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Abstract 

With the completion of rice genome sequencing, large collection of expression data and the 
great efforts in annotating rice genomes, the next challenge is to systematically assign func-
tions to all predicted genes in the genome. The generations and collections of mutants at the 
genome-wide level form technological platform of functional genomics. In this study, we have 
reviewed currently employed tools to generate such mutant populations. These tools include 
natural, physical, chemical, tissue culture, T-DNA, transposon or gene silencing based mu-
tagenesis. We also reviewed how these tools were used to generate a large collection of 
mutants and how these mutants can be screened and detected for functional analysis of a 
gene. The data suggested that the current population of mutants might be large enough to tag 
all predicted genes. However, the collection of flanking sequencing tags (FSTs) is limited due 
to the relatively higher cost. Thus, we have proposed a new strategy to generate 
gene-silencing mutants at the genome-wide level. Due to the large collection of insertion 
mutants, the next step to rice functional genomics should be focusing on functional charac-
terization of tagged genes by detailed survey of corresponding mutants. Additionally, we also 
evaluated the utilization of these mutants as valuable resources for molecular breeding.  
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Introduction 
Functional genomics is the branch of genomics 

that determines the biological function of genes and 
their products. Both Arabidopsis and rice plants have 
been regarded as model organisms for dicots and 
monocots, respectively [1]. Now both japonica and 
indica rice genomes have been completely sequenced 
[2-4]. With the sequencing of rice genome, gene pre-
diction /annotation has been carried out. Various 
annotation databases were set up and were freely 
available for public researchers. One of these data-
bases is RiceGAAS (http://ricegaas.dna.affrc.go.jp/; 
[5]). The second one is the Rice Annotation Project 
Database RAP-DB (http://rapdb.dna.affrc.go.jp/; 
[6]). The third is the TIGR rice genome annotation 
database (now moved to Michigan State University 

(MSU); http://rice.plantbiology.msu.edu/; [7, 8]). 
The releasing of these databases has been significantly 
contributing to the research of rice functional genom-
ics. As a result of ongoing annotation efforts, pre-
dicted gene numbers continue to be changed [9]. More 
than 50,000 genes were predicted upon publication of 
its draft sequence [2, 3]. Subsequently, 40,612 
non-transposable element-related genes were pre-
dicted by the MSU rice genome annotation project. 
However, 37,544 genes were predicted to be pro-
tein-coding genes [4]. Now only 30,000 or less pro-
tein-coding genes were estimated [10]. The large dif-
ferences in the annotated gene numbers suggest the 
necessary to further validate these annotated genes by 
various experimental approaches. Such necessity was 
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strengthened by the fact that at least 40% of predicted 
Arabidopsis genes were wrongly annotated based on 
subsequent validation by experiments [11]. Besides 
the efforts in genome-wide gene prediction, many rice 
gene families were also annotated by individual re-
searchers. For example, we have identified and cha-
racterized members from 5 gene families at the ge-
nome-wide level. These included 14 rice myosin gene 
family members [12], 114 pollen-allergen-like genes 
[13], 49 rice cyclin genes [14], 111 small GTPase genes 
and 85 genes encoding small GTPase activating pro-
teins [15] and 17 GRAM domain containing proteins 
[16]. These works together with other community 
annotation of rice gene families 
(http://rice.plantbiology.msu.edu/ca/rice_ca.shtml) 
significantly contributed to and complemented ge-
nome-wide gene annotations. 

Additionally, large amount of rice Expressed 
Sequence Tags (EST) data are available in public da-
tabases including the MSU (http://rice.plantbiology. 
msu.edu/), NCBI (http://www.ncbi.nlm.nih.gov/ 
dbEST/index.html), Gramene (http://www. 
gramene.org/Oryza_sativa_japonica/index.html) 
databases and so on. For example, until October 29, 
2009, total of 1,249,001 EST sequences have been re-
leased into NCBI database (http://www.ncbi.nlm. 
nih.gov/dbEST/dbEST_summary.html). In addition 
to these, more than 32,000 full-length cDNA clones 
from japonica rice have been sequenced [17] 
(http://cdna01.dna.affrc.go.jp/cDNA/) and 10,096 
indica full-length cDNA clones were also released [18] 
(http://www.ncgr.Ac.cn/cDNA/indexe.html). 

With the completion of rice genome sequencing, 
large collection of expression data and great efforts in 
annotating rice genomes, the next challenge is to sys-
tematically assign functions to all predicted genes in 
the genome. To broadly assign functions to unknown 
genes, various old approaches are improved and new 
methods are developed. The different methodologies 
have been developed to form their own fields within 
the functional genomics technological platform and 
are termed transcriptomics, proteomics, metabolom-
ics and phenomics [19]. However, all tools to identify 
functions of genes are based on the analyses in phe-
notypic variations between wild type and its mutant. 
Therefore, the generations and collections of mutants 
at the genome-wide level form the technological 
platform of functional genomics. 

