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A LIM-homeobox gene, AmphiLim1/5, from the Florida amphioxus (Branchiostoma floridae) encodes a protein that 
phylogenetic analysis positions at the base of a clade comprising vertebrate Lim1 and Lim5. Amphioxus 
AmphiLim1/5 is expressed in domains that are a composite of those of vertebrate Lim1 and Lim5, which evidently 
underwent subfunctionalization after duplication of an ancestral protochordate Lim1/5. During amphioxus 
development, transcription is first detected in the ectoderm of the blastula. Then, in the gastrula, a second 
expression domain appears in the mesendoderm just within the dorsal lip of the blastopore, a region known to 
have organizer properties in amphioxus. This mesendodermal expression corresponds to Lim1 expression in the 
Spemann organizer of vertebrates. At least one of the functions of vertebrate Lim1 in the organizer is to control 
the transcription of genes involved in cell and tissue movements during gastrulation, and a comparable early 
function seems likely for AmphiLim1/5 during gastrular invagination of amphioxus. Later embryos and larvae of 
amphioxus express AmphiLim1/5 in clusters of cells, probably motoneurons, in the anterior part of the central 
nervous system, in the hindgut, in Hatschek’s right diverticulum (a rudiment of the rostral coelom), and in the 
wall of the first somite on the left side (a precursor of Hatschek’s nephridium). In the early larva, expression 
continues in neural cells, in Hatschek’s nephridium, in the wall of the rostral coelom, in the epidermis of the 
upper lip, and in mesoderm cells near the opening of the second gill slit. The developmental expression in 
Hatschek’s nephridium is especially interesting because it helps support the homology between this amphioxus 
organ and the vertebrate pronephros. 
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1. Introduction 
The cephalochordate amphioxus is widely 

regarded as the best available proxy for the 
protochordate ancestor of the vertebrates. Both the 
anatomy and the genetics of amphioxus are 
vertebrate-like, but simpler. For example, common 
anatomical features shared by amphioxus and basal 
vertebrates include a perforate pharynx, a notochord, 
and a dorsal nerve cord. Moreover, the amphioxus 
genome includes representatives of most vertebrate 
gene families, but usually with comparatively few 
genes per family. In sum, the morphology, genetics, 
and developmental mechanisms characterizing 
amphioxus can provide insights into the likely 
starting conditions as the vertebrates began to evolve 
from their protochordate ancestor. 

In amphioxus, one important gene family that 
has not yet been widely studied encodes LIM-
homeodomain proteins, which comprise two 
tandemly repeated LIM domains, a homeodomain, 
and a C-terminal transactivation domain. The LIM 
domains include characteristically spaced cysteine 
residues binding zinc ions to form zinc-finger like 
structures that function for protein-protein 
interactions, although not for DNA binding (in this 

way, differing from the more widely spaced, DNA-
binding zinc fingers of such proteins as Snail and 
GATA). LIM domains can combine with a variety of 
proteins to form multiprotein complexes functioning 
as adaptors, competitors, autoinhibitors or localizers, 
and thereby play diverse roles in combinatorial 
developmental regulation. 

For amphioxus, previous studies of LIM-
homeobox genes have been limited to the islet 
subfamily [1] and the Lim3 subfamily [2]. The present 
paper concerns amphioxus AmphiLim1/5, which 
encodes a protein in the Lim1/5 subfamily (also 
known as the LIN-11 subfamily). It is likely that 
amphioxus has a single Lim1/5 gene representing the 
ancestral protochordate condition before gene 
duplication during vertebrate evolution produced 
two separate genes—Lim1 and Lim5 (sometimes 
alternatively named Lhx1 and Lhx5). We find that 
amphioxus AmphiLim1/5, is first expressed during 
gastrulation just within the dorsal lip of the 
blastopore, a region presumably homologous with the 
vertebrate Spemann organizer where Lim1 genes play 
important functional roles. Then, later in 
development, AmphiLim1/5 is expressed in subsets of 
cells in the central nervous system and in several 
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restricted regions of coelomic epithelia, including 
Hatschek’s nephridium. The expression of amphioxus 
AmphiLim1/5 and its vertebrate Lim1 orthologs during 
nephrogenesis helps strengthen the homology 
between the amphioxus Hatschek’s nephridium and 
the vertebrate pronephros. 
2. Methods 

