Supplementary Information for

p32 regulates glycometabolism and TCA cycle to inhibit ccRCC progression via copper-induced DLAT lipoylation oligomerization

This file includes:

Figures S1-S3 and legends

- ✓ Figure S1. p32 expression and the relationship between p32, DLAT and clinical parameters in the database.
- ✓ Figure S2. The C-terminal deletion of p32 does not alter the glucose metabolism phenotype of ccRCC.
- ✓ Figure S3. p32 promotes copper-induced oligomerization of lipo-DLAT in ACHN cells.

Supplementary Tables S1-S3

- ✓ Table S1. The sequences of DLAT siRNAs
- ✓ Table S2. The sequence of primer (F: Forward primer; R: Reverse primer)
- ✓ Table S3. The basic situation of selected patients in the TCGA datasets

Supplementary Figures

Figure S1. p32 expression and the relationship between p32, DLAT and clinical parameters in the database. (A) Expression levels of *p32* mRNA in pan-cancer (http://ualcan.path.uab.edu/). (B) Protein expression levels of p32 in pan-cancer (http://ualcan.path.uab.edu/). (B) Protein expression levels of p32 in pan-cancer (http://ualcan.path.uab.edu/). The correlation between p32, DLAT with (C) normal and tumor, (D) T stage, (E) M stage, (F) pathological stage (normol n=72, tumor n=539). The effects of p32 expression on (G) overall survival (OS) time, (H) disease-specific survival (DSS) time in patients with KIRC were analyzed by survival curve (n=539, OS *P*=0.045, DSS *P*=0.015). The effects of DLAT expression on (I) OS time, (J) DSS time in patients with KIRC were analyzed by survival curve (n=539, OS *P*<0.001, DSS *P*<0.001). Statistically significant differences were indicated: **P*<0.05, ***P*<0.01, ****P*<0.001. NS: no significant difference.

Figure S2. The C-terminal deletion of p32 does not alter the glucose metabolism phenotype of ccRCC. 786-O cells were transfected with p32-full and p32-74-174, (**A**) Lactate levels and (**B**) ATP levels were examined. (**C**) PDH activity were examined in p32 overexpression 786-O cells within gradient copper and elesclomol stimulation.

Figure S3. p32 promotes copper-induced oligomerization of lipo-DLAT in ACHN cells. (**A**) ACHN and 786-O cells were treated with or without elesclomol and $CuSO_4$ at a suitable drug concentration that did not affect cell morphology for 24 h, and then the intracellular copper ion content was observed under a microscope by adding rhodamine B hydrazide probe. ACHN-pCDH and ACHN-p32 cells were treated with concentration gradients of elesclomol and $CuSO_4$, and the cellular proteins were extracted. (**B**) Western blotting showed the expression of the specified protein

indicators after protein denaturation, (C) Non-reducing western blotting showed the expression of DLAT oligomers and (D) Western blotting showed the expression of the specified protein indicators after crosslinking protein. The relative quantification of the gray value of the bands was analysised with ImageJ software. (E) Immunofluorescence images showing the expression of indicated proteins after treating with or without 400 nM elesclomol and CuSO₄ for 24 h in ACHN-pCDH and ACHN-p32 cells. The yellow arrow points to the DLAT foci.

Supplementary Tables

Table S1. The sequences of DLAT siRNAs

Name	Target sequence
si-DLAT#1	CCACTCTGTATCATTGTAGAA
si-DLAT#2	GCTGAGTTTAGAAAGTACCTT
si-DLAT#3	CCGCATCAGAAGGTTCCATTA

Table S2. The sequence of primer (F: Forward primer; R: Reverse primer)

Genes	Primers sequences (5' to 3')
GAPDH	F: TGCACCACCAACTGCTTAGC
	R: GGCATGGACTGTGGTCATGAG
<i>p32</i>	F: TTTGATGGTGAGGAGGAACC
	R: GCCTTCTTGCCATCATCATT
DLAT	F: CAGGGTGGCACTTTTACGAT
	R: GAAGCACCAATTGCCAAAAT
LDHA	F: TGTGCCTGTATGGAGTGGAA
	R: AGCACTCTCAACCACCTGCT
РКМ2	F: CTATCCTCTGGAGGCTGTGC
	R: GAGGCTCGCACAAGTTCTTC
TFRC	F: AAAATCCGGTGTAGGCACAG
	R: CACCAACCGATCCAAAGTCT
SLC30A9	F: GTCATGGGATTGCTTCATCC
	R: ATTCCTTTAGCCCGAGCATT
ATP7A	F: CTGGCAAGGCAGAAGTAAGG
	R: TTCCCCTCACAACAAGTTCC
ATP7B	F: AAGTCCCCACAATCAACCAG
	R: ACCAACACGGAGAGAACACC

СР	F: ATCCGTGGGAAGCATGTTAG
	R: TGAGTCACTTCCAGGTGCTG
SLC31A1	F: CAGCATTCGCTACAATTCCA
	R: GGTGAGGAAAGCTCAGCATC
CS	F: GCAGAAGGAAGTTGGCAAAG
	R: CGCGGATCAGTCTTCCTTAG
IDH2	F: CTCATCAGGTTTGCCCAGAT
	R: AGGAAGTCCGTGGTGTTCAG
OGDH	F: GGAATCAGCACTTCCTCTGC
	R: CAGGGGTCTCAAACTTCTGC
MDH2	F: GCAGCCACTTTCACTTCTCC
	R: GCTGTTCAGGTCCGAGGTAG
ACO2	F: GTCACGTCCCCAGAGATTGT
	R: CCTCCAGCCTGAACTTCTTG
SDHB	F: GGAAGGCAAGCAGCAGTATC
	R: ATTTGTCTCCGTTCCACCAG

Table S3. The basic situation of selected patients in the TCGA datasets

Characte	eristic	5	Total (N)	Unavailable number (N)
Age			539	0
<=60			269	
>60			270	
Gender			539	0
Female			186	
Male			353	
Race			532	7
Asian			8	
Black	or	African	57	

White	467		
T stage	539	0	
T1	278		
T2	71		
Т3	179		
T4	11		
N stage	257	282	
NO	241		
N1	16		
M stage	506	33	
M0	428		
M1	78		
Pathologic stage	536	3	
Stage I	272		
Stage II	59		
Stage III	123		
Stage IV	82		
Histologic grade	531	8	
G1	14		
G2	235		
G3	207		
G4	75		