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Bone morphogenetic proteins are a diverse group of morphogens with influences not only on bone tissue, as the 
nomenclature suggests, but on multiple tissues in the body and often at crucial and influential periods in devel-
opment.  
The purpose of this review is to identify and discuss current knowledge of one vertebrate BMP, Bone Morpho-
genetic Protein 13 (BMP13), from a variety of research fields, in order to clarify BMP13’s functional contribution 
to developing and maintaining healthy tissues, and to identify potential future research directions for this in-
triguing morphogen. BMP13 is highly evolutionarily conserved (active domain >95%) across diverse species from 
Zebrafish to humans, suggesting a crucial function. In addition, mutations in BMP13 have recently been associ-
ated with Klippel-Feil Syndrome, causative of numerous skeletal and developmental defects including spinal 
disc fusion. The specific nature of BMP13’s crucial function is, however, not yet known.  
The literature for BMP13 is focused largely on its activity in the healing of tendon-like tissues, or in comparisons 
with other BMP family molecules for whom a clear function in embryo development or osteogenic differentiation 
has been identified. There is a paucity of detailed information regarding BMP13 protein activity, structure or 
protein processing. Whilst some activity in the stimulation of osteogenic or cartilaginous gene expression has 
been reported, and BMP13 expression is found in post natal cartilage and tendon tissues, there appears to be a 
redundancy of function in the BMP family, with several members capable of stimulating similar tissue responses. 
This review aims to summarise the known or potential role(s) for BMP13 in a variety of biological systems. 
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Introduction 
Bone Morphogenetic Protein 13 is a member of 

the wider Bone Morphogenetic Protein (BMP) family, a 
group of bio-active growth factors with 20 – 30% 
amino acid homology to Transforming Growth Factor 
β (TGFβ). Initially BMPs were identified as compo-
nents of de-mineralised bone matrices which stimulate 
the generation of new bone tissue when implanted 
ectopically, or at sites of fracture [1,2]. BMP13 was 
identified in cartilaginous tissues, and by virtue of its 
homology to other members of the BMP family [3,4].  

More than 30 BMPs have now been identified in a 
wide range of species. Protein structure and, to a lesser 
degree amino acid sequences are evolutionarily con-
served; and BMPs are present in diverse species such 
as mammals, fish, amphibians and birds. BMP-like 
molecular pathways have been identified in inverte-
brates such as Drosophila [5-7] and in the nematode 
Caenorhabditis elegans [8,9]. To date BMP13 appears to 
be vertebrate specific [10]. 
 

Members of the BMP family have a range of 
40-60% amino acid identity but can be divided into 
subgroups on the basis of structural and amino acid 
similarities, as listed in Table 1. BMP13 (GDF6, 
CDMP2) has a higher degree of homology (80-86% 
amino acid identity) with other members of the GDF 
sub family (GDF5/BMP14, GDF7/BMP12) than with 
the wider BMP group (about 50%) [11-13], indicating 
the potential for conserved function.  

Table 1. BMP protein family sub-grouping by amino acid ho-
mology (*Homology in C-terminal active domain).  

BMP sub-group Amino acid homology to 
BMP13 sub-group*  

Alternative Name 

BMP-2 BMP2A 
BMP-4 

56-57% 
BMP2B 

BMP-6 Vgr-1 
BMP-7 OP-1 
BMP-5  
BMP-8 

50-54% 

OP-2 
BMP-3 46-47% Osteogenin 
BMP-12 82% GDF-7 / CDMP-3 
BMP-13 100% GDF-6 / CDMP-2 
BMP-14 82% GDF-5 / CDMP-1 
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BMPs are considered to be pleiotropic, effecting 

many different tissues in subtly different ways. They 
have been identified and characterized through di-
verse fields of biology such as tissue healing, regen-
eration and maintenance [3,11,12,14]; mouse devel-
opmental mutational analysis [4,15,16]; Zebrafish and 
Xenopus embryo development [17-19]; and investiga-
tions of human developmental anomalies [20,21]. 
BMPs play crucial roles in early embryonic patterning 
and in skeletal and organ development [22-25]. 

BMP13 Protein Structure 
The amino acid sequence for BMP13/GDF6 is 

highly conserved across vertebrates, although to date 
no invertebrate orthologues have been identified [10]. 
Sequence homology is concentrated in the active 
C-terminal domain (Figure 1) indicating crucial con-
servation of function. Even the most divergent of 
BMP13-homologues, Zebrafish dynamo and radar, dis-
play > 90% homology in this domain. Considerably 
less sequence similarity is found in the N-terminal 
pro-domain, although there are conserved regions in 
higher vertebrates associated with developmental 
mutations [21] (Figure 2).  