On the other hand, during long breeding history, 
farmers and breeders have been selecting new rice 
varieties with better agronomic traits such as higher 

yield, improved resistance to various diseases and 
better quality of grains and so on. These varieties were 
developed by altering the genetic makeup of the crop. 
Therefore, genetic variation is the basis of breeding 
selection. The variation may be produced by natural 
and artificial mutations as well as sexual crossing. 
Among the hundreds and thousands of variations, 
elite germplasms may be developed, which form the 
important resource for rice breeding. The evidence 
has shown that a breakthrough might be achieved 
when such germplasms have been found and used for 
rice breeding practice. For example, the rice yield has 
been greatly improved by the utilization of dwarf 
germplasm [20]. Similarly, other important 
germplasms such as cytoplasmic male sterile lines and 
photoperiod/temperature-sensitive male sterile lines 
have led to the development of various hybrid rice 
combinations, which have further improved crop 
yields by 20-30% when compared with the conven-
tional varieties [21]. Therefore, it is very important for 
us to collect, to generate, and to evaluate rice 
germplasms for better serving rice breeding. 

In this review, we will focus on the collections 
and characterizations of large rice mutants generated 
from various methods of mutagenesis such as maize 
two-element Ac/Ds system and T-DNA insertion 
mutagenesis and so on. We also review the applica-
tions of these tools and mutants in identifying gene 
functions and in rice breeding. 

 

Natural Mutagenesis and Map-based Clon-
ing 

Natural mutants were generated during species 
evolution. Generally, the ratio of natural mutation is 
very low at only 10－5-10－8 in higher plants. However, 
a large collection is still available during long evolu-
tionary history. Some of such mutants were harmful 
or neutral and might be lost during evolution. Others 
might exhibit higher resistance to various abiotic / 
biotic stresses or have some specific agricultural traits, 
which were valuable germplasm resources for rice 
breeding. One example is the utilization of dwarf 
germplasm Dee-geo-woo-gen from China and release 
of rice variety IR8, which was developed from the 
dwarf line [22]. Another example is the application of 
cytoplasmic male sterile (CMS) and photope-
riod-sensitive genic male sterile rice lines, which are 
widely utilized to develop hybrid rice seeds for 
commercial release [23]. 
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isolated and functionally characterized by using nat-
ural mutant lines. For example, the rice Xa21 and Xa27 
gene, which confers resistance to Xanthomonas oryzae 
pv. oryzae race 6, was isolated by map-based cloning 
from a natural mutated rice variety [24, 25]. Another 
such example is the isolation of rice semidwarf gene 
sd-1, which encodes a gibberellin 20-oxidase [26]. Up 
to now, at least 67 rice genes have been isolated and 
functionally characterized by the map-based cloning 
(Table 1). 

Physical Mutagenesis and Deleteagene De-
tecting System 

In 1930, Muller observed that mutation could be 
induced by X-rays [27]. Subsequent researches found 
that the most efficient mutagenesis was mediated by 
fast neutron bombardment [28]. A short deletion of 
DNA fragment was usually observed following the 
bombardment. Thus, a truncated gene might be de-
tected by genomic subtraction and its functions could 
be identified by corresponding mutant phenotype. 
One example is the isolation and characterization of 
Arabidopsis ga1-3 gene [29]. Currently, a new reverse 
genetics method has been developed to identify and 
isolate such mutants [30, 31]. This method was named 
as Deleteagene. In this system, DNA samples were 
extracted from the fast neutron-treated plants and 
were used to screen for deletion mutants by polyme-
rase chain reaction (PCR) using specific primers 
flanking the targeted genes. Li et al. (2001) has gener-
ated an Arabidopsis population of 51,840 lines by fast 
neutron mutagenesis [30]. This library was then used 
for screening deletion mutants of 25 gene loci, among 
which deletion mutants were obtained for 21 (84%) 
gene loci. Similarly, they also generated a rice fast 
neutron mutant pool with 24,660 lines and similar 
method was successfully used for identification and 
isolation of targeted genes. Evidence showed that this 
method can be efficiently used for the identification of 
small genes or tandemly arrayed genes [30]. Wu et al. 
(2005) reported the generation of around 10,000 rice 
mutant lines by the fast neutron bombardment and 
around 20,000 lines by γ-ray [32]. Since the estab-
lishment of the method, many genes have been iso-
lated and functionally characterized including the 
phytochrome family gene PHYC [33] and phytoch-
rome-interacting transcription factor PIF3 [34], 3 
genes encoding TGA transcription factors TGA2, 
TGA5, TGA6 [35] and so on. 

Chemical Mutagenesis and Tilling Detecting 
System 

Chemical mutagenesis is mediated by certain 

chemical reagents. One of the most frequently used 
reagents is ethyl methane sulfonic acid (EMS). This 
alkylating agent can efficiently induce chemical mod-
ification of nucleotides, which results in various point 
mutations including nonsense, missense and silent 
mutations, among which silent mutations can not 
generate any modification in phenotype and thus can 
not be used for mutagenesis. In Arabidopsis, EMS 
mainly induces C to T changes resulting in C/G to 
T/A substitutions and at a low frequency, EMS ge-
nerates G/C to C/G or G/C to T/A transversions by 
7-ethylguanine hydrolysis or A/T to G/C transition 
by 3-ethyladenine pairing errors [36]. Based on codon 
usage in Arabidopsis, the frequency of EMS-induced 
stop codon and missense mutations has been calcu-
lated to be ~5% and ~65%, respectively [37]. 

