
1	Supplementary Information
2	for
3	FGF2 Attenuates Microvascular Ischemia-Reperfusion Injury by
4	KLF2-mediated Ferroptosis Inhibition And Antioxidant Responses
5	Fanfeng Chen et. al
6	

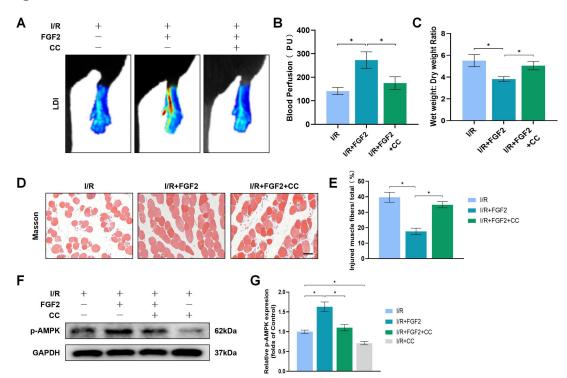

Figure S1. FGF2 attenuates limb I/R injury by inhibiting ferroptosis. (**A**) Blood perfusion of hind limbs were detected by LDI. (**B**) Signal intensity of blood flow was plotted as a histogram. (**C**) Wet weight to dry weight ratio. (**D**) Masson staining of the transverse sections of skeletal muscle. Scale bar, 100 μ m. (**E**) The degree of skeletal muscle fiber injury was assessed by the percentage of injured fibers. (**F**) Western blots for GPX4 in skeletal muscle tissues. (**G**) Quantification of protein level of GPX4 from (F) with normalized with respect to GAPDH band density. Data are displayed as the means \pm SD (n = 3-4 per group). Significance: *P < 0.05.

Figure S2. FGF2 attenuates limb I/R injury by activiting NFE2L2. (**A**) Blood perfusion of hind limbs were detected by LDI. (**B**) Signal intensity of blood flow was plotted as a histogram. (**C**) Wet weight to dry weight ratio. (**D**) Masson staining of the transverse sections of skeletal muscle. Scale bar, 100 μ m. (**E**) The degree of skeletal muscle fiber injury was assessed by the percentage of injured fibers. (**F**) Western blots for nuclear NFE2L2 in skeletal muscle tissues. (**G**) Quantification of protein level of NFE2L2 from (F) with normalized with respect to Histone 3 band density. Data are displayed as the means \pm SD (n = 3-4 per group). Significance: *P < 0.05.

Figure S3. FGF2 attenuates limb I/R injury via the KLF2-NFE2L2 axis. (**A**) Blood perfusion of hind limbs were detected by LDI. (**B**) Signal intensity of blood flow was plotted as a histogram. (**C**) Wet weight to dry weight ratio. (**D**) Masson staining of the transverse sections of skeletal muscle. Scale bar, 100 μ m. (**E**) The degree of skeletal muscle fiber injury was assessed by the percentage of injured fibers. (**F**) Western blots for KLF2 in skeletal muscle tissues. (**G**) Quantification of protein level of KLF2 from (F) with normalized with respect to GAPDH band density. Data are displayed as the means \pm SD (n = 3-4 per group). Significance: ns, non-significant; *P < 0.05.

Figure S4. FGF2 attenuates limb I/R injury via the AMPK signaling pathway. (**A**) Blood perfusion of hind limbs were detected by LDI. (**B**) Signal intensity of blood flow was plotted as a histogram. (**C**) Wet weight to dry weight ratio. (**D**) Masson staining of the transverse sections of skeletal muscle. Scale bar, 100 μ m. (**E**) The degree of skeletal muscle fiber injury was assessed by the percentage of injured fibers. (**F**) Western blots for nuclear p-AMPK in skeletal muscle tissues. (**G**) Quantification of protein level of p-AMPK from (F) with normalized with respect to GAPDH band density. Data are displayed as the means \pm SD (n = 3-4 per group). Significance: *P < 0.05.