 

 

Figure 1. Alignment of the BMP13 C-terminal active domain amino acid sequence from various vertebrate species. Shaded 
areas represent amino acid differences compared to the human sequence. Consensus protease cleavage site (boxed). Accession 
numbers for sequences: Human-NM_001001557; Rhesus Macaque – XM_001090825; Mouse-MGI95689; Rat-NM_001013038; 
Bovine-U13661; Xenopus-AAD38402; Radar (Zebrafish)-AAB34226; Dynamo (Zebrafish)-X99769. 

 

Figure 2. Alignment of amino acid sequences surrounding the putative BMP13 second cleavage site. Amino acid sequences 
alignment demonstrates homology upstream and downstream of a second consensus protease cleavage site (boxed). Residues 
highlighted in Red are particularly conserved. 
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Figure 3. BMP13 Protein Sequence. Amino acid sequence of human BMP13 showing signal peptide, disulphide-bonded cysteine 
pairs, consensus protease. Cleavage sites and point mutations identified in degenerative conditions. 

 
Protein structural information for BMP13 is 

speculative, relying on the analysis of conserved 
structural characteristics of members of the BMP fam-
ily, and based on studies of BMP4 [26-29] and BMP7 
[30]. The 3-dimensional structure of the BMPs is re-
ferred to as a “cysteine knot” [31]. Synthesised as large 
precursor molecules containing a pro-domain and an 
active domain, BMPs form homodimers in the Endo-
plasmic Reticulum (ER) and are proteolytically cleaved 
in the Golgi [32] at dibasic consensus RXXR seropep-
tidase cleavage sites. BMP13 has a consensus sequence 
for cleavage by a serine pro-protein convertase such as 
furin [33], positioned to release an active C-terminal 
domain of 121aa (Figure 3). Western blotting data un-
der reducing and non-reducing conditions confirms 
BMP13 exists as a homodimer of approximately 16KDa 
subunits [34-37], structurally held together by inter- 
and intra-chain disulphide bonds between 7 conserved 
cysteine residues (see Figure 3). Interestingly the 
BMP13 amino acid sequence also possesses a second 
putative dibasic consensus cleavage site upstream in 
the pro-domain similar to that identified for BMP4 

[29], indicating that control of the release of active 
BMP13 may rely on 2 proteolytic cleavage steps within 
the ER and Golgi (Figure 2). An amino acid sequence 
alignment of this region shows considerable homology 
across diverse species, and encompasses 2 loci where 
developmental mutations associated with Klippel-Feil 
Syndrome have been identified [21] (Figure 2).  

Evidence obtained from purification of bioactive 
fractions from bone suggest BMPs, in addition to 
forming homodimers, can form heterodimeric mole-
cules in vivo [38,39]. In vitro studies have implied that 
BMP2/7 and BMP4/7 heterodimers formed preferen-
tially and had significantly greater activity in osteo-
genic differentiation assays [40,41] and in mesoderm 
induction in Xenopus oocytes [42,43] than the two 
homodimeric molecules combined. BMP13 formed 
heterodimers with BMP2 when co-expressed in the 
same cell in vitro and may also interact with BMP4 [17], 
however this is yet to be demonstrated in vivo. Indeed, 
any direct evidence of protein processing, structure or 
physical characteristics specific to BMP13 are as yet 
unavailable or unpublished.  
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Table 2. BMP13/GDF6/CDMP2 sequence identification. 

Species Name Reference Tissue Accession No. 
Bovine CDMP-2 Chang et al 1994 Articular cartilage U13661 
Human BMP13 Strausberg et al 2002,  

Asai-Coakwell et al 2007 
-mixed 
-genomic DNA sequencing 
project 

AAH4322 
 
NM_001001557 

Rhesus Macaque Gdf6 Lowe & Eddy 1997 Genomic DNA sequencing pro-
ject 

XM_001090825 

Mouse GDF6 Storm et al 1994 12.5d embryo MGI 95689 
Rat GDF6 Sena et al 2003 Mandibular molar RGD: 620104 
Zebra fish radar Rissi et al 1995 Early embryo AAB34226 
Zebra fish dynamo Bruneau & Rosa 1997 Early Embryo X99769 
Xenopus GDF6 Chang & Hemmati-Brivanlou 1999 Mid-gastrula embryo AAD38402 