Ripe adults of the Florida amphioxus 
(Branchiostoma floridae) collected in Tampa Bay were 
stimulated to spawn electrically, and the embryos and 
larvae were raised in laboratory culture. An 
embryonic cDNA library was constructed [3] and 
screened at low stringency with a zebrafish Lim1a 
gene fragment encoding most of the LIM domains 
and the homeodomain. Eleven clones encoding the 
same LIM-homeodomain protein were obtained. The 
base sequence of the cDNA was blasted against 
genomic sequences in the amphioxus trace archives to 
determine the intron positions. 

For phylogenetic analysis, the deduced amino 
acid sequence was aligned manually with other 
chordate LIM class orthologs (details available on 
request from the corresponding author). Neighbor-
Joining phylogenetic trees were constructed from the 
resulting alignment with Clustal X [4] and corrected 
for multiple substitutions. The tree was rooted on 
amphioxus islet, a divergent LIM-homeodomain 
protein. Vertebrate protein sequences were Lim1, 2, 
and 5 orthologs from zebrafish (NP 571291, 042286, 
NP 571293), Xenopus laevis (p29674, p36200, P37137), 
mouse (CA125420, P50481, BAE24281), human (NP 
005559, AAF17292, AAI09231); invertebrate chordate 
sequences were our amphioxus AmphiLim1/5 

(DQ399521), amphioxus islet (AAF34717), amphioxus 
Lim3 (BAB91364), Ciona intestinalis Lim1/5 
(BAE6535), and Ciona savignyi Lim1/5 (BAB68342). 

Expression of AmphILim1/5 was determined by 
whole-mount in situ hybridization [5] of 
developmental stages fixed at frequent intervals after 
fertilization. The full-length clone was used as the 
template for synthesizing the riboprobe. Fertilization 
envelopes were removed with pins from pre-hatching 
stages to facilitate penetration of reagents. After being 
photographed as whole mounts, the specimens were 
counterstained pink in 1% Ponceau S in 1% aqueous 
acetic acid, dehydrated in ethanol, embedded in 
Spurr’s resin, and prepared as 3.5 μm sections. 
3. Results 
Predicted protein structure and phylogenetic analysis 

Our longest cDNA clone was 1888 bases long 
and encoded a predicted protein of 464 amino acids 
(Fig. 1) that included the following noteworthy 
motifs: two LIM domains, a homeodomain, an 
arginine-rich domain, and a tyrosine-rich domain. In 
LIM-homeodomain proteins that have been studied 
functionally in other animals, the LIM domains are 
sites of protein-protein interactions, and the 
homeodomain binds DNA. Moreover, at least for 
Xenopus Lim1, the protein is negatively regulated by 
its arginine-rich and tyrosine-rich domains; 
additionally, the tyrosine-rich domain plus its 
flanking regions is a strong transactivator [6]. It is 
possible that these domains in the amphioxus protein 
serve comparable functions, although functional 
studies would be required to confirm this. 

Figure 1. Deduced amino acid sequence of AmphiLim1/5 from the Florida amphioxus, Branchiostoma floridae, with two 
LIM domains (each boxed), a homeodomain (single underlined), an arginine-rich region (double underlined), and a 
tyrosine-rich region (bracketed). The arrowheads correspond to intron positions in the base sequence. 