In Arabidopsis, at least 125,000 M1 lines should be 
generated in order to achieve saturation of EMS mu-
tagenesis [38]. However, it is not difficult to produce 
such a population since viable seeds can be used for 
EMS treatment. The difficulty is how to detect sin-
gle-nucleotide polymorphisms or substitutions in 
these mutation lines in a large scale. Based on the 
technology in detecting single-nucleotide polymor-
phisms [39, 40], McCallum et al (2000) established a 
new detecting method named as TILLING (Targeting 
Induced Local Lessions In Genomes) [37, 41] com-
plemented with denaturing high-performance liquid 
chromatography (DHPLC). These technologies allow 
chemically induced mutant pools to be used for re-
verse genetics. With help of automation, robust and 
rapid detection makes it possible to screen a wide 
range of mutant pools in a short time and to avoid the 
laborious process of forward genetic screening [42, 
43]. Now the technology has been used in various 
species including animals and plants and some im-
proved methods were also provided [44-51]. 

In rice, around 18,000 and 9,000 mutants were 
generated from diepoxybutane and EMS mutagene-
sis, respectively [32]. Total of 10 genes were screened 
using TILLING and independent mutations were de-
tected in two genes: pp2A4 encoding serine/threonine 
protein phosphatase catalytic subunit and cal7 en-
coding callose synthase, suggesting the feasibility of 
this screen method in chemical mutagenesis. In 
another report, they screened 10 genes including 
Os1433 (LOC_Os02g36974), OsBZIP 
(LOC_Os01g64000), OsCALS8R (LOC_Os01g55040), 
OsDREB (LOC_Os01g07120), OsEXTE 
(LOC_Os10g33970), OsMAPK (LOC_Os07g38530) 
OsPITA (LOC_Os12g18360), OsR1A 
(LOC_Os05g41290), OsRPLD1 (LOC_Os01g07760) 
and OsTPS1 (LOC_Os02g44230). Independent mu-
tants were detected for all 10 genes [52]. They also 
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found that multiple nucleotide changes can be de-
tected in each gene [52], suggesting that they have 
developed a useful method for more reliable and ex-
act functional identification of a gene. 

Agrobacterium Transferred DNA (T-DNA) 
Mutagenesis and Functional Characterization 
of Rice Genes 

With the development of high efficient Agrobac-
terium-mediated transformation of rice [53], T-DNA 
mutagenesis has become a major method to generate a 
large collection of insertion mutants. Generally, 
T-DNA can be randomly and stably inserted into 
plant genome, which made it possible to generate a 
population saturated with insertions, i.e. having at 
least one insertion in each gene [54]. In Arabidopsis, at 
least 225,000 independent T-DNA insertion lines have 
been created that represent near saturation of the gene 
space; the precise locations were determined for more 
than 88,000 T-DNA insertions, which resulted in the 
identification of mutations in more than 21,700 of the 
approximately 29,454 predicted Arabidopsis genes [55]. 

In rice, several research groups have contributed 
to the generation of T-DNA insertion lines. For ex-
ample, An’s group has generated approximately 
100,000 insertion lines [56, 57]. Around 42,000 T-DNA 
insertion lines have been generated by Zhang and 
Wu’s group [58, 59]. Recently, Hsing et al. (2007) have 
reported the generation of 55,000 T-DNA insertion 
lines [60]. Several other groups also independently 
produced T-DNA insertional mutant lines in rice 
[61-63]. According to the previous reports, the aver-
age copy number of T-DNA inserts per line is 1.4-2.0 
[64]. Thus, more than 450,000 T-DNA tags have now 
been generated in rice (Fig. 1A). Recent progresses on 
the generation of T-DNA insertion lines have been 
reviewed by several researchers [65-67]. If there are 
only 30,000 or less protein-coding genes in rice ge-
nome [10], these populations are large enough to find 
a knockout in a given gene, assuming that T-DNA is 
randomly inserted into a chromosome. This sugges-
tion was strengthened by the fact that T-DNA have 
been observed to insert preferentially in gene-rich 
regions [58-59, 68-70]. 

After T-DNA insertion, various phenotypes have 
been observed including changed growth rates, dif-
ferent plant statues, pollen and seed fertility and so on 

[67, 71-74]. Those visible differences in phenotypes 
could significantly contribute to the identification of 
gene functions. Since the establishment of T-DNA 
insertion populations, at least 43 genes have been 
functionally characterized by T-DNA insertion mu-
tants (Table 2). For example, a knockout line of 
OSMADS3 by T-DNA insertion shows homeotic 
transformation of stamens into lodicules and ectopic 
development of lodicules in the second whorl near the 
palea where lodicules do not form in the wild type but 
carpels develop almost normally [75]. Their data show 
that this gene plays a crucial role in regulating stamen 
identity. 