 

Receptor Transduced Signalling 
BMP13, like all members of the BMP family, 

functions via cell signaling through trans-membrane 
serine-threonine kinase receptor complexes [24,44,45] 
(Table 3). BMP signal receptor complexes contain both 
Type I (BMPRIA, BMPRIB, ALK1, ALK2) and Type II 
(BMPRII, ActRII, ActRIIB) receptor molecules. The 
homodimeric BMP ligand first binds to a constitutively 
active type II receptor, which recruits and phosphory-
lates the type I receptor, conferring ligand binding, 
kinase domain activation and initiating intracellular 
signalling cascades [24,45,46]. The type I receptor 
molecules are necessary for the signalling component 
of the complex [47]. BMP receptors are inducible in 
tissues such as bone, where both BMPRIA/IB increase 
expression at sites of ossification, and display temporal 
expression in specific tissues during embryogenesis 
[45].  

BMP13 has demonstrated preferential affinity for 
BMPRIB (Activin receptor-Like Kinase 6 (ALK6)) and 
BMPRII. In the rat osteoprogenitor cell line ROB-C26 
BMP13 formed complexes with BMPRIB and BMPRII 
which transduced a strong transcription initiation 
signal, with a weaker signal and barely detectable re-
ceptor complex associated with BMPRIA/BMPRII [34]. 
Interestingly, the BMPRIB/BMPRII complex is crucial 
for chondrogenesis of chick limb mesenchymal cells 
[48], suggesting a role for BMP13 (and closely related 
GDF family members) in chondrogenic develoment.  

The downstream events associated with BMP re-
ceptor complex activation involve recruitment and 
activation of Receptor-associated-Smad signalling 
molecules (R-Smad), which combine with the common 
Smad (C-smad), Smad-4, to propagate the BMP re-
ceptor signals to the nucleus through their ability to 
bind to specific DNA sequences and promote gene 
expression [25,49-52]. BMP13 binding to BMPRIB, 
BMPRIA and BMPRII results in phosphoryla-
tion/activation of Smad 1/5/8, and transcriptional 
activation via BMP response elements (BRE) in vitro 
[53]. Blocking BMP13 (GDF6) signalling in vivo results 

in a reduction in phospho-smad in corresponding re-
gions of the developing embryo [19].  

Table 3. BMP Receptor groupings and nomenclature. 

Receptor Alternative Name Type BMPs Bound 
ALK3 BMP-RIA I 2, 4, 7, 13, 14 
ALK6 BMP-RIB I 2, 4, 7, 13, 14 
ALK1  I  
ALK2 Activin RI I 2, 7, 14, activin 
    
BMP-RII  II 2, 4, 7, 13, 14 
Act-RIIA  II 7, 2, 13, 14, activins 
Act-RIIB  II 2, 7, 14, activins 

BMP13 Expression and Function 
BMP13, was first identified and isolated as a 

component of bovine cartilage, designated Cartilage 
Derived Morphogenetic Protein -2 (CDMP2) [3], ex-
pressed in post natal articular and cricoid cartilage, 
and to a lesser degree in other tissues such as intes-
tines, skeletal muscle and placenta. Expression has 
since been detected in a variety of structural tissues 
and aspects of its function have been emerging. The 
majority of studies focus on the promotion of connec-
tive tissue healing and on comparisons with other 
BMPs known for their ability to stimulate the growth 
of bone. However, a body of literature examines 
BMP13 and its homologues in embryonic develop-
ment, work that could provide clues to the more spe-
cific roles of BMP13 in adult tissues.  

BMP13 and Cartilage  
BMP13 expression has been detected in both foe-

tal and post natal cartilaginous tissues from various 
species and anatomical sites [3,35,36,54,55]. Expression 
was detected mainly in the upper layers of post natal 
articular cartilage tissues [35] but was uniform in cul-
tured chondrocytes. Examination of human foetal tis-
sues (6 - 10 wks gestation) has localized BMP13 ex-
pression to mature and hypertrophic chondrocytes in 
the periosteal bony collar of developing long bones [3].  

