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Accumulated knowledge of genomic information, systems biology, and disease mechanisms provide an 
unprecedented opportunity to elucidate the genetic basis of diseases, and to discover new and novel therapeutic 
targets from the wealth of genomic data. With hundreds to a few thousand potential targets available in the 
human genome alone, target selection and validation has become a critical component of drug discovery 
process. The explorations on quantitative characteristics of the currently explored targets (those without any 
marketed drug) and successful targets (targeted by at least one marketed drug) could help discern simple rules 
for selecting a putative successful target. Here we use integrative in silico (computational) approaches to 
quantitatively analyze the characteristics of 133 targets with FDA approved drugs and 3120 human disease 
genes (therapeutic targets) not targeted by FDA approved drugs. This is the first attempt to comparatively 
analyze targets with FDA approved drugs and targets with no FDA approved drug or no drugs available for 
them. Our results show that proteins with 5 or fewer number of homologs outside their own family, proteins 
with single-exon gene architecture and proteins interacting with more than 3 partners are more likely to be 
targetable. These quantitative characteristics could serve as criteria to search for promising targetable disease 
genes. 
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1. Introduction 
The genomics revolution and advances in disease 

mechanisms and systems biology has provided a 
deluge of new potential targets for drug discovery [1]. 
Technological advances continue to be a central 
driving force in the acceleration of the drug discovery 
process. High-throughput gene sequencing has 
revolutionized the process used to identify novel 
targets. Thousands of new gene sequences have been 
generated but only a limited number of these can be 
converted into validated targets likely to be involved 
in disease. The increased number of potential targets 
and the decreased amount of information is 
generating a bottleneck in the target validation 
process [2].  

Several new and improved methods [3], and 
integrated and systems-based approaches [4-6], are 
being explored for identifying targets and druggable 
proteins. The commonly used computational methods 
have primarily been based on the detection of 
sequence and functional similarity to known targets 
[7-8], drug-binding domain family affiliation [9, 8], 
and structural analysis of geometric and energetic 
features [10-11]. These methods are less effective in 
finding targets that exhibit no or low homology to 
known targets, disease proteins and proteins with 
available 3D structures. As such non-homologous and 

structurally unknown proteins constitute a substantial 
percentage, ~20–100%, of the open reading frames in 
many of the completed genomes and therefore, they 
are an untapped source of novel drug targets [12]. 
Hence, methods independent of sequence and 
functional similarity, and structural availability, are 
highly desirable. 

Han et al. described on the use of Support Vector 
Machine (SVM) algorithms and their potential 
applications for facilitating the discovery of innovative 
targets and reported that the prediction accuracy for 
non-druggable proteins is better than that of 
druggable proteins. This probably results from the 
more diverse set of non-druggable proteins compared 
with that of druggable proteins, enabling SVMs to 
better recognize non-druggable proteins [3]. Recently, 
Sakharkar et al. reported on the use of integrative 
analyses approaches and highlighted on the utility of 
large genomic databases for in silico (computational) 
systematic drug target identification in the 
post-genomic era [13]. However, the two main 
bottlenecks in drug discovery and development are in 
identifying which protein targets may respond to 
drugs and which targets are relevant in disease. Also, 
there are a number of critical issues that must be 
considered as strategies are developed to elucidate the 
inherited determinants of targetability of a disease 
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protein. In light of the above, there is a need to 
identify and quantify the characteristics of 
commercially available therapeutic targets, 
particularly with respect to those of the non-targeted 
disease proteins. Here, we quantitatively analyze the 
characteristics of 133 therapeutic targets (human 
disease genes) of FDA approved drugs and compare 
them with those of 3120 therapeutic targets that have 
no-FDA approved drugs or no drugs available for 
them. The possible common features of these targets 
are presented and discussed. 
2. Methods 

The human disease genes list was downloaded 
from the GeneCards database [14]. GeneCards is an 
automated and integrated database of human genes, 
genomic maps, proteins, and diseases. 3253 genes 
were identified that are reported to be involved in 
human diseases (Dataset-1). We manually extracted 
the drugs available for the disease genes from the 
DrugBank database. DrugBank is a unique 
bioinformatics/cheminformatics resource that 
combines detailed drug (i.e. chemical) data with 
comprehensive drug target (i.e. protein) information. 
DrugBank combines the strengths of, PharmGKB, 
PubChem and Swiss-Prot to create a single, fully 
searchable in silico drug resource that links sequence, 
structure and mechanistic data about drug molecules 
(including biotech drugs) with sequence, structure 
and mechanistic data about their drug targets [15].  

