Supplementary materials for

The dysadherin/FAK axis promotes individual cell migration in colon cancer

Choong-Jae Lee^{1#}, Tae-Young Jang^{1#}, Jee-Heun Kim^{1#}, Songwon Lim¹, Sunjae Lee¹, Jeong-Seok Nam^{1*}

¹School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea

* Corresponding author

Jeong-Seok Nam, School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea; Email: namje@gist.ac.kr; Tel: +82 62 715 2893

These authors contributed equally to this work

Supplementary Figures

Figure S1. High dysadherin expression in cancer cells is correlated with cell migration and invasion. (A) Differentially expressed genes between the high and low dysadherin (Fxyd5)-expression cell groups. (B, C) GSEA of pathways enriched in dysadherin^{high} patients compared to dysadherin^{low} patients from open-source CRC patient data (GSE35896, GSE21510). (D) Quantitative analysis of immunofluorescence data for dysadherin and p-paxillin in CRC patient samples. (E) Immunofluorescence analysis of dysadherin and p-paxillin expression using CRC patient tissue. The patient number used in representative images is 17129828 for carcinoma in situ and 07115576 for metastatic CRC. Scale bars, 100 μ m. N, normal; T, tumor; PT, primary tumor; LM, liver metastasis; MFI, mean fluorescence intensity. (F) Total tumor load and number of tumors distributed by size from *Apc*^{Min/+};*Fxyd5*^{+/+} and *Apc*^{Min/+};*Fxyd5*^{-/-} mice. (G) Representative hematoxylin and eosin-stained intestine with or

without invasive regions. (H) Altered expression of dysadherin analyzed by relative mRNA expression (top) and protein (bottom) levels upon dysadherin KO in SW480 cells. (I) Representative hematoxylin and eosin-stained livers with metastasis. N: normal, T: tumor. Quantitative analysis of metastatic burden at the microscopic level. Metastatic burden (%) = (Metastasized lesion area/Total tissue area) x 100. (J, K) Immunofluorescence analysis of dysadherin, F-actin and p-paxillin expression in metastatic nodules generated from invaded dysadherin EV or KO SW480 cells accompanied by H&E staining. (L) Altered expression of dysadherin analyzed by relative mRNA expression (top) and protein (bottom) levels upon dysadherin OE in HCT116 cells. The data are presented as the means \pm SEMs. *** indicates *p* < 0.001. Statistical significance was determined by unpaired two-tailed Student's t tests for comparisons between two groups.

Figure S2. FAK expression in patient sample and validation of the cytotoxicity of VS-4718. (A) Quantitative analysis of dysadherin and p-FAK immunofluorescence data in patient samples. (B) Immunofluorescence analysis of dysadherin and p-FAK expression using CRC patient tissue. The patient number used in representative images is 09538529 for carcinoma in situ and 07115576 for metastatic CRC. Scale bars, 100 μ m. N, normal; T, tumor; PT, primary tumor; LM, liver metastasis; MFI, mean fluorescence intensity. (C) The IC₅₀ of VS-4718 was evaluated in HCT116 cells by the MTT assay.

Figure S3. Validation of the cytotoxicity of VS-4718, ZINC40099027 and siRNA efficacy, and downstream signaling of dysadherin/FAK axis. (A) The efficiencies of three siFAK sequences were evaluated by real-time qPCR analysis (top) and immunoblot assay (bottom) in HCT116 cells. (B) Immunoblot of p-FAK, t-FAK, p-Src, t-Src, p-MLC2, t-MLC2, p-paxillin, and t-paxillin in dysadherin EV and OE HCT116 cells with or without siRNA targeting FAK. (C) Heatmap comparing the relative expression of FAK downstream genes in dysadherin EV and OE HCT116 cells with siFAK, as determined by RT–qPCR (n = 3 biological replicates). (D) The IC₅₀ of PP2 was