Chondrocytic cells isolated and cultured in vitro 
respond to recombinant BMP13 stimulation, increasing 
the biosynthesis of proteoglycan (PG) [34-36,56,57] 
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measured by alcian blue staining, 35S-incorporation or 
as a percentage of tissue wet weight [57]. This appears 
to be, at least in part, due to increased aggrecan mRNA 
levels [36], however more data is required as other 
study results do not show aggrecan mRNA upregula-
tion [35].  

BMP13 does not appear to increase chondrocyte 
or cartilage cell proliferation [34,36], although prolif-
eration was reported in a study of mesenchymal pro-
genitor cell differentiation (discussed further below) 
[58]. The location of expression in cartilaginous tissues 
would suggest a presence in proliferating cells.  

Surprisingly, BMP13 stimulation of cartilaginous 
tissues did not demonstrate increased levels of colla-
gen expression [35,36,56], yet collagen II upregulation 
has been reported in mesenchymal progenitor cells 
stimulated with BMP13 [58,59]. This is perhaps a re-
flection of the differentiation state of the cells under 
study, rather than the signals being transduced by the 
BMP13 ligand. 

The measurement of increased catabolic activity 
in cells stimulated with BMP13, while indicative of 
activity, was not specific or limited to BMP13 alone. 
Indeed all CDMPs (BMP13, 12, 14), when compared 
directly, induced chondrocytic protein synthesis with 
varying levels of intensity depending on the tissues 
studied [60,61].  

BMP13 in Osteogenesis 
The potential for BMP13 to stimulate osteogenic 

phenotypes has been examined [34,57-59,62-64].  
Rather than osteogenic differentiation, BMP13 

appears to induce marker expression in progenitor 
cells that are characteristic of chondrocytes, such as 
proteoglycan [34,37,57,58,64] and collagen II [58,59]. 
BMP13 stimulation of a number of different progenitor 
cell types had no effect on the expression of osteogenic 
markers osteocalcin [57,58,62], myoD [63] and calcium 
mineral accumulation [58] that are characteristic of 
osteogenic differentiation. Further, in a study of hu-
man bony outgrowths seen in joint arthritis and 
known as osteophytes, BMP13 expression was absent 
from osteoblasts or newly formed osteocytes, rather 
localized to the proliferating and mature chondrocytes, 

and to a lesser degree to hypertrophic chondrocytes 
[54]. 

Some ambiguity exists with respect to BMP13 
stimulation of alkaline phosphatase (ALP) activity, 
which is reportedly increased, albeit to low levels, in 
mesenchymal progenitor cell lines [34,58,59] and BM 
stromal cells [62] in response to recombinant BMP13 
stimulation. However other studies in bovine ligament 
fibroblasts [37], periosteum [57], and one C2C12 mur-
ine progenitor cell line study [63] reported no increase 
in ALP activity. Whilst the ALP studies utilised similar 
enzyme activity methodology they were done in dif-
ferent cell types, and there was variability in the incu-
bation times (48h to 1-3 weeks), where the longer 
stimulation times in general resulted in detection of 
elevated ALP in response to BMP13. It is clear that any 
enhancement of ALP activity was inferior to that of the 
more osteogenic BMP7 and BMP2 molecules, and that 
whilst osteogenesis was not suppressed by BMP13, it 
was also not significantly enhanced. Interestingly, 
BMP13 did synergistically enhance the expression of 
BMP7-induced ALP, myoD and osteocalcin in the 
C2C12 murine progenitor cell line [63], as did all of the 
CDMPs (BMP13, BMP14 (GDF5) and BMP12 (GDF7)) 
studied in C2C12 cells- indicating a potential modula-
tor role for BMP13.  

These studies also demonstrated that BMP13 
showed reciprocal stimulation of mRNA in culture 
with other BMPs. BMP13 auto-regulated itself and was 
up-regulated by BMP12 (GDF7, CDMP-3); BMP13 also 
significantly upregulated the expression of BMP4 
mRNA (8-10 fold), and to a lesser degree that of BMP5, 
GDF8 (myostatin; a negative regulator of skeletal 
muscle development) and GDF9 (involved in control 
of ovulation) (2-3 fold), particularly, in the case of 
GDF8 and 9, following longer incubation periods (6- 
and 11-fold increases respectively). BMP13 was found 
to suppress the expression of BMP6 and BMP-8A by 
60-70% [63]. Taken together, these data point towards 
a modulator role for BMP13 growth factor signals in 
the tissue, with an overall enhancement of cartilagi-
nous growth and down regulation of bone-promoting 
activities.  

