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A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) 
and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed.  The chimeric 
galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase 
activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa.  In vitro 
observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate 
without any externally added NADH.  Two fold higher recycling rate (0.3 mM/h) than that of the native 
enzyme was observed at pH values above 8.5.  Proximity effects became especially pronounced during the 
recycling assay when diffusion hindrance was induced by polyethylene glycol.  All these findings open up a 
high feasibility to apply the NAD(H) recycling system for metabolic engineering purposes e.g. as a model to 
gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous 
high-value-added compounds. 
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1. Introduction 
Vitalization and functioning achievements of 

cells are mainly based upon their metabolic activities 
which are frequently involved multiple enzymes in a 
compartmentalization of the subcellular structure 
arrangement.  Channeling of substrate and proximity 
effects of enzymes in the metabolic compartment 
have been demonstrated and considered playing 
important role on metabolic regulation [1].  The 
channeling effect can be naturally occurred within a 
bifunctional/multifunctional enzyme or tightly 
associated multienzyme clusters or transient enzyme 
complexes.  Tryptophan synthase from Neurospora 
crassa is an example of a single bifunctional enzyme 
channeling [2].  Meanwhile, in vitro, genetic 
engineering of novel bi- or multifunctional enzymes 
providing the putative channel in a close vicinity of 
two active sites has been reported [3].  These enzymes 
have further been applied as models for studying 
multienzyme reaction kinetics with particular focus 
on proximity and substrate channeling effects [4] both 
in vivo and in vitro [5].  However, proximity effect or 
channeling effect of coenzyme on the bifunctional 
enzyme still remains unexplored. 

Coenzyme regeneration is essential in many 
enzymatic processes.  Since the reduced forms of 
pyridine nucleotide cofactors are less stable and 
costly than the oxidized forms.  Economically, to 
maximize the involving of cofactors, regeneration and 
recycling of the coenzyme within the enzyme reactor 
is often required.  Engineering to generate the 
NAD(H) in a reaction has been performed by using 
both electrochemical [6] and photosensitized electron 
transfer [7].  However, the most common methods 
used are based on enzymatic regeneration [8, 9].  
These include using a series of dehydrogenases e.g. 
alcohol dehydrogenase, formate 
dehydrogenase/hydrogenase and lipoamide 
dehydrogenase along with a low price sacrificial 
substrate [10, 11, 12].  In some circumstances, it is 
worth to note that encapsulation or immobilization of 
multienzyme cluster is needed to achieve the 
successful of sequential reactions [13, 14].  Therefore, 
in this study, the use of artificial bifunctional enzyme 
has been extended to a recycling reaction as 
compared to the previous systems.  A chimeric 
enzyme composing of the two oligomeric enzymes, 
lactate dehydrogenase (LDH) from Bacillus 
stearothermophilus [15] is fused in-frame with the 
galactose dehydrogenase (galDH) from Pseudomonas 
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fluorescens [16] and applied for the production of 
lactate under continuous recycling of NADH using 
pyruvate and galactose as substrates.  Possibility of 
proximity effect of the coenzyme of the bifunctional 
engineered enzyme will also be explored. 
2. Materials and methods 

Chemicals and reagents 
Enzymes used for DNA manipulation and 

galDH were purchased from Boehringer Mannheim.  
A plasmid-DNA purification kit was from Promega.  
High molecular weight standard proteins for gel 
filtration were from Pharmacia.  Acrylamide and 
bisacrylamide were obtained from Bio-Rad 
Laboratories.  Standard proteins for polyacrylamide 
gel electrophoresis were purchased from Sigma.  
Peroxidase-conjugated swine anti-rabbit IgG was 
purchased from DAKO.  All other reagents were of 
analytical grade. 
Bacterial strain and plasmids 

E. coli strain F'11 recA [(lac,pro) Δthi, rifA, strA, 
recA/F'laclqZ- pro+] [17] was used as host.  Plasmids 
pDZ10 [4] encoding galDH/β-gal and pLDH41 [18] 
were utilized as sources for the galDH gene and ldh 
gene, respectively. 
Gel filtration of chimeric galDH/LDH 

