVA (I); **P*<0.05, ***P*<0.01, ****P*<0.001, *****P*<0.0001.

Α

Amplification length: 116 bp

D

Ε

HCT116

Circ7379

Circ7379 **RUNX1**

#	Protein ID	RNA ID	Z- score?	Discriminative Power (%)?	Interaction Strength (%)?	Domain?	Motif?	Ranking?
2	FUBP2_HUMAN	hsa_circ_000737_1_907- 1069	0.61	92	98	yes	yes	
9	LN28B_HUMAN	hsa_circ_000737_1_882- 1079	0.41	85	100	yes	yes	
7	FUBP2_HUMAN	hsa_circ_000737_1_902- 1072	0.33	81	92	yes	yes	
1	FUBP2_HUMAN	hsa_circ_000737_1_7-142	0.10	67	92	yes	yes	
45	ELAV1_HUMAN	hsa_circ_000737_1_882- 1079	0.04	63	89	yes	yes	
46	PCBP1_HUMAN	hsa_circ_000737_1_882- 1079	0.03	63	92	yes	yes	
55	HNRPD_HUMAN	hsa_circ_000737_1_882- 1079	-0.02	59	89	yes	yes	
27	SFPQ_HUMAN	hsa_circ_000737_1_7-142	-0.18	45	79	yes	yes	
3	LN28B_HUMAN	hsa_circ_000737_1_3035- 3200	-0.46	22	75	yes	yes	
53	SFPQ_HUMAN	hsa_circ_000737_1_3091- 3195	-0.48	22	65	yes	yes	

С

D

RNA-protein Interaction Prediction (RPISeq) Dobbs and Honavar Laboratories						
Home	Results					
About/FAQs		1				
Datasets	Protein ID	RF Classifier	SVM Classifier			
Related Links	>NP_001353228.1 far upstream element-binding prote	0.8	0.936			
	>NP_001004317.1 protein lin-28 homolog B [Homo sap	0.75	0.791			
	>NP_001410.2 ELAV-like protein 1 [Homo sapiens]	0.75	0.839			

Jomains and Repeats								
	Position(s)	Descri	ption					
Domain ¹	144 - 208	KH 1 (PROSITE-ProRule annotation 👻	📾 Add 🔧 BLAST		65		
Domain ⁱ	233 - 299	KH 2 (PROSITE-ProRule annotation 👻	🃾 Add 🔧 BLAST		67		
Domain ¹	322 - 386	кн з	PROSITE-ProRule annotation 👻	📾 Add 🔧 BLAST		65		
Domain ¹	424 - 491	KH 4 (PROSITE-ProRule annotation 👻	📾 Add 🍾 BLAST		68		
Repeat ⁱ	571 - 582	1		🃾 Add 🍾 BLAST		12		
Repeat ⁱ	617 - 628	2		🃾 Add 🔧 BLAST		12		
Repeat ⁱ	643 - 654	3		📾 Add 🔧 BLAST		12		
Repeat ⁱ	673 - 684	4		🃾 Add 🔧 BLAST		12		

		SW480					
	1	2	3	4	5	6	
Flag	-		-	-	-	-	-100KDa -70KDa
GAPDH	1	-	-	-	-	-	-37KDa
	1: Ctr	I		4:	KSRP	-Del 2	
	2: Vec	ctor		5:	KSRP	-Del 3	
	3: KS	RP-D	el 1	6:	KSRP	P-Del 4	

Vector

Circ7379

Α

В

D

Relative expression of miRNAs (FC)

6

4

2-

0

Range 2: 121 to 150 Graphics

141
.21
2

Range 11: 128 to 137 Graphics

	Score 19.3	bits(20	E)) 2	Expect 1.2	Identities 10/10(100%)
circ7379	Query	976	GGAGTCTCGC	985	
pri-miR-320a	Sbjct	137	GGAGTCTCGC	128	

SW480

miR-320a miR-1276

σ

Range 14: 64 to 71 Graphics

Score 15.7 bits(16)				Expect 3.6	Identities 8/8(100%)
circ7379	Query	2974	ATCCTTTT	2981	
pre-miR-320a	Sbjct	71	ATCCTTTT	64	