evaluated in HCT116 cells by MTT assay. (E) The IC₅₀ of ZINC40099027 was evaluated in SW480 cells by MTT assay. (F) Trajectories of individual cells (n=100) in a single field of view over an 8 h period in dysadherin EV and OE HCT116 cells with or without siRNA targeting FAK. Scatter plots showing the migrated length (μ M), migrated speed (μ M/s), straightness index and directionality. (G) Boyden chamber assays with Matrigel matrix-coated membranes were performed to compare the invasion potential of dysadherin EV and OE HCT116 cells with or without siRNA targeting FAK (n = 3/group). (H) Immunoblot of Rho-GTPase proteins in dysadherin EV and OE HCT116 cells with or without siRNA targeting FAK. (I) Pathway analysis by ingenuity pathway analysis of the activation of Rho-GTPase proteins induced by FAK signaling. (J) Pathway analysis by ingenuity pathway analysis of the activation of Rho-GTPase proteins induced by FAK signaling (K) The efficacy of three siPaxillin sequences was evaluated by real-time qPCR analysis (top) and immunoblot assay (bottom) in HCT116 cells. (L, M) The activation of Rho-GTPase proteins (RhoA, Rac1, and Cdc42) was measured by G-LISA assay in dysadherin EV and OE HCT116 cells with or without 1 μ M VS-4718 treatment or siRNA targeting paxillin.

Figure S4. The effects of glycosylation inhibition on the expression and function of dysadherin. (A) The IC₅₀ of benzyl- α -GalNAc was evaluated in HCT116 cells by MTT assay. (B) Immunoblot of dysadherin and GAPDH in dysadherin EV and OE HCT116 cells with or without 4 mM benzyl- α -GalNAc treatment. (C) Immunoblot of dysadherin and GAPDH in dysadherin OE HCT116 cells with 0, 0.5, 1, 2, 4 mM benzyl- α -GalNAc treatment. (D) Transwell invasion assays with Matrigel matrix-coated membranes were performed to compare the invasion potential of WT HCT116 and dysadherin OE HCT116 cells with or without 4 mM benzyl- α -GalNAc (n = 3/group). (E) Trajectories of individual cells (n=100) in a single field of view over an 8-h period upon 4 mM benzyl- α -GalNAc treatment. Scatter plots show the migrated length (μ M), migration speed (μ M/s), straightness index and directionality.

Supplementary Videos

Video S1. Representative single-cell tracking video in control SW480 cells.

Video S2. Representative single-cell tracking video in SW480 cells with dysadherin knockout.

Video S3. Representative single-cell tracking video in control HCT116 cells.

Video S4. Representative single-cell tracking video of HCT116 cells overexpressing dysadherin.

Video S5. Representative single-cell tracking video in control HCT116 cells.

Video S6. Representative single cell-tracking video in HCT116 cells treated with VS-4718

Video S7. Representative single-cell tracking video of HCT116 cells overexpressing dysadherin.

Video S8. Representative single-cell tracking video of HCT116 cells overexpressing dysadherin treated with VS-4718.

Video S9. Representative single-cell tracking video in control HCT116 cells.

Video S10. Representative single cell-tracking video in HCT116 cells treated with benzyl-α-GalNAc

Video S11. Representative single-cell tracking video of HCT116 cells overexpressing dysadherin.

Video S12. Representative single-cell tracking video of HCT116 cells overexpressing dysadherin treated with benzyl- α -GalNAc.

Video S13. Representative single-cell tracking video in control SW480 cells.

Video S14. Representative single cell-tracking video in SW480 cells treated with ZINC40099027

Video S15. Representative single-cell tracking video of SW480 cells with dysadherin knockout.

Video S16. Representative single-cell tracking video of SW480 cells with dysadherin knockout treated with ZINC40099027.