The chimeric galDH/LDH was isolated from E. 
coli carrying pDU712 grown to late exponential phase 
in LB broth supplemented with 50 mg/L ampicillin.  
Cells were harvested by centrifugation at 10,000 g for 
10 minutes and then resuspended in 0.1 M sodium 
phosphate buffer, pH 6.0 containing 0.2 M NaCl and 1 
mM DTT (buffer A).  The following steps were all 
carried out at 4°C.  After resuspension, cells were 
disrupted by sonic disintegration at output 5 with 
pulse on for 10×15 s (Sonifer B-30, Branson Sonic 
Power).  Crude extract was clarified by centrifugation 
at 20,000 g for 30 minutes.  Ammonium sulfate was 
added slowly to the supernatant until 45% saturation 
was reached.  The precipitate was pelleted by 
centrifugation at 20,000 g for 30 minutes, redissolved 
and dialyzed in buffer A for overnight.  Any 
precipitate was removed by centrifugation at 40,000 g 
for 10 minutes.  The supernatant was further 
subjected to gel filtration using Sephacryl S-400 
Superfine (Pharmacia) column (1.6 × 100 cm) 
equilibrated with buffer A.  Fractions exhibiting both 
enzyme activities were collected.  The molecular 
weight of the chimeric enzyme was determined using 
the standard protein markers: catalase (232 kDa); 
ferritin (440 kDa); aldolase (580 kDa); and 
thyroglobulin (669 kDa). 
Enzyme assays 

galDH activity was determined by using 16.6 
mM galactose as substrate [19].  One unit of enzyme 
reduces 1 μmol of galactose per minute at room 
temperature in 0.09 M Tris-HCl, pH 8.5 containing 0.5 
mM NAD.  Assay of LDH activity was performed in 
0.1 M MES buffer, pH 6.5 containing 0.2 mM NADH 

and 30 mM pyruvate.  One unit of enzyme reduces 1 
μmol of pyruvate per minute at room temperature. 

The change in absorbance at 340 nm was 
followed spectrophotometrically in both assays.  
Protein concentrations were determined according to 
Bradford [20] using bovine serum albumin as 
standard.  The pH profiles of LDH and galDH 
activities of the fusion and native enzymes were 
monitored in 0.1 M Tris-HCl in the pH range of 7.0 to 
10.5 and in 0.1 M sodium phosphate buffer in the pH 
range of 5.0 to 7.0, respectively. 
SDS-PAGE and Western blotting 

SDS-PAGE was performed on 8% 
polyacrylamide slab gels using Tris-glycine, pH 8.3, 
discontinuous buffer system as described by Laemmli 
[21].  The molecular weights of the chimeric enzyme 
subunits were determined by comparing the relative 
mobilities with those of the standard proteins: myosin 
(205 kDa); β-galactosidase (116 kDa); phosphorylase b 
(97 kDa); bovine serum albumin (66 kDa); ovalbumin 
(45 kDa); and carbonic anhydrase (29 kDa). 

For Western blotting, the proteins were 
transferred to a Millipore Immobilon TMPVDF 
transfer membrane using a Semi-Dry Electroblotter A 
(JKA-Biotech).  To generate antibodies against galDH, 
rabbits were immunized with galDH.  The antiserum 
was treated with ammonium sulfate to precipitate the 
antibodies and the precipitate was then resolved in 
0.02 M Tris-HCl, pH 7.5 containing 0.5 M NaCl.  
Western blots were developed using the rabbit anti-
bacterial galDH as first antibody and peroxidase-
conjugated swine anti-rabbit IgG (DAKO, Denmark) 
as second antibody.  Hydrogen peroxide and 4-
chloro-1-naphtanol were used as substrates for 
peroxidase, according to instructions from supplier.  
Visualization of standard protein markers was 
performed using amido black staining. 
Stability measurements 

Each of the chimeric galDH/LDH obtained after 
gel filtration, native LDH and galDH was subjected to 
thermal denaturation at 50 and 60°C in 0.1 M sodium 
phosphate buffer, pH 6.0 containing 0.2 M NaCl and 1 
mM DTT.  Enzyme stability was also monitored in 
urea concentrations ranging from 1 to 7 M using the 
same buffer. 
NADH recycling 

The chimeric galDH/LDH obtained after gel 
filtration was added to 0.1 M Tris-HCl containing 0.5 
mM NAD, 17 mM galactose and 30 mM pyruvate.  
The reactions were evaluated at pH 8.1, pH 8.9 and 
pH 9.6 by withdrawing samples of the reaction 
mixture at various time intervals.  The samples were 
firstly deproteinized in an equal volume of 0.6 M 
perchloric acid and then neutralized with 0.3 M KOH.  
The levels of lactate produced in these samples were 
assayed enzymatically as described by Noll [22].  The 
kinetic properties of the chimeric enzyme were tested 
and compared with those obtained from the native 
enzyme.  Production of lactate was also assayed in 
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recycling reactions containing various concentrations 
of polyethylene glycol 20,000 ranging between 0 and 
20 %. 
3. Results 

Construction of a chimeric gene encoding chimeric 
galDH/LDH 

Experiment was initiated by partially digested 
the plasmid pUCLDH with Bsm I.  A chemically 
synthesized DNA fragment coding for a BamH I 
restriction site along with 7 amino acids linker region 
was then inserted into the pUCLDH at the 5'- end of 
the ldh gene, generating the plasmid pUCLDHv.  The 
pUCLDHv was subsequently digested with Sca I and 
partially with BamH I.  The ldh fragment from 
pUCLDHv was then fused in-frame with the galdh 
gene originating from pDZ10 previously digested 
with BamH I and Sca I.  The plasmid pDU712 (Figure 
1) was transformed and expressed in E. coli strain 
F'11. 