Supplementary Tables

Table S1 Primers used in this article

Gene names	Forward primers $(5^{2} \rightarrow 3^{2})$	Reverse primers $(5^{2} \rightarrow 3^{2})$
hsa_circ_007370		
divergent primer	AGGCATACAAGTACCAACTAGG	CCCAGGAGCTCGAGCAAA
hsa circ 007370		
nsu_circ_007379	GGAGGATCCACTAGTCCACAC	GTGCTTACCCCCAACTTGCC
bag size 102008		
nsa_circ_103908		IGIGACAICACAGACCCAITCII
hsa_circ_406549	GCACCAGACCIAGICITIAAIGA	TGTTGACCGAGGGTTCTTTTG
1 105160	CA	
hsa_circ_405468	CGTCCCTTGTTCAGGTATCCA	AAACTCTTTGGGAAGGAGCAAC
hsa_circ_071127	AATGTATCAAGCGATGGAGACC	GCCTGAGAAACTTGACCCCA
hsa_circ_100686	ACGGTTACTGTGACCTGACTGG	TTGGATAGCCTTCAATGAGCC
hsa_circ_001736	TGCCTCCTGATGCACTTATCA	TGTAGTAGCACTGCCCTCTCTTT
hsa_circ_405619	ATGAATGAAACATACCCACCCA	GCAGGTCTCAGGCTTCAGTTTG
hsa_circ_002534	AAACCATTAGGAACCTGGACTGT	TCACAGCCACATCTTCAAAGG
hsa_circ_007081	ATGAAACATACCCACCCATCTG	TGGACCACAAAACAGCAAAGT
hsa_circ_0101697	CCGACAGTTCCGTTTATAGCC	CTCGAGCAAATGGTATTAAGTGC
GAPDH	TGCACCACCAACTGCTTAGC	GGCATGGACTGTGGTCATGAG
circLPAR1	TGTTCACCACCTACAACCAC	GAGAAGCTGTGTACCTGATGC
circPLCE1	AGCCCCACTCTACACCAACC	TTCATGCCGCCTTTGATCCG
circ_0002138	AGACACTCTGTGCTTTATGGC	CCATTCACATACCTTCCACA
circTADA2A	TGTGCACCAAGACCAAGGAG	AGGAAAATCTGAAGTAGTGA
DHX9	GCCAATTTCTGGCCAAAGCA	CGAGGCTCAATGGGGAGTTT
ADAR	CGAGAATCCCAAACAAGGAA	CTGGATTCCACAGGGATTGT
RUNX1	TGAGCTGAGAAATGCTACCGC	ACTTCGACCGACAAACCTGAG
KSRP	CCGCTTACTACGGACAGACCC	CCCCAAACAGAACAAAATGGA
hsa-miR-320a	AGGGCTAAAAGCTGGGTTGA	CAGTGCGTGTCGTGGAGT
hsa-miR-1276	TAAAGAGCCCTGTGGAGACAG	CTCAACTGGTGTCGTGGAGC
<i>U6</i>	CTCGCTTCGGCAGCACATATACT	ACGCTTCACGAATTTGCGTGTC

Target sequences
GAGUGCAGAUGAUGAGAAA-dTdT
GCAGAUGAUGAGAAAUCAC-dTdT
CCAGAGUGCAGAUGAUGAGAAAUCA-dTdT
GAGCCAACUUGAAGGAUUA-dTdT
CGCAGAGUUCCUCACCUGU-dTdT
CCUCGAAGACAUCGGCAGAAA-dTdT
GAUCAACCGGAGAGCAAGA-dTdT