 
 
Phylogenetic analysis (Fig.2) reveals that our 

amphioxus clone encodes a protein branching just 
basal to vertebrate Lim1 and Lim5 orthologs, but 
closer to these orthologs than to any if the other LIM-
homeodomain proteins in the analysis. The 
amphioxus protein groups very robustly with 
vertebrate orthologs in both these vertebrate clades, 
indicating it represents the ancestral protochordate 
condition predating gene duplication events resulting 
in separate Lim1 and Lim5 clades in the vertebrates. 
Tree reconstruction with Maximum Likelihood [7] 

produced a nearly identical topology (data not 
shown). Phylogenetic analysis with a broader array of 
vertebrate LIM-homeodomain proteins (including 
Lim2, 4, 6, 7 and 9) also demonstrated that none of 
these cluster within the clade consisting of the 
amphioxus gene plus vertebrate Lim1 and Lim5 (data 
not shown). We thus name our gene AmphiLim1/5 
(GenBank Accession Number DQ399521) and 
presume that it derives from a single ancestral 
cephalochordate gene that duplicated into Lim1 and 
Lim5 genes during early vertebrate evolution. 
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Figure 2. Neighbor-Joining phylogenetic analysis of amphioxus AmphiLim1/5 protein in the context of closely related 
LIM-homeodomain proteins from other chordates. Tree topology with bootstrap support based on 1000 replicates is 
constructed with Clustal_X. 

 
Developmental expression of AmphiLim1/5  

 During the development of the Florida 
amphioxus, AmphiLim1/5 transcription is first detected 
at the late blastula stage (Fig. 3A) in the presumptive 
ectoderm cells of the animal hemisphere (recognizable 
because they are somewhat smaller than the 
presumptive mesendoderm cells of the vegetal 
hemisphere). By the mid gastrula stage (Fig. 3B,C), the 
ectodermal expression is detectable dorsally and 
anteriorly in the ectoderm, while a new expression 
domain appears the dorsal mesendoderm, just within 
the dorsal lip of the blastopore. At late gastrula, (Fig. 
3D-F), ectodermal expression extends mid-dorsally 
where the anterior part of the neural plate is forming, 
and mesendodermal expression is still located 
posterodorsally. 

By the mid-neurula stage (Fig. 3 G-K), 
AmphiLim1/5 is expressed far anteriorly in the central 
nervous system (the identities of these anterior nerve 
cells cannot readily be determined) and more 
posteriorly in segmentally arranged clusters of neural 
cells, most conspicuously at the levels of somites three 
through six. Most of these clustered neural cells are 
located ventrolaterally in the neural tube and are 
probably differentiating motoneurons. Expression is 
also detectable in a patch of epidermal cells in the left 
anterior region of the embryo, in the right (but not the 
left) diverticulum of Hatschek (Fig. 3H), and in the 

wall of the most anterior somite on the left side (Fig. 3 
I). Posteriorly, the mesendodermal expression of the 
previous stage is now localized in the hindgut, but not 
the notochord (Fig. 3J). At this point we should add 
parenthetically that amphioxus embryos confusingly 
include a diversity of structures named after 
Hatschek. For instance, Hatschek’s right diverticulum 
is destined to give rise to the rostral coelom, while the 
most anterior somite on the left side is destined, in 
part, to give rise to Hatschek’s nephridium of the 
larva. 