Figure 1. A. Schematic illustration of plasmid pDU7l2 
encoding an in-frame fusion between galDH and LDH.  B. 
Nucleotide sequence of the linker region between the fused 
galDH and LDH. 
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Molecular size estimation of chimeric galDH/LDH 

The chimeric galDH/LDH was partially isolated 
by ammonium sulphate precipitation and gel 
filtration.  The elution profiles from gel filtration 
showed that the chimeric enzyme possessed dual 
characteristics of both galDH and LDH activities as 
represented in Figure 2.  The complete length of 
fusion protein eluted in one peak corresponded to a 
molecular weight of 400 kDa.  Meanwhile, two 
additional peaks that could be recognized in the 
chromatogram demonstrated neither LDH nor galDH 
activity.  The specific activities of the two enzyme 
moieties were in the range of 2-10 U/mg.  
Interestingly, the specific LDH activity was 5-6 time 
higher than the galDH activity (Table 1). 

In parallel, the molecular weight of the chimeric 
galDH/LDH was determined via SDS-PAGE 
followed by Western blotting.  From the Western blot, 

the molecular size of the chimeric galDH/LDH 
subunit was approximately 69 kDa (Figure 3; upper 
bands).  Since the native galDH was a dimeric 
enzyme which has a molecular weight of 33 kDa per 
monomer [4] while the native LDH existed mainly as 
a tetrameric form with a monomeric molecular 
weight of 35 kDa.  Our finding was in a good 
agreement with the theoretical calculation (68.5 kDa) 
of the complete length fusion protein.  Taken together 
with the gel filtration experiments, these data 
supported the notion that the active form of 
galDH/LDH was present mainly as a hexameric 
form. 
Table 1. Isolation of galDH/LDH from E. coli F'11 
carrying pDU712* 

LDH galDH Protein fraction 
Activity 

(U) 
Specific 
activity  
(U/mg) 

Activity 
(U) 

Specific 
activity  
(U/mg) 

Homogenate 27.8 0.68 4.56 0.11 
Ammonium sulfate (0-

45%) precipitation 
20.0 2.45 3.95 0.48 

Sephacryl S-400 20.0 6.54 3.25 1.04 
*Results are obtained from a 250 ml bacterial culture grown to late 
exponential phase 

Figure 2 Gel filtration of galDH/LDH.  A Sephacryl S-400 
Superfine column (1.6 × 100 cm) equilibrated with 0.1 M 
sodium phosphate buffer pH 6.0 containing 0.2 M NaCl 
and 1 mM DTT was used for the fractionation.  Fraction 
volumes were 2.8 ml and the flow rate was 0.14 ml/min. 
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Thermal and urea stability of chimeric galDH/LDH 

Stability against heat and urea denaturation of 
the chimeric galDH/LDH was tested.  As shown in 
Figure 4A, it was obvious that the LDH portion of the 
chimeric galDH/LDH was more thermolabile than its 
native counterpart upon exposure to heat treatment 
at 60oC.  A markedly decrease of LDH activity up to 
90% was observed within 30 minutes.  By contrarily, 
the galDH part was more stable than the native 
enzyme since the remaining activity up to 90% could 
be detected at 90 minutes incubation time.  At 50oC, 
the denaturation profile of LDH was biphasic (Figure 
4B).  The LDH activity was rapidly reduced within 10 
minutes and remained stable at approximately 60% of 
original activity.  To evaluate whether the loss of 



Int. J. Biol. Sci. 2006, 2 13

activity was attributable to the decomposition into 
smaller oligomeric arrangements, the chimeric 
galDH/LDH was subjected to gel filtration after heat 
denaturation process (data not shown).  From the 
chromatogram, it was concluded that the active 

chimeric enzyme still appeared in the hexameric form 
and no additional peaks was observed.  Therefore, the 
loss of activity was most probably not due to 
decomposition of the hexameric structure but rather 
to internal polypeptide rearrangements. 