Supplementary Tables

	Sequence				
Target –	Forward	Reverse			
Human Dysadherin	TCCCACTGATGACACCACGA	AAACCAGATGGCTTGAGGGT			
Human NOS3	TGACATTGAGAGCAAAGGGCT	CGTAGGTCTTGGGGTTGTCA			
Human BEX4	AGAATCCCGCCATTTGGGA	TTCCATCATCTGCCCTACAAACC			
Human TPGS1	GCCTTCCTGGCTCACTACTT	CACGCTCACGTTGTTGTTGA			
Human FGD5	TGCCTGTCACACACGTCA	TGTCCTTCAGGTACTTCAGCG			
Human FLNB	GGGGCACCACAGGTATCCA	CCATGGGGGTGTACATGACTTT			
Human ITGA2B	ATCAGTTTGTGCTGCAGTCG	ACCAGATTGGAATGGCCCTC			
Human ITGB2	GGATGGACCGCTACCTCATC	TCTCAAAGCGCCTGTACTCC			
Human EFNB1	TCCTGACGGTCCTACTACTGA	AGGGAATGATGATGTCGCTGG			
Human CCR7	ACGGTGGCCAACTTCAACAT	GATCGTTGCGGAACTTGACG			
Human CLDN11	GAGCCCGGTGTGGCTAAGTA	GCCTGCATACAGGGAGTAGC			
Human CXCL6	TGCGTTGCACTTGTTTACGC	TTTAGAAAAGGGGGCTTCCGGG			
Human ACVRL1	ACCATCGTGAATGGCATCG	CTGCAGCCAGCCGGTTA			
Human CXCL8	GAGAGTGATTGAGAGTGGACCAC	CACAACCCTCTGCACCCAGTTT			
Human CCL11	GGGTGCAGGATTCCATGAAGTA	AAACCCATGCCCTTTGGACTG			
Human CXCR1	TGAGCGCCGCAACAACAT	CGTGCCAAGAACTCCTTGCT			
Human CAMK1	TGAACAGATTTTGAAGGCCGAG	CAATCCATGGGTGCTGCAAG			
Human Paxillin	CTTTCTGAACTCGACCGCCT	TCCCAAGGGGCTGTTAGTCT			
Human PPIA	TGCCATCGCCAAGGAGTAG	TGCACAGACGGTCACTCAAA			
Human SPARC	AGACAGGGGTACCTGTGGG	CACATGGGGGGTGTTGCTCTC			
Human MMP2	AAGGATGGCAAGTACGGCTT	AAACTTGCAGGGCTGTCCTT			
Human CD40	AATGCCTTCCTTGCGGTGAA	TCTCACAGGCCTCACTCGTA			
Human CCL5	TCAAGACAGCACGTGGACCT	CGGGCAATGTAGGCAAAGCA			
Human MMP9	GTCGAAATCTCTGGGGGCCTG	ATGTTGTGGTGGTGCCACTT			
Human TNF	CAGGCAGGTTCTCTTCCTCTCA	AGGAGAAGAGGCTGAGGAACAA			
Human	CAGACTACGAGGCGTCATCC	CGTGGGAATGAAGTTGGCAC			

Table S1. List of primers used for real-time RT-qPCR

FOS		
Human GPX4	ACGCCCGATACGCTGAGT	TCACGCAGATCTTGCTGAACATA
Human MMP14	CCTTGGACTGTCAGGAATGAGG	TTCTCCGTGTCCATCCACTGGT
Human CHRD	CGCATCAGTGGACACATTGC	CCTCACTGCTTGTCCCTACC
Human CDKN1A	ACTTTGTCACCGAGACACCA	CAGCAGAGCAGGTGAGGTG
Human CEBPB	TGATAAACTCTCTGCTTCTCCCT	GTTGCGTCAGTCCCGTGT
Human JUNB	ACCACGACGACTCATACACAG	CGAGCCCTGACCAGAAAAGT