Table S2 siRNAs used in this article

circRNA	Type	Gene	Position	Spliced	FC	<i>P</i> value
names	Type	symbol	rosition	length (nt)	(abs)	i varae
hsa_circRNA_103908	exonic	EDIL3	chr5	486	6.94	0.0173
hsa_circRNA_007379	intergenic	/	chr14	3199	5.39	0.0250
hsa_circRNA_406549	exonic	NR3C2	chr4	496	4.54	0.0070
hsa_circRNA_405468	intronic	MT2A	chr16	303	4.22	0.0037
hsa_circRNA_071127	exonic	NR3C2	chr4	1759	4.10	0.0456
hsa_circRNA_100686	exonic	ATRNL1	chr10	536	3.61	0.0457
hsa_circRNA_001736	exonic	KMT2E	chr7	633	3.41	0.0409
hsa_circRNA_405619	intronic	PRKCA	chr17	1131	3.39	0.0390
hsa_circRNA_002534	exonic	ZNF823	chr19	188	3.29	0.0190
hsa_circRNA_007081	sense	PRKCA	chr17	18266	3.25	0.0138
	overlapping					

Table S3 The top 10 downregulated circRNAs in our circRNA microarray

conditional cancel patients.								
Clinicopathological	Total	Circ7379 6	expression ^a	α^2	D voluob			
features	(n=55)	Low (n=28)	High (n=27)	χ	r value			
Gender								
Male	33	19	14	1 211	0.226			
Female	22	9	13	1.211	0.220			
Age (years)								
≤60	31	15	16	0.425	0.671			
>60	24	13	11	0.425	0.071			
Tumor location								
Colon	34	20	14	1 404	0.125			
Rectum	21	8	13	1.494	0.155			
Tumor size (cm)								
≤ 5	41	17	24	2 000	0.027			
>5	14	11	3	2.088	0.037			
Differentiation								
Well-moderate	41	18	23	1 460	0 1 4 2			
Poor	14	10	4	1.409	0.142			
Invasion depth								
T1-2	7	0	7	/	0.004			
T3-4	48	28	20	/	0.004			
Lymph metastasis								
NO	26	10	16	1 749	0.080			
N1-2	29	18	11	1.748	0.080			
Distant metastasis								
M0	50	24	26	0.907	0.271			
M1	5	4	1	0.896	0.371			
TNM stage ^c								
I-II	25	9	16	2 0 1 0	0.044			
III-IV	30	19	11	2.019	0.044			

 Table S4 Correlation between circ7379 expression level and clinicopathological features of colorectal cancer patients.

^a Using median expression level of hsa_circ_0007379 as cutoff.

^b Two-sided Chi-squared test or Chi-square with Yates' correction or Fisher's exact test.

^c TNM stage system according to AJCC 8th classification.

	Number of	Sita tuna	contant L score	context+ score
	binding sites	Sile type	context+ score	percentile
hsa-miR-1273	3	7mer-m8	-0.171, -0.154, -0.032	73, 68, 2
hsa-miR-149	3	7mer-m8	-0.132, -0.006, 0.034	79, 34, 12
hsa-miR-548c-3p	3	7mer-1a	0.158, 0.185, 0.257	79, 71, 14
hsa-miR-658	3	7mer-m8	-0.110, -0.096, -0.076	55, 40, 22
hsa-miR-661	4	7mer-m8	-0.222, -0.065, -0.046, 0.029	96, 69, 65, 8
hsa-miR-665	3	7mer-m8	-0.223, -0.173, 0.014	95, 92, 36
hsa-miR-1827	4	8mer-1a	-0.238, -0.131, -0.029, 0.022	96, 90, 73, 47
hsa-miR-940	4	7mer-m8	-0.133, -0.117, -0.027, 0.001	91, 89, 72, 55

Table S5 Prediction of miRNA-binding sites in circ7379 using TargetSan algorithms.

circRNA ID	Host gene	ORF_size	Coding	PMID
	symbol		probolility	
hsa_circ_0007379	/	291	0.0280	/
hsa_circ_0006156	FNDC3B	657	0.9744	32241279
hsa_circ_0006401	COL6A3	597	0.9780	33947841
hsa_circ_0000943	ARHGAP35	3870	1.0000	34258149
hsa_circ_0000615	ZNF609	753	0.9968	28344082
hsa_circ_0001451	FBXW7	582	0.9803	28903484
hsa_circ_0001649	SHPRH	441	0.6435	29343848

Table S6 Assessment of coding potential in circRNAs using circBank online database.