Transposon Mutagenesis and Its Application 
on Functional Identification of Rice Genes 

Maize transposon Ac and Ds elements have been 
successfully used as insertion mutagens for rice inser-
tion mutagenesis. For obtaining stable insertion lines, 
a two-element Ac/Ds tagging system has been estab-
lished. In this system, two different transgenic pa-
rental lines were used for sexual crossing. One pa-
rental line contains Ac element, in which Ac is immo-
bilized and provides only Ac transposase under the 
control of 35S promoter. Another parental line is 
transgenic Ds plant, in which Ds is also 
non-autonomous element and provides only two 
wings of Ds element (5’ Ds and 3’ Ds). Thus, in both 
Ac and Ds parental lines transposon Ac or Ds can not 
mobilize by themselves. However, after crossing be-
tween Ac and Ds plants, Ds element will be mobilized 
and inserted into different genome positions under 
the presence of Ac transposase. In the next generation, 
these lines containing only Ds element and without Ac 
transposase were selected. Therefore these Ds inser-
tional lines will be stable since the plants contained no 
Ac transposase. Besides Ac and Ds, other transposons 
such as En and Spm were also used to generate 
transposon insertion mutants [76].  

Currently, multiple research groups have been 
greatly contributed to the large collection of transpo-
son insertion mutants and various databases have 
been set up for better utilization of these resources 
(Fig. 1B; [65-67, 76-84]). Totally, more than 153,000 
transposon insertion lines have been generated, pro-
viding valuable resources for the survey of functional 
genomics. 

 
  



Int. J. Biol. Sci.

Table 2.  Som

. 2010, 6 

me of rice genees functionally  characterized  through T-DNNA insertion mmutants 

http://www.
 

biolsci.org 

235



Int. J. Biol. Sci.

 
Since a 

lines were g
genes have b
sertion muta
functionally 
including AN
FLORETLESS
OsNAC2, OS
suggested th
insertion line

In our l
gene trap sy
immobilized
gene is unde
(CaMV) 3
non-autonom
coding phos
resistance t
which serve

. 2010, 6 

 large collect
generated du
been function

ants. Currentl
characterize

NTHER IND
S 1, CSL1, O
SNOP and O
he feasibility 
es as a tool to 
lab, we have
stem to tag r

d version of A
er the control
35S promo
mous Ds elem
phinothricin 

to phosphino
es as a positi

tion of transp
uring 2000’s,
nally identifi
y, at least 9 g
d by Ds ins

DEHISCENCE
OSH6, OsKS1
OsPE (Table 
and potentia
 decipher gen
 used a two-
ice genes. In 

Ac, in which t
l of cauliflow
oter was 

ment carries th
acetyltransfe
othricin (her
ive selection 

poson inserti
, not so ma
ied by such i
genes have be
sertion mutan
1, BRANCHE
1, OSMYOXI
3). These da

al of transpos
ne functions. 
-element Ac/
 this system, 
the transposa
er mosaic vir

used. T
he bar gene e

erase conferri
rbicide Bast
 marker and

ion 
ny 
in-

een 
nts 
ED 
IB, 
ata 
son 

Ds 
an 

ase 
rus 

The 
en-
ing 
ta), 
d a 

modifi
β-glucu
used i
splice a
to trap
synthe
under 
marker
structs

T
rice ge
tion. T
parent
stable 
Basta p
Ds ins
genera
were u

ied promot
uronidase as
in the Ds co
acceptor sequ

p the express
etic green fluo
 maize ubiqui
rs within bot

s as a negative
These two con
enome by Agr
Transgenic Ac
t lines for sex
Ds insertion 

positive and G
ertion lines w

ations by self-
used for phen

terless gusA
s a reporter g
nstruct has t

uences upstre
ion of tagged

orescence pro
itin promoter
th the Ac and
e selection ma
nstructs were 
robacterium-m
c and Ds rice
xual crossing
 lines were o
GFP negative
were obtained
-crossing. The

notype investi

http://www.

A gene e
gene. The gu
the intron an

eam of the AT
d genes at 3’
otein (sGFP) w
r as negative 
d the Ds T-D
arker. 
 then introdu
mediated tran

e plants were
g. In next gen
obtained by 
e plants. Hom
d after the fif
ese homozygo
gation.  

 
biolsci.org 

236

 

encoding 
usA gene 
nd triple 

TG codon 
 Ds. The 

was used 
selection 
NA con-

uced into 
nsforma-

e used as 
neration, 
selecting 

mozygous 
fth/sixth 
ous lines 



Int. J. Biol. Sci.