Table 4. BMP family members and major functional activities. References: [65,66]  

BMP Other names Known Activity 
BMP2 BMP2A Cartilage/bone morphogenesis; osteoblasts differentiation; retinoid mediator 
BMP3 - Osteogenesis, bone formation; brain 
BMP4 BMP2B Cartilage/bone morphogenesis; formation teeth, limbs, & bones from mesoderm; 

fracture repair 
BMP5 - Bone morphogenesis; cartilage development 
BMP6 - Hypertrophy-cartilage/skin; adult joint integrity 
BMP7 OP-1 Bone morphogenesis, differentiation; eye and kidney development; osteoblasts 

differentiation;  
BMP8 OP-2 Bone formation; cartilage development 
BMP8A  Germ cells of testis - spermatogenesis 
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BMP8B 
BMP9 - Chondrogenic differentiation from mesenchymal progenitors 
BMP12 GDF7 Ligament & tendon development 
BMP13 GDF6 Cartilage development, hypertrophy; embryonic patterning; eye development; limb 

morphogenesis 
BMP14 GDF5 Limb morphogenesis; chondrogenesis; mesenchymal condensation 
 GDF8 Negative regulation of skeletal muscle growth 
 GDF9 Control of ovulation; expressed in oocytes, ovary 

 
BMP13 in Tendons & Ligaments 

BMP13 expression was detected in human tendon 
tissues [67,68]. Expression was specifically detected at 
sites of active tissue healing and re-modeling – par-
ticularly in the small, rounded tenoblasts, capable of 
proliferating and synthesizing tendon extracellular 
matrix proteins; and in perivascular mesenchymal 
cells thought to act as stem cells for connective tissue 
healing [68]. In vitro BMP13 stimulation induced col-
lagen I expression and, unlike most cellular studies, 
very low concentrations of recombinant BMP13 (25 – 
50ng/mL) were found to stimulate tenoblast prolif-
eration [68]. The active concentration range of BMP13 
activity reported in this tendon study has not been 
duplicated in published studies to date. Whether 
tenoblasts are particularly responsive to BMP13, or the 
reagents particularly potent is not known, but clearly 
the activity was greater than in other published studies 
which utilise in the vicinity of 200-300ug/mL 
[34-37,56,59,63,64]. Interestingly it is one of the only 
studies published where human recombinant proteins 
were used to stimulate human tissues.  

Several studies have reported 
neo-tendon/ligament formation and the development 
of highly organized connective tissue rich in collagen I 
fibres in response to in vivo ectopic implantation of 
BMP13 at sites of tendon wounding in rats [61,69,70] 
and intramuscularly [60,71]. Progenitor cell prolifera-
tion and differentiation into neo-tendon/neo-ligament 
was reported within the muscle, the formation of col-
lagenous extracellular matrix, and even development 
of small bone and cartilage foci within the new tissue 
[71].  

Further in vivo studies demonstrated that BMP13 
has significant ability to accelerate the healing of 
damaged tendons and ligaments in vivo, inducing 
mechanical strengthening of the tendon fibres which 
were measurably stronger 8 days following a single 
injection of recombinant BMP13 [61,70]. Intriguingly, 
researchers found that implantation at physiological 
sites subject to different mechanical loading stimulated 
the growth of either bone tissue (unloaded tendons) or 
cartilaginous tissue (mechanically loaded tendons) 
[69].  

It is noteworthy that whilst these tendon tissue 
studies reported stimulation of collagen I fibre forma-

tion, isolated bovine ligament fibroblasts stimulated 
with BMP13 in vitro were induced to express a more 
chondrogenic phenotype, increasing expression of 
proteoglycan [37]. Taken together with evidence of 
differential tissue formation in response to mechanical 
loading, it appears that BMP13 induction of cellular 
catabolism produces the up-regulation of different sets 
of genes in different circumstances.  

BMP13 in the Intervertebral Disc 
The structure of the intervertebral disc (IVD) is a 

gelatinous, highly hydrated core - the Nucleus 
Pulposus (NP), comprised largely of proteoglycan and 
collagen II, surrounded by a high tensile strength col-
lagen fibre “fence” in the form of the Annulus Fibrosus 
(AF).  

