Int J Biol Sci 2008; 4(2):103-110. doi:10.7150/ijbs.4.103

Research Paper

Screening of Human Antibody Fab Fragment against HBsAg and the Construction of its dsFv Form

Leili Jia1,*, Jiyun Yu2,*, Hongbin Song1, Xuelin Liu1, Weina Ma1, Yuanyong Xu1, Chuanfu Zhang1, Shicun Dong1, Qiao Li2,3

1. Center for Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China.
2. Institute of Basic Medical Sciences, Beijing, China
3. Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
* These two authors contributed equally to the work.

This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) License. See for full terms and conditions.
Jia L, Yu J, Song H, Liu X, Ma W, Xu Y, Zhang C, Dong S, Li Q. Screening of Human Antibody Fab Fragment against HBsAg and the Construction of its dsFv Form. Int J Biol Sci 2008; 4(2):103-110. doi:10.7150/ijbs.4.103. Available from

File import instruction


The objective of this study was to pursue the techniques involving the screening of the human antibody Fab fragment against hepatitis B virus surface antigen (HBsAg) and the construction of its disulfide-stabilized Fv fragment (dsFv). The phage antibody Fab fragments against HBsAg were screened from the human combinatorial immunoglobulin library. Sequence analysis revealed that its heavy chain gene was complete, but the light chain gene was lost. To improve the affinity of the antibody by chain shuffling, a human antibody light chain gene repertoire was generated by reverse transcriptase-polymerase chain reaction (RT-PCR) from the human peripheral blood lymphocytes. A phage antibody sub-library was then constructed by inserting the light chain gene repertoire into the phagmid that contained the Fd gene. Five clones with appreciably higher absorbance than that of the original clones were obtained, which indicated that the affinity of the light chain-shuffled phage antibodies was improved. Then, the mutated genes of dsFv against HBsAg were constructed by using PCR-based point mutagenesis method. Purified VH and VL proteins were folded into a 25-kDa protein, designated as anti-HBsAg dsFv. ELISA and competition ELISA revealed that the dsFv maintained the specificity of the Fab by binding to HBsAg, even through with a lower binding activity. These results have facilitated the undertaking of further functional analyses of the constructed dsFv, and may therefore provide an improved technique for the production and application of dsFvs against HBsAg.

Keywords: HBsAg, Fab, dsFv, phage antibody, chain shuffling, point mutagenesis