At the early larval stage (Fig. 3L-P), at 28 hr, just 
before the mouth opens, AmphiLim1/5 is transcribed 
segmentally in ventral and lateral cells along the 
anterior third of the dorsal nerve cord. Additional 
expression is detected in the wall of the rostral coelom 
(Fig. 3M), in epidermal cells along the anterior left 
side of the larva, in Hatschek’s nephridium (Fig. 3O), 
in mesoderm cells in the region where the second gill 
slit will later penetrate the body wall (Fig. 3P), and in 
the chordaneural hinge of the neurenteric canal (tail 
bud). Later in the six-day larva (Fig. 3Q,R), when 
three gill slits have formed, expression is found only 
in Hatschek’s nephridium and in the epidermal cells 
forming the upper lip of the mouth. At later larval 
stages no transcripts of AmphiLim1/5 were detectable 
by in situ hybridization of whole mounts.  
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Figure 3. AmphiLim1/5 expression in developing amphioxus. Whole mount side views with anterior toward left. Sections 
are viewed from posterior end of animal. Whole mount and section scale lines respectively 50 μm and 25 μm. A) Blastula 
with expression in animal hemisphere. B) Mid-gastrula in blastopore view with expression in dorsal quadrant. C) Section in 
plane of dashed line in B; expression in ectoderm and dorsal mesendoderm (arrow). D) Side view of late gastrula with 
expression in neural plate and in posterodorsal mesendoderm. E) Section through a in D showing expression in neural plate. 
F) Section through b in D showing expression in dorsal mesendoderm. G) Side view of mid-neurula with expression in 
central nervous system, hindgut, rudiment of Hatschek’s right diverticulum (asterisk), and first somite on left side (arrow). 
H) Section through a in G showing expression in anterior neural plate, epidermis on left side, Hatschek’s right diverticulum 
(single arrow), but not in Hatschek’s left diverticulum (twin arrow). I) Section through b in G showing expression on 
epidermis on left side and in most anterior somite on left side (arrow). J) Section through c in G showing expression in 
hindgut, but not in notochord (arrow). K) Dorsal view of mid-neurula showing expression in central nervous system, 
hindgut, and first somite on left side (arrow).  L) Side view of early larva with expression in cells of dorsal nerve cord, 
rostral coelom (single arrow), Hatschek’s nephridium (twin arrows), mesoderm associated with rudiment of second gill slit 
(asterisk), and neurenteric canal (arrowhead) of tail bud. M) Section through a in L showing expression in ventral and 
lateral cells of central nervous system and in rostral coelom (arrow). N) Section through b in L showing expression in 
ventral and lateral cells of central nervous system, in epidermis on left side, but not in Hatschek’s left diverticulum (arrow). 
O) Section through c in L showing expression in epidermis on left side and in wall of Hatschek’s nephridium (arrow). P) 
Section through d in L with expression in mesoderm cells near rudiment of second gill slit. Q) Side view of anterior end of 
later larva with expression in Hatschek’s nephridium (single arrow) and in epidermis bordering upper lip of mouth (twin 
arrows). R) Section through a in Q, at level of mouth (arrow), showing expression in upper lip epidermis and in underlying 
Hatschek’s nephridium. 
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4. Discussion 
LIM-homeobox genes in amphioxus 

Several hundred genes have by now been 
described in the LIM superfamily, with 
representatives in slime moulds, flowering plants, 
invertebrates, and vertebrates. The commonest LIM 
genes are LIM-only genes (i.e. lacking a homeobox) 
that encode proteins predominantly localized either in 
the nucleus to influence gene expression or in the 
cytoplasm to influence the cytoskeleton. By contrast, 
LIM-homeobox genes, although first to be discovered, 
are in the minority within the superfamily. For 
example, the human genome includes about a 
hundred LIM-only genes, but only twelve LIM-
homeobox genes, two in each of six subfamilies 
(which are apterous, LHX6/7, LMX, islet, Lim-3, and 
Lim1/5 = LIN-11). Amphioxus lags far behind 
vertebrates in the number of known LIM genes—to 
date, only a single LIM-only gene and three LIM-
homeobox genes [1,2, present study] have been 
described. However, in the near future, when the 
annotated genome sequence for the Florida 
amphioxus becomes available, dozens of additional 
amphioxus LIM genes will probably come to light. It 
will be especially interesting to see whether 
amphioxus LIM-homeobox genes will be distributed 
among all of the six subfamilies now known for 
vertebrates and for Caenorhabditis. If one assumes that 
the genomic organization of extant amphioxus reflects 
that of the protochordate ancestor of the vertebrates, 
each LIM-homeobox subfamily in amphioxus will 
likely include only a single gene. This would be 
consistent with an increase to two genes per 
subfamily in vertebrates as a result of extensive gene 
duplication (or perhaps whole genome duplication) 
during chordate evolution. 
LIM-homeobox genes in tunicates, hemichordates 
and sea urchins 