Studies in cells derived from the Nucleus Pulpo-
sus (NP) [72-74] and Annulus Fibrosus (AF) [73], in 
comparison to other catabolically active BMPs, have 
demonstrated that BMP13 induced disc cell catabolic 
activity. BMP13 stimulated increased production of 
proteoglycan and total collagen in the absence of in-
creased cell proliferation in IVD monolayer cultures 
[72,73] and in 3D alginate co-culture with transduced 
chondrocyte monolayers [74]. Furthermore the data 
suggest that AF cell cultures are more responsive to 
BMP13 than NP cells, producing proportionately more 
proteoglycan and collagen in relation to controls and 
in comparison to other BMPs tested [73].  

In addition, Li et al (2003) have utilized a mouse 
chondrocytic cell line MC615 to study the potential for 
BMP13 in combination with BMP2 to stimulate the 
production of extracellular matrix proteins character-
istic of the disc tissue. Whilst this cell line is not de-
rived from the disc it demonstrates similar gene ex-
pression. The authors found that both proteins could 
stimulate the production of proteoglycan, mediated by 
increased aggrecan mRNA expression, but had little 
effect on cell proliferation. In this model the stimula-
tory effect of BMP2 was greater than BMP13, occurred 
at lower concentrations, and no synergistic activity 
was detected [64].  

We have recently obtained early data from a large 
animal disc degeneration model [75] which suggests 
that BMP13, when injected directly into the disc, can 
reverse early degenerative changes induced by me-
chanical injury (Diwan et al 2008, unpublished obser-
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vations; Approved by the University of Sydney Ani-
mal Ethics committee, August 2007). Our study de-
tected a loss of disc integrity using MRI, where an 
annulus stab injury receiving saline injection was visi-
ble as a darker (more degenerated) T2-weighted image 
compared to those which received BMP13 injection, or 
uninjured controls (Figure 4). Histological analyses 
revealed an increase in the number of cells discharging 
into the disc from the discal side of the end plate in 
BMP13-injected discs, compared to the stab-controls or 
exposed un-injured controls (Figure 5). This was ac-
companied by evidence of neo-vascularization, a 
known response to chronic injury and characteristic of 
this model [76], which we observed on the bony side of 
the end plate region in disc tissues derived from the 
stab-only controls, yet not in the BMP13-injected disc 
tissues (Figure 5).   

Figure 4. Retention of disc integrity in the presence of 
BMP13 following annular injury. Magnetic Resonance Image 
(MRI) scan of sheep spine at 4 months post surgery. Three disc 
levels are shown: stab control (annular stab with a No. 9 blade 
followed by injection of 70uL saline solution), Un-injured con-
trol (no injury), BMP13 (annular stab with a No. 9 blade fol-
lowed by injection of 70uL BMP13 solution). 

 

 

Figure 5. Increased cellularity of end plate in the presence of BMP13 following annular stab injury. Histological analysis of 
sheep disc tissues 4 months post surgical injury.  

Development 
Members of the BMP family play crucial roles in 

developmental processes [22,23,65,77-79] and BMP13 
is no exception.  

BMP13 was simultaneously cloned by Storm et al 
(1994) by virtue of its homology to other BMP family 
members using degenerate PCR primers, delineating a 
BMP sub-family of “Growth and Differentiation Fac-
tors” (GDFs 5, 6, 7), so named due to the mutational 
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effect of GDF5 gene disruption in causing brachypo-
dism in mice [4]. BMP13 expression was detected in 
the developing limb – restricted to ossifying long bone 
centres [3]. The specific role of BMP13 in develop-
mental processes is not yet clear, although its in-
volvement in human eye development has been re-
ported [20]; and homologous genes radar [18,80] and 
dynamo [81] in Zebrafish; and GDF6 homologues in 
Xenopus laevis [17] influence early embryonic devel-
opment.  

Embryonic Development 
BMP signalling pathways have been conserved 

through evolution from Drosophila to mammals, with 
BMP4 capable of rescuing Drosophila decapentaplegic 
(dpp) mutations [82]. Similarly early embryonic de-
velopment, from fruit fly to mammals, is initiated 
through positional information provided, at least in 
part, by BMP morphogens and their antagonists 
forming activity gradients across the embryo [19,51].  