 

Table 3.  Som

 
 
 
 
In this 

quency of Ds
analyzing 44
pattern in sib
different ins
during rice d
sequences sh
whereas the 
distributed r
ever, there w
which had tw
pected. A ho
chromosome
Ds flanking 
proteins or r
transposition
lines on chro
were found 
800 insertio
(YAC)-based
preferentially
quences. Hig

 

. 2010, 6 

me of rice gene

system, the 
s was estimat
413 families. 
blings reveale
sertions, sug

development. 
howed that 8
 rest within T
randomly thr
was a bias tow
wo times as 

ot spot for Ds 
e 7 within a 4
 sequences w
rice ESTs, con
n into coding 
omosome 1 r
in genic regio
ons to yea

d EST map s
y into regio
gh germinal t

es functionally 

germinal tra
ted as an ave
 Study of D
ed that 79% h
ggesting late
 Analysis of 2
88% of them
T-DNA. The 
roughout the 
ward chromo
many inserti
 insertions wa
40-kbp region
was homolo

nfirming a pr
 regions. Ana

revealed that 
on. Anchorin
ast artificial
showed that 
ons rich in 
transposition

 characterized 

ansposition fr
erage of 51% 

Ds transpositi
had at least tw
e transpositi
2057 Ds flanki
m were uniqu

insertions we
 genome; ho

osomes 4 and
ions as that e
as identified 
n. One-third 

ogous to eith
reference for 
alysis of 200 
 72% insertio

ng of more th
l chromosom
 Ds transpos

expressed s
n frequency an

 

 through transp

re-
by 

ion 
wo 
ion 
ing 
ue, 
ere 
w-

d 7, 
ex-
on 
 of 
her 
Ds 
Ds 

ons 
han 
me 
ses 
se-
nd 

indepe
the eff
transp

A
analys
Ac/Ds
found 
freque
genera
not ind
transp
eration
indicat
tants. S
not ob
analyz
velopm
posed 
the Ac/
in rice,
and in

poson insertio

endent transp
ficiency of thi
oson mutagen

Additionally, 
is to survey

s parent lines
 that high so
ncies were m

ations; thus th
duce transpos
osed Ds elem

n, since Ac co
ted by the fo
Strikingly, su

bserved in an
zed the timin
ment and pro
 late after till
/Ds system a
, since the Ds 
sertion lines e

on mutants  

positions amo
is system is su
nesis in rice [
we have per

y the transp
s in the follow
omatic and ge
maintained a
he propagatio
son silencing.

ment was activ
ould remobili
ootprint analy
ubstantial tran
ny of the ge

ng of transpos
ovide evidenc
ler formation
s a tool for lar
 elements we
even in the la

http://www.

ong siblings sh
uitable for la
78]. 
rformed a sy
position activ
wing generati
erminal trans

as late as T4
n of parental 
. Moreover, th
ve even at the
ize the Ds ele
ysis of sever
nsgenic silenc
enerations tes
sition during
ce that Ds w
. Our study v
rge-scale mut
re active in th

ater generation

 
biolsci.org 

237

 

how that 
rge-scale 

ystematic 
vities of 
ions. We 
sposition 
 and T5 
 lines did 
he stably 
e F5 gen-
ement as 
al rever-
cing was 
sted. We 

g rice de-
as trans-
validates 
tagenesis 
he starter 
ns [85]. 



Int. J. Biol. Sci. 2010, 6 

 
http://www.biolsci.org 

238

 

Figure 1. Collection of insertion mutants in rice. This figure summarizes the collection of T-DNA (A), 
Ac/Ds/Spm/dSPM transposon (B) and retrotransposon Tos17 (C) insertion lines in rice. Green columns indicate the 
numbers of mutated loci carried out in each institute and blue columns indicate the numbers of insertion lines with FSTs. I1, 
including Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Institut National de la 
Recherche Agronomique and Centre National de la Recherche Scientifique; I2, Pohang University of Science and Tech-
nology; I3, Huazhong Agricultural University, China; I4, Shanghai Institute of Plant Physiology and Ecology, China; I5, Institute 
of Plant and Microbial Biology, Academia Sinica, Taiwan; I6, Zhejiang University, China; I7, CSIRO Plant Industry, Australia; 
I8, Centre de Coopération Internationale en Recherche Agronomique pour le Développement; I9, Gyeongsang National 
University, Korea; I10, Temasek Life Sciences Laboratory, Singapore; I11, University of California, Davis; I12, National 
Institute of Agrobiological Sciences, Japan. The data are based on the following references: [56-60, 62, 63, 65-67, 76-83, 105, 
107, 111, 121-124]. 