In the ascidian tunicate, Ciona intestinalis, five 
LIM-homeobox genes have been found in the genome, 
one in each subfamily except for Lhx6/7 [8]. To date, 
the expression of tunicate LIM-homeobox genes is 
adequately known only for the Lim3 subfamily [9], 
which cannot usefully be compared with our results 
for a Lim1/5 subfamily gene. In an enteropneust 
hemichordate, the expression of a somewhat 
divergent Lim1/5 gene is limited to a region of 
developing epidermis, presumably in developing 
nerve cells [10]. It is likely that the hemichordate 
Lim1/5 is involved in nerve cell differentiation and 
maintenance in parallel with its homologs in 
chordates. Finally, sea urchins have a Lim1 gene 
(again, somewhat divergent) that is expressed in the 
vegetal plate of the early gastrula, where invagination 
is about to take place [11]. Thus, sea urchin Lim1 may 
have an early function comparable to its homologs in 
amphioxus and vertebrates, where Lim1 in the 
organizer evidently directs expression of downstream 

genes involved in cell and tissue movements of 
gastrulation (see below). No sea urchin Lim1 
expression was detected in other embryonic tissues, 
although this may have been a false negative due to 
the weakness of the in situ staining.  
Vertebrate Lim1 and presumably AmphiLim1/5 
associated with the organizer 

In vertebrates, the earliest detectable expression 
of Lim1 begins at the gastrula stage in the amphibian 
Spemann organizer or its homologs in other 
vertebrate classes—that is, in the dorsal blastoporal 
lip and dorsal mesoderm of Xenopus [12-16], in the 
shield of zebrafish [17,18], and in the node/anterior 
primitive streak/anterior visceral endoderm of mice 
[19-21]. For amphioxus, the region of where 
AmphiLim1/5 is first expressed in the mesendoderm is 
just within the dorsal lip of the blastopore, a tissue 
that has been shown experimentally to have organizer 
properties [22]. For vertebrate Lim1, and presumably 
for amphioxus Lim1/5, expression in the organizer 
plays a key role in regulating genes that direct 
gastrulation movements and/or help establish the 
body axes. In the organizer gene network, vertebrate 
Lim1 is positioned downstream from Siamois [14], 
nodal [17], activin [23], VegT [24], and retinoic acid 
signaling [25]. In turn, vertebrate Lim1 regulates 
goosecoid [26], cerberus [27], iroquois [28] and other 
genes [29], including some (like protocadherin and 
angiomotin) involved in cell and tissue movements 
during gastrulation [16,30]. The expression domains 
of homologs for many of these vertebrate genes have 
not yet been described for amphioxus, except for 
amphioxus goosecoid [31] and AmphiNodal [32]. Early 
in amphioxus development, the expression domains 
of the amphioxus homologs of Lim1/5, goosecoid, and 
nodal are congruent in the mesendoderm just within 
the dorsal lip of the blastopore of the gastrula, 
although their expression domains later begin to 
diverge as the neurula stage progresses. 

During later embryonic development, expression 
of amphioxus AmphiLim1/5 and vertebrate Lim1 can 
be followed continuously from the region of the 
dorsal blastoporal lip—via notochordal expression in 
some vertebrates [18], but via hindgut expression in 
amphioxus—to the chordaneural hinge of the tail bud 
[present results, 33]. This pattern is consistent with the 
concept that the chordate tail bud, and at least part of 
the gene network operating there, derives from the 
organizer during development. 
Vertebrate Lim1 and AmphiLim1/5 expressed in the 
central nervous system 