Studies of homologous pathways in Zebrafish, 
Drosophila and Frog (Xenopus laevis) demonstrate a role 
for BMP13 in early embryo development. In Zebrafish, 
a BMP13/GDF6 homolog - radar – influences initial 
dorso-ventral patterning of the embryo as a maternal 
RNA transcript [18,83]. Over-expression of radar in 
Zebrafish embryos results in a ventralised phenotype 
with a reduction or absence of dorsal structures [83]. 
Ablution of maternal transcripts results in a dorsalised 
Zebrafish embryo phenotype [80], and also results in 
perturbed ventro-lateral expression of other BMPs, 
such as BMP2b and BMP4 [80]. A second Zebrafish 
BMP13/GDF6 homolog, dynamo, is not maternally 
expressed and has more restricted expression, found in 
posterior ventral neural tissue, eventually becoming 
restricted to the ventral spinal cord tissues at the end of 
somatogenesis, suggesting a more specific role in the 
organization of the developing spinal cord [81].  

It is not known whether the BMP13/GDF6/radar 
ventralising activity is conserved in other species. 
Certainly maternal GDF6 (BMP13) RNA transcripts 
have not been detected in Xenopus embryos [17], al-
though protein translated during oogenesis could 
conceivably be active in the early frog embryo. How-
ever injection of wild type BMP13 (GDF6) into early 
Xenopus embryos results in a mild ventralisation phe-
notype [17], similar to that observed in Zebrafish. 
BMP13/GDF6 induced epidermal genes and inhibited 
neural markers in Xenopus embryos, activities directly 
modulated by expression of antagonist molecule, nog-
gin [17].  

Eye/retinal development 
Studies of human chromosomal abnormalities 

have recently identified GDF6 (BMP13) within and 

adjacent to segmental chromosomal deletions in pa-
tients with Colobomata [20], a complex series of ocular 
abnormalities that appear to involve many apparently 
unrelated genes. Ocular development is also perturbed 
when zygotic expression of Zebrafish GDF6 homo-
logue radar is inhibited - morphants exhibit reduced 
eye, head and dorsal neural tube structures [80].  

Similarly, BMP13 was also identified as an early 
regulator of retinal development in a Xenopus model 
[19]. Phenotypically, depletion of GDF6 resulted in a 
reduction in eye size, evidence of increased pro-
grammed cell death, more disorganized retinal tissue 
development, and the presence of neural defects in the 
eye and neural tube [19,21]. The influence of BMP13 
depletion also extended to wider influences on devel-
oping neural tissue and the effects correlated with a 
decrease in phosphorylated smad 1/5/8 signalling 
molecules, indicative of decreased signalling.  

Thus the importance of BMP13/GDF6 and its 
homologues in embryonic ocular tissue development 
appears to be conserved across widely variant verte-
brate species.  

Skeletal development 
As shown in Figure 1 & 2, BMP13, like all mem-

bers of the GDF sub-family of BMPs, is highly con-
served in vertebrates [10]. All GDF genes are expressed 
in a stripe pattern in developing joint regions where 
skeletal segmentation events occur [16,84], with 
GDF6/7 expression more restricted than GDF5.  

GDF6/BMP13 knockout mice are viable and sur-
vive to adulthood, however they have abnormal skull 
joint development and bone fusions at wrist and ankle 
– sites of major BMP13 developmental expression [84]. 
Evidence from studying these mice suggested that 
development of these joints was initiated normally but 
could not proceed, suggesting a role for BMP13 in the 
maintenance of developmental processes. 

Naturally occurring null mutations in GDF5 
cause brachypodism - shortening of long bones, al-
terations to joint bone formation in wrists, ankles and 
digits - and are characterized by abnormal cartilage 
and some bone fusions [16,85]. The combination 
GDF5/6 knockout mouse is far less viable and has 
additional striking skeletal defects: many limb bones 
and joints are severely reduced or absent. In addition 
the vertebral column appears prone to curvature (sco-
liosis) in many double mutants, with lower tho-
racic/lumbar vertebrae displaying altered extracellu-
lar matrix (proteoglycan) deposition in inter-vertebral 
chondrocyte-like cells [84]. The authors suggest the 
GDF knockout mutations exposed a role in joint 
maintenance and the double knockout may suggest 
that, rather than representing redundancy of function, 
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members of the GDF family co-operate or rely on each 
other during skeletal development - and potentially in 
tissue maintenance. 

Recently GDF6 was identified as a candidate gene 
defect present in several familial and sporadic cases of 
Klippel Feil Syndrome (KFS) [21]. KFS is characterized 
by heterogeneous congenital defects of the spine, limbs 
and organ functions [86,87]. Breakpoint analysis indi-
cated the involvement of a long range BMP13 regula-
tory locus in the manifestation of KFS, but also identi-
fied two point mutations associated with a familial 
inherited abnormality (A249E), and two sporadic mu-
tations causing the same syndrome (L289P) (Figure 3) 
[21]. Both missense mutation sites are located in the 
pro-domain in the evolutionarily conserved region 
near the second putative protease cleavage site, further 
strengthening the possibility that this site is important 
for the control of BMP13 tissue expression.  