 
Gene Trap, Promoter Trap and Enhancer 
Trap in T-DNA or Transposon Mutagenesis 

Not all genes can be functionally identified by 
mutagenesis. One of the reasons is that many genes 
are functionally redundant and mutation of such 
genes may not lead to an easily recognizable pheno-
type. Another reason is that many genes function at 
multiple stages of development and mutations of 

these genes may lead to early lethality. Therefore, it is 
necessary to develop a system to monitor gene ex-
pression patterns to better understand functions of 
these genes. Gene trap, promoter trap or enhancer 
trap is a system that allows gene activity to be moni-
tored by creating gene fusions with a reporter gene. In 
an enhancer trap, a reporter gene has a minimal 
promoter that is only expressed when inserted near 
cis-acting chromosomal enhancers. Reporter genes in 
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gene trap and promoter trap have no promoter, so 
that reporter genes expression can occur only when 
the reporter gene inserts within a transcribed chro-
mosomal gene, creating a transcriptional fusion. Ex-
pression of a promoter trap reporter gene requires 
that it be inserted into an exon, leading to a transcrip-
tional fusion. In contrast, gene trap constructs contain 
one or more splice acceptor sequences preceding the 
reporter gene. Thus reporter genes can be detected 
even if insertion occurs in an intron since splicing 
from the splice donor sites to the splice acceptor sites 
in the reporter gene results in fusion of upstream exon 
sequences to the reporter gene [86]. Currently, this 
system has been widely used for T-DNA or transpo-
son mutagenesis. The GUS reporter gene is the mostly 

used gene for various trap systems in rice. In an en-
hancer trap Ds insertion population, around 8% of the 
lines were detected with GUS expression in panicles 
[81]. For T-DNA promoter trap lines, histochemical 
GUS assays were carried out in the leaves and roots 
from 5353 lines, mature flowers from 7026 lines, and 
developing seeds from 1948 lines. The data revealed 
that 1.6-2.1% of tested organs were GUS-positive and 
that their GUS expression patterns were organ- or 
tissue-specific or ubiquitous in all parts of the plant 
[56]. In our lab, 2852 Ds lines were subjected to GUS 
assay and the result showed that around 8.1% of the 
lines were with GUS activities [87]. Some of the ex-
amples are shown in Figure 2.  

 
 

 

Figure 2. Expression of GUS in gene trapped Ds insertion lines. These images show various GUS expression 
patterns. (A) Expressed in wounded leaves. (B) Expressed in root tips. (C) Expressed in lateral roots. (D) Expressed in grain 
hulls (left image is WT control). (E) Expressed in stigma. (F) Expressed in connective tissues of anthers. (G) Expressed in 
pollens. (H) Expressed in geminated seeds. 

 
 
These analyses suggested that Ds-tagged genes 

exhibited different expression patterns due to the Ds 
insertion into different genomic positions. Further-
more, the multimerized transcriptional enhancers 
from the cauliflower mosaic virus 35S promoter were 

positioned next to the left border of the T-DNA to 
make activation tagged lines [57]. Histochemical GUS 
assays have revealed that the GUS-staining frequency 
from those lines is about twice as high as that from 
lines without the enhancer element. This result sug-
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gests that the enhancer sequence presented in the 
T-DNA improves the GUS-tagging efficiency [57]. In 
another report, a CaMV35S enhancer was cloned in 
eight tandem repeats. This octamer configuration may 
serve as more potent activator than the traditional 
tetramer, as gene distances as far as 12.5 kb from the 
ATG start codon led to gene activation [60]. Thus, 
most insertions of the CaMV35S enhancers into the 
rice genome (excluding insertions in exons and in-
trons that lead to gene knockout) have the potential to 
activate at least one native gene based on the average 
gene density of one gene per 9.9 kb in the rice genome 
[4]. Recently, a versatile transposon-based activation 
tag vector system was used for functional genomics in 
cereals and other monocot plants to further enhance 
rice gene expression [88]. All these data showed that 
gene trap, promoter trap and enhancer trap in T-DNA 
or transposon mutagenesis can be used as efficient 
tools to trap gene expression and to analyze their 
functions. 

Besides the activation tagging system, 
gain-of-function type mutants may also be obtained 
from over-expression of individual rice genes. Both 
over-expression and gene silencing (see below) have 
been widely used for the annotation of gene functions. 
Currently, many rice genes have been functionally 
characterized by the over-expression of their genes. 
For example, the biological function of ETHYLENE 
RESPONSE2 (ETR2) was annotated by comparing the 
difference between gain-of-function and knockout 
mutants [89]. To investigate the over-expression mu-
tants at the genome-wide level, special binary vectors 
have been designed to globally over-express all genes 
in an organism [90-92]. Up to now, at least 45,000 FOX 
hunting rice lines have been generated [93, 94]. 

Tissue Culture Mutagenesis and Retrotrans-
poson Tos17 

Tissue culture is also an efficient tool to induce 
various mutations, which is called somaclonal varia-
tions [95]. Tissue culture mutagenesis formed the 
important resources for rice breeding [96, 97]. How-
ever, little is known about the application of this 
technique in functional genomics until that some 
transposon elements in maize can be activated during 
tissue culture, indicating that some tissue cul-
ture-derived genetic variability may be the result of 
insertion or excision of transposable elements, or both 