Information on protein-protein interaction data 
was from Biogrid database [16]. This information 
could be derived for 1554 disease gene products; 
Tissues in which the genes are expressed from 
TissueDistributionDB 
(http://genome.dkfz-heidelberg.de/menu/tissue_db
/index.html), level-4, tissue distribution data. A target 
is assumed to be primarily distributed in a tissue if no 
less than 8% of the total protein contents are 
distributed in that tissue. This information could be 
derived for 1924 therapetic targets; Pathways in which 
the disease gene products are involved is derived 
from the SwissProt knowledgebase [17]. Pathway 
information could be derived for 1159 therapeutic 
targets. We further performed Protein family 
assignments using SwissProt to the proteins for the 
disease genes and their BLASTP homologs (at a cutoff 
value of 0.001) [18]. 2276 therapeutic targets (human 
disease gene products) could be assigned to a protein 
family. Further categorization of homologs was 
performed to identify the number of unique protein 
families a protein was homologous to. Gene 
architecture information pertaining to the number of 
exons was extracted from CCDS (Consensus CDS) 
database. This information could be extracted for 2087 
disease genes. We further divided the 3253 human 
disease genes (therapeutic targets) into two datasets 
one with FDA approved drugs (FDA) and the other 
set with no FDA approved drugs or no drugs 
available for them (here on referred to as ‘no-FDA’). 

Statistical analyses were performed as described 

below to provide clues to the differences in the 
properties for disease genes with FDA approved 
drugs and disease genes with no-FDA approved 
drugs (Table 2). A test of determining the confidence 
interval for the difference of population proportions 
was performed on these two sets to check for 
differences at 95% confidence level, whereby:  

x is the number of proteins/genes with FDA 
approved drugs within the cut-off region (for example 
pathway <=1). 

m is the total number of genes (both FDA and 
no-FDA) within the cut-off region. 

y is the number of genes with FDA approved 
outside the cut-off region (for example pathway >1). 

n is the total number of genes (both FDA and 
no-FDA) outside the cut-off region. 

P1=x/m; and P2=y/n 
For 95% confidence level: Z=1.96; Then the 

sampling error E is given by 

 
The upper and lower limits of a 95% confidence 

interval for P1- P2 are between 
x/m - y/n -E and x/m - y/n +E 

Note: This formula is based on the following 
assumptions: 

1. The population proportions P1 and P2 are not 
too close to 0 or 1.  

2. Two random samples are taken, one for each 
population, and the two samples are independent.  

3. Sample sizes m and n are large.  
The results of our analyses are presented. 

3. Results 
Mapping drugs to targets 

The mapping of FDA approved drugs to genes 
involved in diseases (targets) identified 133 unique 
targets with 289 distinct (non-duplicate) FDA 
approved drugs (Table 1). These results clearly 
suggest that one target may have multiple drugs that 
are reported as binding to it. An analyses on targets 
available for no-FDA approved drugs shows that, 
there are 385 disease genes targeted by 684 distinct 
no-FDA approved drugs (investigational agents). It 
should be noted that based on data available in 
Drugbank 2735 disease genes are not targeted by any 
drug or investigational agent (Table 1).  

Table 1: Number of targets with and without drugs 
Characteristic Genes with drugs # of Drugs 
FDA approved 133 289 

Not-FDA approved  385 684 
No drugs 2735 0 

Total 3253  
 

Mapping targets to pathways, and tissue 
information 

The mapping of targets with FDA approved 
drugs and targets with no-FDA approved drugs onto 
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SwissProt knowledgebase and TissueDB was 
performed, to extract information on the number of 
pathways a target is involved in and the number of 
tissues a target is expressed. The distribution of 
pathway frequency for percentage of targets with FDA 
drugs and proteins with no-FDA drugs and number of 
tissues a target is expressed in, is shown in Figure 1 

and Figure 2, respectively. Our results shows that, the 
targets with FDA approved drugs and targets with 
no-FDA approved drugs, when compared, show no 
significant bias in the number of pathways involved 
and the number of tissues a target is expressed (p 
value = 0.05, implies 95% confidence level) (Table 2).  

 

 
Figure 1: Distribution of pathway frequency for percentage of targets with FDA drugs and proteins with noFDA drugs. The number 
of pathways is shown along X axis and Y axis represents the % of genes involved in diseases (targets) with FDA approved drugs and 
noFDA approved drugs. It is interesting to see that more than 40% of targets are involved in only 1 pathway. 