Immunoblot analysis					
Target	Conjugate	Catalog# (company or provider)			
Human p-MLC (Ser19)	-	3675/Cell Signaling Technology			
Human t-MLC	-	8505/Cell Signaling Technology			
Human p-Paxillin (Tyr118)	-	69363/Cell Signaling Technology			
Human t-Paxillin	_	2542/Cell Signaling Technology			
Human Vinculin	_	13901/Cell Signaling Technology			
Human p-FAK	_	3283/Cell Signaling Technology			
Human T-FAK	_	3285/Cell Signaling Technology			
Human p-Src	-	59548/Cell Signaling Technology			
Human T-Src	-	2109/Cell Signaling Technology			
Human RhoA	-	2117/Cell Signaling Technology			
Human Rac1/2/3	-	2465/Cell Signaling Technology			
Human p-Rac1/cdc42 (Ser71)	-	2461/Cell Signaling Technology			
Human Cdc24	-	2460/Cell Signaling Technology			
Human Dysadherin	-	M53/provided by Dr. Ino			
Human GAPDH	-	5174/Cell Signaling Technology			
Goat anti-mouse	HRP	554002/BD Pharmigen ^{тм}			
Goat anti-rabbit	HRP	554021/BD Pharmigen TM			
IF staining					
Target	Conjugate	Catalog# (company or provider)			
Human Dysadherin	-	M53/provided by Dr. Ino			
Human F-actin	Alexa 555	A34055/Thermo Fisher			
Human p-MLC2	-	3675/Cell Signaling Technology			
Human p-Paxillin	-	69363/Cell Signaling Technology			
Human p-FAK (Y397)	-	700255/Thermo Fisher			
Donkey anti-mouse	Alexa 488	A21202/Thermo Fisher			
Goat anti-mouse	Alexa 555	A21422/Thermo Fisher			
Donkey anti-rabbit	Alexa 488	A21206/Thermo Fisher			
Donkey anti-rabbit	Alexa 555	A31572/Thermo Fisher			

Table S2. List of antibodies used for immunoblotting analysis and IF staining

Target		Sequence			
		Sense	Anti-sense		
	#1	AACCACCUGGGCCAGUAUUAU	AUAAUACUGGCCCAGGUGGUU		
FAK	#2	GCGAUUAUAUGUUAGAGAUAGUU	AACUAUCUCUAACAUAUAAUCGC		
	#3	CGAAUGAUAAGGUGUACGA	UCGUACACCUUAUCAUUCG		
	#1	GAUUUCUACACUGAGGUUU	AAACCUCAGUGUAGAAAUC		
Paxillin	#2	GCUCACCAGGACUGUUUUA	UAAAACAGUCCUGGUGAGC		
	#3	CAGAACGACAAGCCUUACU	AGUAAGGCUUGUCGUUCUG		

Table S3. List of siRNA targeting FAK

	Stage			
Variable	Stage II (n=14)	Stage III (n=6)	<i>p</i> value	
Age (mean±SD)	65.14±10.38	59.17±9.559	0.244	
Sex				
Male	8 (57.1%)	3 (50.0%)	0.484	
Female	6 (42.9%)	3 (50.0%)		
T stage				
T2-3	13 (89.6%)	5(70.4%)	0.515	
T4	1 (10.4%)	1 (29.6%)		
N stage				
NÖ	14 (100.0%)	0 (0.0%)	< 0.001	
N1	0 (0.0%)	2 (33.3%)		
N2	0 (0.0%)	4 (66.7%)		
Tumor differentiation				
Well	5 (35.7%)	0 (0%)	0.040	
Moderately	8 (57.1%)	3 (50.0%)	0.049	
Poorly	1 (7.1%)	3 (50.0%)		
Recurrence				
Yes	1 (7.1%)	2 (25.0%)	0.240	
No	13 (92.9%)	6 (75.0%)		

Table S4. Association of clinicopathologic characteristics in patients with resected CRC (n = 20)