[98]. Subsequent studies showed that active DNA 
transposon elements were also observed during rice 
tissue culture [99-101]. In addition to transposons, 
active retrotransposons were also detected during rice 
tissue culture [102]. Differentiated from transposons, 
retrotransposons are mobile genetic elements that 
transpose through reverse transcription of an RNA 
intermediate. One of these retrotransposons was 
named as Tos17, a widely utilized retrotransposon in 
rice [102]. One to five copies of Tos17 elements can be 
detected in normal growth conditions, varying with 
different rice varieties. For example, two copies of 
Tos17 were detected in japonica variety Nipponbare. 
These Tos17 elements have usually no activity in 
normal growth conditions. However, Tos17 will be 
activated during tissue culture and its copy number 
will increase to 5-30 [102]. For example, at least 5 new 
insertions of Tos17 were induced during 3- to 9- 
month tissue culture. Although Tos17 is actively 
transcribed during tissue culture, no transcript of 
Tos17 was detected in plants regenerated from tissue 
culture [102-104], suggesting that transposition is ac-
tive only under tissue culture conditions. This result 
indicated that Tos17 could be used for mutagenesis to 
generate stabilized insertion lines. Subsequent studies 
showed that insertion sites were mostly found in 
genic regions and preferably in coding sequences 
[105, 106]. In 2001, 32,000 rice lines were generated 
from Tos17, containing 256,000 insertions [103]. Now 
they have produced around 50,000 insertion lines (Fig. 
1C; [107]). Phenotypic investigation of these insertion 
lines indicated that nearly half of the lines showed 
more than one mutant phenotype; the most frequently 
observed phenotype was low fertility, followed by 
dwarfism [107]. These phenotype data have been 
submitted into Tos17 mutant database with a dataset 
of sequences flanking Tos17 insertion points in rice 
genome (http://tos.nias.affrc.go.jp/). 

Since the identification and characterization of 
Tos17, many genes have been isolated and function-
ally characterized through Tos17 insertion lines. Cur-
rently, at least 24 genes have been characterized by 
Tos17 insertion (Table 4). For example, oshkt2;1 is the 
first mutant that greatly diminishes sodium influx 
into plant roots. Further investigator showed that 
OsHKT2;1 is the central transporter for nutritional 
Na+ uptake into K+ starved rice roots [108]. 
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Figure 3. Binary vector construction for genome-wide gene silencing. This figure shows the detail of the con-
struction of gene silencing vector. 

 

 

Figure 4. The technological platform for rice functional genomics. This figure shows various tools used to gen-
erate mutants and the strategies to screen these mutants. 



Int. J. Biol. Sci. 2010, 6 

 
http://www.biolsci.org 

247

 
 
In summary, we have reviewed 7 different me-

thods for mutagenesis including natural, physical, 
chemical, tissue culture, T-DNA, transposon and gene 
silencing mutagenesis (Fig. 4). Natural mutagenesis 
has been widely used to identify gene functions but 
this method can not be used for genome-wide analysis 
due to its low frequency of mutation and its difficulty 
in identifying mutated genes by map-based cloning. 
Chemical mutagenesis can be efficiently used to pro-
duce a large number of point mutants in a short pe-
riod and the induced mutants can be detected by 
TILLING. However, multiple point mutations were 
sometimes observed in one mutant. Thus, it is neces-
sary to genetically segregate these point mutants. Si-
milarly, Physical mutagenesis can be applied for 
producing a large number of deletion-based mutants 
in a short period, and the deletion mutants can be 
screened by Deleteagene. However, it is also very 
difficult to identify a deletion mutant and its pheno-
type when the induced deletion occurs covering mul-
tiple genes or within an intron. Insertional mutagene-
sis based on T-DNAs, transposons and retrotranspo-
sons is becoming a major approach to produce a sa-
turated mutant pool. A large number of T-DNA in-
sertion lines have been produced in rice; but T-DNA 
insertional mutagenesis can be used only for those 
rice varieties with highly efficient transformation. The 
retrotransposon Tos17 has been successfully applied 
for rice functional genomics. But it is also difficult to 
identify a mutant related to Tos17 because there are 
multiple copies of Tos17 in a mutant and only about 
10 percent of mutants are tagged by Tos17 insertion. 
Theoretically, Ac/Ds two-element system is regarded 
as a best approach for rice insertional mutagenesis 
because more than 95% of Ds insertion lines have only 
single copy of Ds insertion. An additional advantage 
is that Ds can be remobilized from a tagged gene in 
the presence of Ac transposase, resulting in pheno-
typic reversion to the wild type or giving rise to alleles 
with weaker phenotypes. However, it is also difficult 
to identify a mutant when there are Ds excision foot-
prints in the mutant caused by multiple Ds exci-
sion-insertion events in the presence of Ac transpo-
sase. RNAi can efficiently silence a gene, but not all 
genes can be silenced. In addition, RNAi can interfere 
in genes with redundant and overlapping functions or 
gene families with high homolog in sequence, making 
it difficult to identify a silenced gene. So it is obvious 
that each method has its advantage and disadvantage 
and different methods should be combined to pro-
duce a saturated mutant population. 