 
 

 
Figure 2: Distribution of number of tissues a target is expressed in for percentage of targets with FDA drugs and targets with noFDA 
approved drugs. 
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Table 2: Statistical analyses on significance of characteristics in targets with FDA and targets with noFDA drugs. This table shows 
that targets with single exonic gene architectures and more than 3 interacting partners are significantly more likely to have an FDA 
approved drug. Targets with >5 homologs outside their own protein family are significant less likely to have an FDA approved drug. 
Please see text for details. 

 
 

Mapping of pathways to homologs, protein-protein 
interaction data and gene architecture information 

Pfam assignments were performed for targets 
with FDA approved, and targets with no-FDA 
approved drugs. A distribution of homologs outside 
the target’s protein family for percentage targets with 
FDA drugs and targets with no-FDA drugs is shown 
in Figure 3. We observe that ~60% of targets with FDA 
approved drugs have no homologs outside their own 
Pfam family. Our statistical calculation confirms that 
targets having ≤ 5 BLAST homologs outside its own 
Pfam family (at an e-value cutoff of 0.001) are more 
likely (p value=0.05) to be targetable (i.e. have FDA 
approved drugs available for them) than targets 
proteins having >5 BLAST homologs outside its own 
Pfam family (Table 2).  

Mapping of targets to CCDS database shows that 
targets with single exon gene architectures are more 

likely to have FDA approved drugs available for them 
than targets with multi-exon gene architecture (p 
value = 0.05). Distribution for exon numbers for 
percentage of disease genes (targets) with FDA 
approved drugs and with no-FDA approved drugs is 
shown in Figure 4. Statistical analysis confirms that 
single exon genes are more likely to have FDA 
approved drugs (p value = 0.05). 

Statistical analyses on protein-protein interaction 
information from Biogrid database reveals that targets 
interacting with more than 3 partners are more likely 
to be targetable than proteins that do not interact with 
other proteins or interact with 3 or less number of 
partners (Table 2). Distribution of Interacting partners 
for percentage of targets with FDA approved drugs 
and percentage of targets with no-FDA drugs is 
shown in Figure 5. 

 
Figure 3: Distribution of homologs outside the target’s protein family for percentage targets with FDA drugs and targets with 
noFDA drugs. Targets with less than 5 homlogs outside their own protein family are more likely to have FDA approved drugs 
available for them (p value =0.05). 
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Figure 4: Distribution for exon numbers for percentage of disease genes (targets) with FDA approved drugs and with noFDA 
approved drugs. Targets with single exonic gene architectures are more likely to have FDA approved drugs available for them (p 
value = 0.05). 

 
 

 
Figure 5: Distribution of Interacting partners for percentage of targets with FDA approved drugs and percentage of targets with 
noFDA drugs. 

 
4. Discussion 

It is well established that incorrect target 
selection accounts for the failures of some drug 
candidates [19]. Experience from the 
biopharmaceutical industry indicates that currently 
only 5% of newly explored targets eventually lead to 
FDA-approved products [19]. Thus, innovative 
approaches to identify a “promising” target are highly 
helpful in boosting productivity. Despite the clear 
need for better therapies for several disorders, novel 
drugs — particularly those that could revolutionize 
treatment —  have been rare in recent years. 

Furthermore, biological complexity can often reveal 
unexpected and untoward effects of various treatment 
regimens [20-21]. However, the pharmaceutical 
industry must provide innovative medications to treat 
disease. In the quest to find pharmacologic treatments 
for human diseases, many targets are screened, but in 
silico identification of efficacy remains essential 
towards shortening the path from target identification 
to verification of its efficacy as a target. Once a set of 
candidate proteins have been identified, suitability of 
a target for small-molecule or biological drug design is 
a key decision making criterion. The vast varieties of 
in silico resources that are available in life sciences 
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research hold much promise towards aiding the drug 
discovery process. Here, we perform quantitative 
analyses to discern the salient features of the targets 
with FDA approved drugs. The principles learned 
from this exercise would serve as technical guidelines 
for better choices for the identification of putative 
successful targets leading to cost and time savings. 
Pathway affiliation 

Collective actions of protein pathways are 
responsible for regulating disease processes and for 
response to drug actions. Therefore, the extent and 
specificity of target affiliation of pathways is likely to 
have statistically significant impact on drug actions 
[3]. In both therapeutic targets with FDA approved 
drugs and therapeutic targets no-FDA categories the 
number of proteins decrease with an increase in the 
number of pathways (Figure 1). This data suggests 
that involvement of a single protein in multiple 
pathways is not a preferred situation in a cell as this 
may lead to greater interference of a protein in 
related/non-related pathways and may be a reason or 
cause for cross-reactivity.  