Amphioxus AmphiLim1/5 and vertebrate Lim1 
are expressed toward the anterior end of the 
developing central nervous system, as are LIM-
homeobox genes in general. In amphioxus the neural 
expression domain can be traced back in development 
to expression in the animal hemisphere of the 
blastula, whereas the vertebrate neural expression 
domains arise de novo during the neurula stage. This 
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difference probably reflects the combination of 
vertebrate Lim1 and Lim 5 functions in Amphioxus 
Lim1/5. In the developing vertebrate central nervous 
system, Lim1 transcription begins in relatively coarse 
patterns that apparently correspond to functional 
subdivisions (e.g. forebrain prosomeres) along the 
neuraxis [34]. During subsequent neural development 
in vertebrates, Lim1 transcription becomes 
progressively restricted to small cell clusters or even 
to single isolated neurons that transcribe various 
combinations of different LIM-homeobox genes to 
help establish and maintain their differentiated cell 
identities [13,18,35]. Presumably the neural expression 
of amphioxus AmphiLim1/5 in individual clusters of 
cells is also involved in their differentiation and 
maintenance as particular nerve cell types. 
Vertebrate Lim1 and AmphiLim1/5 expressed in 
mesodermal derivatives 

 Mesodermal expression of Lim1 in vertebrates 
begins in lateral mesoderm and then becomes 
restricted to intermediate mesoderm. Subsequently, 
the mesodermal expression in the intermediate 
mesoderm becomes associated with the forming 
pronephros in zebrafish [18] and Xenopus [25] and 
with the forming mesonephros in mice [13]. In 
amphioxus, AmphiLim1/5 transcription begins in the 
mesoderm comprising the wall of the first somite on 
the left side of the embryo. During the next few hours 
of development, the AmphiLim1/5-expressing wall of 
this somite evaginates as a posteriorly directed tube, 
known as Hatschek’s nephridium. The 
correspondence in LIM gene expression between the 
pronephros of basal vertebrates and Hatschek’s 
nephridium of amphioxus helps support the 
homology between these organs that was originally 
suggested on morphological grounds. There are two 
additional mesodermal structures expressing 
AmphiLim1/5 in amphioxus that appear to have no 
counterparts in vertebrate embryos: one is the lining 
of the rostral coelom and the other is a cluster of 
mesoderm cells near the opening of the second gill 
slit. 
Vertebrate Lim5 and amphioxus AmphiLim1/5 are 
expressed early in the ectoderm and later in the 
central nervous system 

Just as for amphioxus AmphiLim1/5, Xenopus and 
zebrafish Lim5 [36]—although not mouse Lim5 [37]—
are initially expressed widely, but transiently, in the 
ectoderm at the blastula stage. At the blastula stage, at 
least one function of Xenopus Lim5 is evidently the 
regulation of cell-cell adhesion in the ectoderm [38]. 
As vertebrate development proceeds, expression of 
vertebrate Lim5 genes rapidly becomes restricted to 
the anterior neural plate and subsequently to 
scattered regions of the brain and anterior spinal cord, 
again just as for AmphiLim1/5. During the 
differentiation of the central nervous system, mouse 
Lim5 is essential for regulating proliferation of nerve 
cell precursors and their subsequent differentiation 
and migration in the hippocampus [39]. 

Likely origin of vertebrate Lim1 and Lim-5 by 
subfunctionalization following duplication of a single 
Lim1/5 gene in a protochordate ancestor 

When the developmental expression domains of 
vertebrate Lim1 and Lim5—well studied for Xenopus, 
zebrafish, and mice [12-23,36-39]—are considered in 
the aggregate, the overall pattern is closely 
comparable to the developmental expression of 
amphioxus AmphiLim1/5. This is to be expected from 
the general model for gene duplication-degeneration-
complementation [40]: amphioxus AmphiLim1/5 is 
probably similar to an ancestral protochordate gene 
that split into vertebrate Lim1 and Lim5 genes, each of 
which underwent subsequent subfunctionalization. 
Thus, the ectodermal function of the ancestral gene 
was retained in vertebrate Lim5, while the functions 
related to the organizer, tail bud, and nephrogenic 
mesoderm were retained in vertebrate Lim1 genes. 
Moreover, vertebrate Lim1 and Lim5 are known to 
specify at least partially different subsets of nerve 
cells in the central nervous system 
[13,18,25,34,36,37,39], and it is possible that future, 
detailed study of the AmphiLim1/5-expressing nerve 
cells in amphioxus will show that they encompass 
representatives of both subsets of vertebrate neurons. 
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