Figure 3 Western blot of galDH/LDH.  Samples of the fusion protein from gel filtration diluted 10- (lane II) and 100- (lane 
III) fold were separated on SDS-PAGE with crude extract from the host cells as reference (lane I).  The gel was blotted and 
detected using rabbit anti-galactose dehydrogenase IgG and peroxidase conjugated swine anti-rabbit IgG. 
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Figure 4 Heat stability of galDH/LDH compared with native enzymes.  The enzymes were heated at 60°C (A) and 50°C (B) 
over time intervals as indicated and residual activities were determined.  LDH activity of native LDH (●), LDH activity of 
chimeric galDH/LDH (○), galDH activity of native galDH (■) and galDH activity of chimeric galDH/LDH (□). 
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Michaelis constants (Km) and pH profiles of 
chimeric galDH/LDH 

Assay of the Michaelis constants (Km) of the 
chimeric galDH/LDH was performed.  The Km of 
0.10 mM for NADH (LDH activity) and 0.13 mM for 
NAD (galDH activity) were observed.  These values 
were not much different from those obtained from 
native LDH (0.10 mM) and galDH (0.15 mM). 

The maximal activity of chimeric galDH/LDH at 
various pHs was investigated.  The highest activities 
of LDH and galDH were found at pH 6.5 and 10.5 as 
compared to 5.0 and 10.0 of the native LDH and 
native galDH, respectively.  A similar shift in pH 
optima for galDH fused with β-galactosidase was 
previously observed by Ljungcrantz et al. [4]. 
NAD recycling capability of chimeric galDH/LDH 

To test the NAD recycling capability of chimeric 
galDH/LDH, the optimum pH for NAD(H) was 
adjusted to give rise the enzyme activity ratio nearly 
close to one.  The recycling reaction assays were 
performed at pH 8.1, 8.9 and 9.6 where the LDH and 
galDH activities were matched at pH 6.5 and 8.5, 
respectively.  The recycling rate was determined as 
the amount of lactate produced per hour.  Although, 
the galDH/LDH gave approximately 30 % lower 
recycling rates than those of the native at pH 8.1 and 
8.9.  However, it was shown that at pH 9.6 the rate 
was 2 fold greater than that of the native enzyme 
(Figure 5).  Explanation on the disparity of cofactor 
regeneration between the native and chimeric 
enzyme could be drawn on the alteration of pH 
optima upon fusion.  The native LDH retained only 
5% of the maximum activity at pH 9.6 while 
approximately 20% LDH activity could be obtained in 
the case of galDH/LDH. 

Figure 5 Recycling of NAD(H) at various pHs.  The 
NAD(H) recycling reaction was initiated by adding 30 mM 
pyruvate, 17 mM galactose and 0.5 mM NAD at the pH 
values indicated.  Samples were withdrawn and the amount 
of produced lactate was determined enzymatically. 
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Proximity effects on NAD recycling of chimeric 
galDH/LDH 

To mimic the intracellular milieu, proximity 
effect on the NAD recycling was further evaluated in 
reaction mixtures containing various concentrations 
of PEG 20,000.  The pH chosen in this assay was 9.6 
since all enzymatic activities were matched at this pH 
to ensure that the enzymatic activities of the fused 
and native systems were identical.  Samples were 
withdrawn after 10 minutes and the production of 
lactate was assayed enzymatically.  In the absence of 
PEG, a similar quantity of lactate was achieved in 
both systems (Figure 6).  By contrarily, a markedly 
increase up to 5 fold in the production of lactate 
corresponding to the PEG concentration of 20% was 
observed in the case of chimeric galDH/LDH. 

Figure 6 Recycling of NAD(H) at pH 9.6 in reaction 
medium containing polyethylene glycol 20,000.  The 
amount of produced lactate was estimated after 10 minutes 
of reaction.  The activities of the chimeric enzyme and 
native enzymes were matched at pH 9.6. Open and filled 
circles represent native and chimeric enzymes, 
respectively. 
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4. Discussion 

Simultaneous production of lactate through cofactor 
recycling of a bifunctional galDH/LDH 