BMP13 Antagonists 
BMP antagonists form a protein family that dis-

play amino acid homology and evolutionary conser-
vation, possessing a similar “cysteine knot” structure, 
they are part of the wider TGF-β superfamily [15]. In 
terms of embryo development, early studies with 
Xenopus and Drosophila found that morphogenic gra-
dients of opposing antagonistic proteins controlled 
spatial organization in the embryo and led to the es-
tablishment of a dorso-ventral axis [88]. BMP antago-
nists control all aspects of BMP function including 
effects on tissue re-modelling. They bind to the BMP 
ligands and prevent interaction with cell surface re-
ceptors, thereby blocking intracellular signalling. [25]. 

The GDF6 homolog in Xenopus was cloned 
through a gene screen specific for molecules 
down-regulated by BMP antagonist Noggin, and di-
rect binding of noggin to GDF6 (BMP13) has been 
demonstrated [17]. Whilst GDF6 was responsible for 
promoting epidermal tissue modulation, noggin activ-
ity induced neural tissues, with normal development 
the result of a delicate balance between opposing 
morphogen expression.  

Interestingly null noggin mutations have excess 
cartilage and bone [24]. Excess BMP activity as a result 
of noggin reduction or antagonism may enhance re-
cruitment of cells to cartilage, resulting in oversized 
growth plates.  

Summary and Future directions 
The highly conserved amino acid sequence of the 

BMP13 active domain – both within its GDF-subfamily 
and, quite strikingly, across diverse vertebrate species 
– suggests a crucial biological function. The literature 
to date, whilst providing important insights, appears 

to imply BMP13/GDF6 functions co-operatively and is 
somewhat redundant, even playing a modulatory role 
affecting the functions of other BMPs both in devel-
opment and in adult tissues.  

Reports have emerged showing the genetic im-
pact of BMP13 (GDF6) gene disruption in Zebrafish, 
Xenopus, and in Human individuals; with diverse ef-
fects on embryonic ocular and neural tissues, and on 
the development of skeletal structures such as the 
skull, limb joints, the developing spinal column and 
intervertebral discs. Developmental models indicate a 
very early dorso-ventral patterning function for 
BMP13/GDF6, which appears to be conserved – at 
least in fish and amphibians – establishing the early 
dorso-ventral axis and promoting ventral tissues of the 
eye, head and neural tube. A conserved role is also 
apparent in the development of ocular structures. The 
effect of BMP13 in development seems to lie in its in-
fluence upon other members of the BMP family and 
their antagonists, creating downstream patterns of 
expression of genes which have documented roles in 
development of the embryo. 

In adult tissues, many studies have shown the 
stimulatory effects of BMP13 on connective tissue 
marker gene expression, but BMP13 appears, in most 
cases, to be no more effective than other GDF’s or 
BMPs, often showing a lesser catabolic effect, at least in 
vitro. Future studies targeted at understanding the 
BMP13 signalling pathway would be of interest, par-
ticularly using a human protein / tissue combination, 
to determine specific markers of BMP13 activity aside 
from other, more extensively characterized BMPs. It 
would also be of interest to determine the contribution 
of the second putative protease cleavage site in the 
BMP13 pro-domain to controlling BMP13 expression 
and activity – particularly in view of the point muta-
tions that have been identified in this region in con-
junction with the manifestation of Klippel-Feil Syn-
drome and mal-developed intervertebral discs.  

There appears to be redundancy in the functions 
of various GDF and BMP family members such that 
more than one protein has an effect on a particular 
tissue. However perhaps these proteins have such 
precise functions, are expressed in highly specific tis-
sue regions with exact precision, such that what ap-
pears to be redundancy is in fact a carefully orches-
trated co-operative interplay across the tissue land-
scape. Morphogenetic gradients created by increasing 
and decreasing concentrations of morphogens and 
antagonists that continue to operate in complex tis-
sues, giving them their characteristics and functional 
delineations.  
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Clearly BMP13 function remains an unveiling 
story, a multi-faceted, pleiotropic morphogen some 
parts of the vertebrate body just can’t do without.  
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