Comparison of therapeutic targets with FDA 
approved drugs and targets in no-FDA category (no 
FDA approved drugs or targets with no drugs 
available) suggests that the number of pathways a 
protein is involved in does not appear to be a factor 
determining its success as a target.  
Number of tissues  

Although, highly selective tissue expression of a 
drug target, is attractive, as the potential for unwanted 
side effects may be more restricted, many effective 
drugs have been developed against targets that are 
widely expressed in the body (e.g. the angiotensin 
converting enzyme). Our analyses shows that as of 
today, based on targets with FDA approved drugs, the 
number of tissues a gene is expressed in does not 
affect the targetability of the protein (Table 2, Figure 
2). This is also complemented by the fact that 

localization of a gene in a particular tissue does not 
necessarily shed light on all the functions of that gene 
and at this stage in post-genomic era does not give 
sufficient details to infer any information in this 
direction. Since, in diseased tissue, gene expression 
levels often differ from those observed in normal 
tissues, with certain genes being 
over/under-expressed, or new genes being expressed 
or completely absent. Perhaps the most promising 
aspect is the information on differential expression in 
disease, since, the up or down-regulation of a gene 
may be the cause or result of the disease. 
Protein homologs outside its own family 

In the present day drug development processes, 
drug candidates have frequently been intentionally 
designed to bind to their target specifically and to 
avoid strong interactions with other human protein 
members of the same protein family to which the 
target belongs [22-25]. However, their possible 
interactions with human proteins outside the family 
are not intentionally avoided at the design stage, and 
the potential unwanted effects associated with some of 
these interactions can only be detected at the later 
testing stages. Our analysis showed that proteins 
having more than 5 BLAST homologs outside its own 
family are significantly less targetable than proteins 
that have 5 or less number of homologs outside their 
own family (P=0.05) (Table 2, Figure 3). This can be 
attributed to the fact that they can accommodate less 
target specific drugs that minimally interact with 
other pathways. Interactions with more number of 
targets may lead to secondary target effects, which 
may lead to cross-reactivity and unwanted 
interference. It is noteworthy that only 10 out of 133 
targets with FDA approved drugs have more than 5 
homologs outside their own protein family (Table 3). 
Therefore, it tends to be easier to find successful drugs 
for those targets that have fewer human similarity 
proteins outside of their family.  

Table 3: List of genes with maximum (Top10) homologs outside their protein family and their characteristics. PPI=number of 
protein-protein interactions or # of interacting partners. # pathway = number of pathways a target is involved, # tissue = number of 
tissues a target is expressed, # of exons = gene architecture information for the target. FDA approved drug shows the list of FDA 
approved drugs available for the target. Targets may have more than one FDA approved drug available against them. Drugs are 
separated by ***. 
Gene name # Pathway # PPI # Tissue # Homologs # Exons FDA drugs 

ABL1 6 50 5 45 11 Imatinib 

EGFR 11 95 9 40 28 Erlotinib***Gefitinib 

PDGFRB 9 32 9 39 22 Imatinib 

KIT 3 27 6 39 21 Imatinib 

NPR1 3 3 18 30 22 Nitroglycerin 

LDLR 0 9 6 22 18 Porfimer***Methyl aminolevulinate 

F10 1 12 8 19 8 Enoxaparin***Heparin 

PLG 2 33 14 11 19 Aminocaproic Acid 

F2 3 24 0 11 14 Argatroban***Enoxaparin***Heparin 

FCGR1A 1 10 9 6 6 Porfimer***Methyl aminolevulinate 

 



Int. J. Biol. Sci. 2008, 4 

 

21

Exon number 
Data reveals an over-representation of 

single-exonic genes, among genes that have FDA 
approved drugs available for them (P=0.05). This can 
be explained based on the fact that single-exon genes 
do not undergo alternative splicing and hence can be 
used as drug targets with less caution [26]. These 
results also corroborate with the fact that a major 
proportion of druggable genes have been reported as 
G-protein coupled receptors (GPCRs), and a major 
proportion of which (GPCRs) have been reported to 
be single exonic [13, 27]. These data support the fact 
that integration of data on gene annotation and gene 
architecture for genes involved in diseases has the 
potential to contribute to drug discovery and will be a 
step towards designing of safe, efficacious and 
promising drug targets. Accurate information on gene 
architecture and gene annotation allows us to at least 
be informed on the issue of splice variants. Besides, 
alternative splicing information is also useful at many 
stages of the drug discovery process including 
anti-sense mediated silencing and RNA interference 
(RNAi) for knock-down or down-regulation of specific 
genes products or designing of knock-out mice [28]. It 
must be however, noted that many of the 
computationally derived annotations in the databases 
are either minimal or incorrect (apart from a carefully 
manually-curated database such as Swiss-Prot). Also, 
as annotation of genes is provided by multiple public 
resources, using different methods, it results in 
information that is similar but not always identical. 
However, the database used in this study, the CCDS 
database overcomes these issues as it is a collaborative 

effort to identify a core set of human protein coding 
regions that are consistently annotated and of high 
quality (Table 2, Figure 4). 
Number of interacting proteins 