Herein, a chimeric redox enzyme (galDH/LDH) 
possessing the ability to produce lactate under 
continuous recycling of NAD(H) has successfully 
been constructed.  Simultaneous generation of lactate 
at 0.3 mM/h can be achieved at a high basidic 
condition (pH 9.6).  This rate is approximately 2 fold 
higher than that of the native enzyme (Figure 5).  It is 
worth to state that the recycling of NAD(H) in this 
system does not show any immediate evidence for 
such physical channeling.  Since the channeling may 
be dependent on physical transfer with the aid of 
ionic and hydrophobic interactions.  Recent studies 
on the naturally occurring multienzyme 
dihydrofolate reductase/thymidylate synthase and 
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on artificial bifunctional enzymes composed of 
enzymes in the citric acid cycle, e.g. malate 
dehydrogenase/citrate synthase, have shown 
evidences of electrostatic channeling, where the 
intermediate metabolite is transferred from one active 
site to the other via an electrostatic interaction on the 
surface of bifunctional enzyme [23, 24, 25].  In our 
case, when using a scavenger enzyme assay in vitro in 
which diaphorase is competing for the formed 
NADH, no difference between the fusion enzyme and 
the matched native enzymes can hence be detected 
(data not shown).  Meanwhile, proximity effects are 
clearly observed when diffusion hindrance in the 
form of PEG addition has been applied to the reaction 
(Figure 6).  Such effect may be particularly useful 
when utilizing chimeric NAD(H) recycling enzymes 
for metabolic engineering purposes.  However, 
further work is required to understand whether the 
recycling occurs upon transiently gathering the two 
active sites into a close proximity to generate an 
enclosure that allows direct transmission of the 
intermediate and sterically prevents its leakage into 
the bulk phase.  This has been believed to be involved 
in the channeling of NADH between dehydrogenases 
of opposite chiral specificity for the C-4 hydrogen of 
NADH [26, 27]. 
Physical characteristics and molecular arrangements 
of chimeric galDH/LDH 

Based on our findings, no difference between the 
rate of reaction (Km) mediated by the chimeric 
galDH/LDH and native enzymes has been found.  
This clearly indicates that only minor structural 
changes may have occurred in the native coenzyme 
binding sites.  Since the Michaelis constants provide a 
general indication of possible distortion around the 
active sites upon fusion to the other proteins.  Fusion 
of the two enzymes in some circumstances affects the 
three-dimensional structure of the oligomeric protein 
in such a way that the subunit interactions are partly 
perturbed or the active site might be sterically 
hindered. 

Molecular conformation and new sets of intra-
polypeptide interactions in the chimeric protein are 
likely to drive the obtained quaternary structure into 
perhaps more than one arrangement.  The most 
physical stability of these structures will emerge as 
the dominant one after purification and constitute the 
fusion enzyme studied in vitro.  The fusion of the 
structural genes of two oligomeric proteins can be 
expected to give rise to the formation of protein 
polymers in vivo.  The hexameric complex formed in 
this study, therefore, does not constitute the native 
subunit arrangement neither for galDH (dimeric) nor 
for LDH (tetrameric).  These non-native interactions 
have strikingly opposite effects on the two enzyme 
moieties compared with their native counterparts.  
The stability of the galDH part of the fusion protein 
has hence been substantially increased.  Similar 
stabilization effects of galDH fusions have previously 
been reported by Ljungcrantz et al. [4] between β-

galactosidase and galDH and by Lindbladh et al. [5] 
between luciferase and galDH.  The hexameric 
structure of the fusion protein apparently protects 
galDH from thermal and urea denaturation (Figure 
4).  However, the hexamer does not constitute an 
ideal arrangement for LDH, which precludes further 
purification of our hybrid.  For instance, the LDH 
moiety rapidly lost its activity on ion exchange and 
affinity chromatography columns.  To facilitate the 
handling of galDH/LDH it will be interesting to 
study if the folding pattern can be altered and given 
rise to other more stable three-dimensional 
arrangements.  One approach can be co-expression 
with native subunits of one of the two fusion 
partners.  Yet another approach will be to modify the 
design of the linker region in between the two 
enzyme moieties since it has been shown to have an 
impact on the stability and kinetics of fusion enzymes 
[28].  Moreover, previous studies on overexpression 
of oligomeric proteins together with chaperonins 
have resulted in elevated yields of correctly folded 
and assembled proteins [29].  Plasmid pDU712 has, 
therefore, been co-transformed with an expression 
plasmid encoding chaperonins GroES and GroEL 
[30], and the expressed proteins have been analyzed 
by gel exclusion chromatography.  The oligomeric 
arrangement of enzymatic active protein complexes 
has been identical with expression of the fusion 
enzyme without chaperonins, a hexameric complex 
with the same characteristics as the original 
hexameric complex.  However, the yield of correctly 
folded protein per litre cultivation has slightly been 
increased, approximately 10%.  Such findings indicate 
that the gene fusion technique provides a simple way 
to express and purify artificial proteins carrying more 
than one enzymatic function within a single protein 
body in which the applications can be found both in 
metabolic engineering and biochemical analyses [3, 
31]. 
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