Natural and Artificial Mutants as Valuable 
Resources for Molecular Breeding 

Large-scale phenotype investigation has been 
carried out in rice using several mutant resources. 
Chern et al (2007) reported 11 categories of the visible 
phenotypes including growth condition, leaf color, 
leaf morphology, plant morphology, mimic response, 
tiller, heading date, flower, panicle, seed fertility and 
seed morphology, which were subdivided into 65 
subcategories [71]. Miyao et al (2007) also investigated 
around 50,000 Tos17 insertion lines in their phenotype 
variation including germination, growth, leaf color, 
leaf shape, culm shape, spotted leaf/lesion mimic, 
tillering, heading date, spikelet, panicle, sterility and 
seed [107]. Park et al (2009) have analyzed 115,000 Ds 
insertion lines in their phenotype variation and 437 
mutants from 12,162 Ds-tagged lines were catalogued 
in their agronomic traits including tillers, panicles, 
leaves, flowers, seed, chlorophyll content, and plant 
height [83]. Furthermore, several rice mutant pheno-
type databases are now established including Tos17 
insertion lines [107], T-DNA-tagged lines [72], and 
chemical- and irradiation-induced lines [32]. Kuro-
mori et al (2009) have reviewed a detail phenome 
analysis [67]. However, they have not discussed their 
application in rice breeding. Recently, Mochida and 
Shinozaki (2010) have summarized the genomics and 
bioinformatics resources for crop improvement [118]. 

We have subjected around 20,000 Ds insertion 
lines to phenotypic and abiotic stress screens and 
evaluated these lines with respect to their seed yields 
and other agronomic traits as well as their tolerance to 
drought, salinity and cold. Based on this evaluation, 
we observed that random Ds insertions into rice ge-
nome have led to diverse variations including a range 
of morphological phenotypes. We have observed 
various variations in these Ds insertion lines including 
the differences in plant height, growth vigor, growth 
period of duration and stigma and so on (Fig. 5). 
Among the various phenotypes identified, some Ds 
lines showed significantly higher grain yield com-
pared to wild-type plants under normal growth con-
ditions indicating that rice could be improved in grain 
yield by disrupting certain endogenous genes [87]. In 
addition, several thousands of Ds lines were subjected 
to abiotic stresses to identify conditional mutants. 
Subsequent to these screens, over 800 lines responsive 
to drought, salinity or cold stress were obtained, 
suggesting that rice has the genetic potential to sur-
vive under abiotic stresses when appropriate endo-
genous genes were suppressed. The mutant lines that 
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have higher seed yielding potential or display higher 
tolerance to abiotic stresses may be used for rice 
breeding by conventional backcrossing combining 
with molecular marker-assisted selection. In addition, 

by exploiting the behavior of Ds to leave footprints 
upon remobilization, we have shown an alternative 
strategy to develop new rice varieties without foreign 
DNA sequences in their genome [87].  

 

 

Figure 5. Phenotype investigation of Ds insertion lines. Left image is wild type (WT) control and right image is 
mutant line in A to D. (A) Dwarf phenotype. (B) Taller mutant. (C) weak-growth mutant, (D) Late-flowering mutant. E, 
Yellow-leaf mutant. F, Stigma in WT. G and H, Stigmas with brown color. 

 
Phenotype screens of Ds insertion lines have 

identified two male sterile mutants. One is Orysa sa-
tiva no pollen (Osnop) mutant with a pollen-less phe-
notype at the flowering stage. The mutant phenotype 
showed linkage to Ds insertion into OSNOP gene re-
gion. This mutant contained a deletion of 65 kb 
chromosomal region at the site of Ds insertion con-
taining 14 predicted genes. Among them, delegen 14 
was expressed only in late stage of pollen develop-
ment with the highest expression at the stage of pollen 
release and germination by RT-PCR, Northern blot-
ting, in situ hybridization, and promoter-GUS trans-
genic plants. Thus, this gene is the best candidate for 
OSNOP. Since this gene encoded C2 and GRAM do-

mains, it can be assumed that this gene cross-links 
both calcium and phosphoinositide signaling path-
ways. This is the first report to suggest possible func-
tions for this gene in plant development [119]. 

Another one is the myosin mutant osmyoXIB. 
This mutant showed male sterility under short day 
length (SD) conditions and fertility under long day 
length (LD) conditions. Under both SD and LD con-
ditions, the OSMYOXIB transcript was detected in 
whole anthers. However, under SD conditions, the 
OSMYOXIB-GUS fusion protein was localized only in 
the epidermal layer of anthers due to the lack of 
3’-untranslated region (3’-UTR) and to dilute (DIL) 
domain sequences following the Ds insertion. As a 
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result, mutant pollen development was affected, 
leading to male sterility. By contrast, under LD con-
ditions, the fusion protein was localized normally in 
anthers. Despite normal localization, the protein was 
only partially functional due to the lack of DIL do-
main sequences, resulting in limited recovery of pol-
len fertility [120]. Since this mutant is a photoperiod 
sensitive male sterile line, it can be a candidate line to 
develop new male sterile lines for producing two-line 
hybrid rice.  
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