It is becoming increasingly clear that genes and 
their products interact in complex biological networks 
with local and global properties and perturbations of 
these networks contribute to the disease state. 
Understanding of interacting proteins is of importance 
in cell physiology and for developing novel 
treatments against disease. Small molecules that 
occlude crucial binding site(s) may be sufficient for 
modulating protein interactions that occur over large 
surface area and can thus act as drugs. It is known that 
these versatile protein-protein interactions are central 
to many key biological pathways and thus are 
attractive targets for drug discovery. Our data 
suggests that proteins interacting with more than 3 
partners are preferred drug targets (P=0.05) (Table 2, 
Figure 5). However, for the drug discovery process, it 
is important to determine the dynamics of interactions 
involving proteins having multiple interacting 
partners as well as identifying interaction surfaces for 
each partner. Moreover, research to discover 
small-molecule drugs that target protein-protein 
interactions is still at an early stage.  

The top 10 targets (with FDA approved drugs) 
based on number of interaction proteins are listed in 
Table 4. It is noteworthy that 5 out of these have more 
than 3 homologs outside their own family. These 
results hint on the fact that the above described 
characteristics do not work collectively/together to 
determine the success of a target. 

Table 4: List of genes with maximum (Top10) interaction partners and their characteristics. PPI=number of protein-protein 
interactions or # of interacting partners, # pathway = number of pathways a target is involved, # tissue = number of tissues a target is 
expressed, # of exons = gene architecture information for the target. FDA approved drug shows the list of FDA approved drugs 
available for the target. Targets may have more than one FDA approved drug available against them. Drugs are separated by ***. 

Gene 
name 

# 
Pathway 

# PPI # Tissue # 
Homologs 

# Exons FDA approved drugs 

EGFR 11 95 9 40 28 Erlotinib***Gefitinib 
AR 0 81 12 2 8 Testosterone***Bicalutamide***Flutamide***Oxandrolone 

ESR1 0 81 11 2 8 Fulvestrant***Raloxifene***Medroxyprogesterone***Progestero
ne***Estradiol***Ethinyl 

Estradiol***Estramustine***Tamoxifen***Conjugated Estrogens 
NR3C1 1 71 4 2 8 Hydrocortisone***Methylprednisolone***Budesonide***Momet

asone***Betamethasone***Loteprednol 
Etabonate***Amcinonide***Dexamethasone 

BCL2 7 55 4 0 2 Paclitaxel***Docetaxel 

ABL1 6 50 5 45 11 Imatinib 

RARA 0 34 0 2 8 Tazarotene***Adapalene***Alitretinoin***Isotretinoin***Tretino
in***Acitretin 

PLG 2 33 14 11 19 Aminocaproic Acid 

PDGFRB 9 32 9 39 22 Imatinib 

KIT 3 27 6 39 21 Imatinib 
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5. Conclusion 
We have to keep in mind that the drug discovery 

and development process is extremely difficult due to 
our poor understanding of biology of the disease and 
biology of the host (i.e., Homo sapiens). We are 
making steady progress, but there is still a long way to 
go. Knowledge on characteristics of targets could be 
helpful for predicting features and if possible deriving 
rules that guide new drug design and the search for 
new targets from genomic data. Our analyses hint that 
proteins with 5 or fewer homologs outside their own 
family, proteins with single-exon gene architectures 
and proteins with more than 3 interacting partners are 
promising targets. For targets with a higher number of 
similarity proteins outside their own family, or 
multiple exons or interacting with less than 3 partners, 
it is still possible to find drugs. The characteristics 
defined above, merely make the tasks for finding 
successful drugs against these targets easier. As of 
today there is only 1 successful target NPR1 that is 
targeted by Nitroglycerin (interacts with 3 proteins, 
has 22 exons and has 30 homologs outside its own 
protein family) that does not satisfy all the three 
characteristics defined above. Moreover, in the FDA 
list there are 10 targets with more than 5 homologs 
outside their own protein family, 72 targets with 3 or 
lesser interacting partners and 108 targets with 
multi-exon gene architectures. These results suggest 
that the above quantitative characteristics selectively 
function in a combined, collective and differential 
mode and may help define and determine the 
targetability of a protein. 
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