# o f				Call	AJCC Stage	TNM Stage	
# 01 Patients	Site	Sex	Age	metaplasia		Tumor depth	Lymph node metastasis
71047123	colon	F	56	yes	Stage III	Т3	N2a
71045602	colon	F	60	yes	Stage II	Т3	N0
71040975	rectum	М	61	yes	Stage II	Т3	N0
71038481	rectum	F	80	yes	Stage II	Т3	N0
71037976	colon	М	64	yes	Stage II	Т3	N0
71036347	rectum	М	68	yes	Stage II	Т3	N0
71034747	rectum	М	62	yes	Stage II	Т3	N0
71033802	rectum	F	56	yes	Stage III	Т3	N2a
71030718	colon	М	50	yes	Stage III	Т3	N1b
71029709	colon	М	49	yes	Stage II	Т3	N0
71023619	colon	М	52	yes	Stage II	Т3	N0
71013348	colon	М	62	yes	Stage III	Т3	N1b
71003674	colon	F	73	yes	Stage II	Т3	N0
70471102	colon	М	72	yes	Stage II	Т3	N0
70327925	colon	М	61	yes	Stage II	T4a	N0
18301077	colon	F	52	yes	Stage II	Т3	N0
15709306	colon	F	78	yes	Stage II	Т3	N0
15120242	colon	F	80	yes	Stage II	Т3	N0
14847893	colon	F	77	yes	Stage III	T4a	N2a
11841258	rectum	М	54	yes	Stage III	Т3	N2b

Table S5. Clinical information regarding the CRC patient samples used for IF staining

Variable	Carcinoma in situ (n=10)	Metastatic CRC (n=10)	<i>p</i> value
Age (mean±SD)	$67{\pm}5.08$	59.17±9.559	0.624
Sex			
Male	6 (60.0%)	7 (70.0%)	0.639
Female	4 (40.0%)	3 (30.0%)	
T stage			
Tis	1 (10.0%)	0 (0.0%)	0.098
T1	3 (30.0%)	0 (0.0%)	
T2-3	6 (60.0%)	8 (80.0%)	
T4	0 (0.0%)	2 (20.0%)	
N stage			
NÖ	10 (100.0%)	4 (40.0%)	0.014
N1	0 (0.0%)	3 (30.0%)	
N2	0 (0.0%)	3 (30.0%)	
Tumor differentiation			
Well	4 (40.0%)	3 (30%)	0.600
Moderately	6 (6001%)	7 (70.0%)	0.639
Poorly	0 (0.0%)	0 (0.0%)	

Table S6. Association of clinicopathologic characteristics in patients with resected CRC (n = 20)

			TNM Stage				
# 01 Patients	Site	Sex	Age	metaplasia		Tumor depth	Lymph node metastasis
17129828	colon	М	67	yes	Carcinoma in situ	T1	N0
71010056	colon	М	69	yes	Carcinoma in situ	T1	N0
71030393	rectum	F	70	yes	Carcinoma in situ	T2	N0
09538529	rectum	М	60	yes	Carcinoma in situ	Tis	N0
11647306	rectum	F	77	yes	Carcinoma in situ	T2	N0
71024165	colon	М	63	yes	Carcinoma in situ	Т3	N0
71040258	colon	F	68	yes	Carcinoma in situ	T2	N0
71040067	rectum	F	69	yes	Carcinoma in situ	T1	N0
13524348	colon	М	60	yes	Carcinoma in situ	T2	N0
71048234	colon	М	67	yes	Carcinoma in situ	T2	N0
07506122	colon	М	64	yes	Metastatic CRC	Т3	N0
07427312	rectum	М	68	yes	Metastatic CRC	T4a	N1a
07115576	colon	F	55	yes	Metastatic CRC	T4a	N2b
07432965	rectum	М	73	yes	Metastatic CRC	Т3	N0
07076544	colon	М	59	yes	Metastatic CRC	Т3	N0
07246138	colon	F	62	yes	Metastatic CRC	Т3	N2b
07593199	colon	М	64	yes	Metastatic CRC	Т3	N1b
07126837	colon	М	84	yes	Metastatic CRC	Т3	N0
07620184	colon	М	86	yes	Metastatic CRC	Т3	Nla
07617821	colon	F	73	yes	Metastatic CRC	Т3	N2a

Table S7. Clinical information regarding the CRC patient samples used for IF staining