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Abstract 

Increasing evidence shows that some cells from peripheral blood fibroblast-like mononuclear 
cells have the capacity to differentiate into mesenchymal lineages. However, the insufficiency 
of these cells in the circulation challenges the cell isolation and subsequently limits the clinical 
application of these cells. In the present study, the peripheral blood mononuclear cells 
(pbMNCs) were isolated from wound animals and treated with the supernatant of bone 
marrow mesenchymal stromal cells (bmMSCs). Results showed these pbMNCs were fibro-
blast-like, had stromal morphology, were negative for CD34 and CD45, but positive for 
Vimentin and Collagen I, and had the multipotency to differentiate into adipocytes and os-
teoblasts. We named these induced peripheral blood-derived mesenchymal stromal cells 
(ipbMSCs). Skin grafts in combination with ipbMSCs and collagen I were applied for wound 
healing, and results revealed ipbMSC exhibited similar potency and effectiveness in the 
promotion of wound healing to the bmMSCs. Hereafter, we speculate that the mixture of 
growth factors and chemokines secreted by bmMSCs may play an important roles in the 
induction of the proliferation and mesenchymal differentiation of mononuclear cells. Our 
results are clinically relevant because it provide a new method for the acquisition of MSCs 
which can be used as a candidate for the wound repair. 

Key words: Bone marrow mesenchymal stromal cells; Peripheral blood mesenchymal stromal cells; 
Cell differentiation; Wound healing 

INTRODUCTION 

Increasing evidence has confirmed that bone 
marrow mesenchymal stromal cells (bmMSCs) can 
contribute to wound healing in vivo [1-5], and can 
differentiate into skin cells in vitro including 

keratinocytes [6], vascular endothelial cells [7], sweat 
gland cells [8], etc. Due to indirect connection between 
marrow stroma and remote tissues or organs, mes-
enchymal stem cells (MSCs) circulating in the pe-
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ripheral blood (peripheral blood-derived mesenchy-
mal stem cells, pbMSCs) are hypothesized to be a 
source of tissue regeneration and repair. This indi-
cates an ever-increasing recognition of the potential 
roles of pbMSCs in the regenerative medicine. Due to 
painful aspiration of bone marrow from patients, pe-
ripheral blood is considered as an alternative source 
of MSCs in clinical practice. 

The attempts to demonstrate pbMSCs have been 
unrewarding, except for a report by Fernandez et al 
[9], who identified cells with the features of MSCs in 
the growth-factor-mobilized peripheral blood cells 
from breast-cancer patients. Several studies have 
conducted to isolate MSCs from the peripheral blood 
using culture conditions similar to those defined for 
bmMSCs [9-13], and their results support the exist-
ence of a small population of circulating MSCs. But 
the isolation of MSCs from the peripheral blood is 
clearly a challenge and these cells are subject to varia-
tion depending on the methods for isolation and 
sorting of mononuclear cells, and on culture condi-
tions.  

We isolated a subpopulation with fibroblast-like 
and stromal morphology from mononuclear cells fol-
lowing skin wound. These cells appeared different 
from the circulating fibrocytes of hematopoietic 
origin. We speculated these cells were pbMSCs. Con-
sidering the potential of MSCs in wound healing and 
that the amount of the isolated pbMSCs are not 
enough to meet the requirement for transplantation, it 
is imperative to develop new methods which can ef-
fectively stimulate cell propagation and differentia-
tion. 

Previously, bmMSCs were studied for their roles 
in the hemopoiesis, where they can promote the dif-
ferentiation and proliferation of hemopoietic stem 
cells through providing signals and/or via the direct 
cell-cell interactions of their progeny and via the se-
cretion of growth factors and chemokines [14-16]. 
Under the culture conditions, these adherent, spin-
dle-shaped stromal cells are found to exhibit the po-
tentials of multilineage mesenchymal differentiation 
including osteogenesis, chondrogenesis and lipogen-
esis [17]. We accordingly hypothesized that some 
growth factors and chemokines in the supernatant of 
bmMSCs probably provide a microenvironment for 
the mesenchymal differentiation of pbMSCs.  

In the present study, the mononuclear cells and 
isolated pbMNCs following skin wound were 
co-cultured in the conditioned medium which was 
prepared from the supernatant of bmMSCs. The 
characteristics of pbMNCs following induction were 
determined and their protective role in the wound 
repair was investigated.  

MATERIALS AND METHODS 
Preparation of conditioned medium and skin wound and 
isolation of mononuclear cells  

This study was approved by the Animal Ethics 
Committee of the Fourth Military Medical University. 
Bone marrow was aspirated from the tibia and femur 
of 2-week-old Sprague-Dawley (SD) rats, and added 
into 7 ml of Percoll-Paque (1.085 g/ml; Sigma, USA) 
in a 15-ml tube (Corning, USA) followed by density 
gradient centrifugation at 2,100 rpm for 20 min. The 
cells in the interface layer were collected into a new 
tube, and then washed twice in phosphate-buffered 
saline (PBS) followed by re-suspension in the minimal 
essential medium (α-MEM; GIBCO, USA) containing 
10% fetal calf serum (FCS; GIBCO, USA), 0.2 mM 
L-glutamine (Sigma, USA), 100 IU/ml penicillin and 
100 μg/ml streptomycin (Sigma, USA). The nucleated 
cells were seeded in 75-cm2 dishes at a density of 
1×105 cells/cm2 followed by incubation in a humidi-
fied atmosphere with 5% CO2 at 37℃. The medium 
was refreshed every 2 days and primary culture was 
conducted for 7-8 days. After 7 days of culture, the 
medium was collected by centrifugation at 800 rpm 
for 5 min during the third passaging when the bMSC 
confluence was near 100%. The supernatant was col-
lected and stored at -80℃. This supernatant was 
named conditioned medium.  

Sixty SD rats aged 8 weeks weighing 200~220 g 
were randomly divided into three groups: 1) Normal 
group, 2) Wound group and 3) Wound+conditioned 
medium group. Animals in the latter two groups were 
intraperitoneally anesthetized with 0.1% pentobarbi-
tal sodium and a single full-thickness round wound of 
skin (about 2 cm in diameter) was created in the dor-
sal area of each rat. Five days later, 5 ml of blood were 
obtained from the femoral vein of each rat and mon-
onuclear cells were isolated with the same procedures 
used in the isolation of bmMSCs. 
Conditioned medium induction 

Heparin anti-coagulated peripheral blood was 
obtained, added to tubes and mixed with PBS of equal 
volume. The cell suspension was added onto 7-ml 
Percoll-Paque (1.083 g/ml; GE Healthcare, UK) in a 
15-ml tube. Centrifugation was performed at 2,100 
rpm for 20 min. The cells in the interface layer were 
collected into another 15-ml tube, washed twice with 
PBS, and counted. After an additional wash with PBS, 
mononuclear cells isolated from rats in Normal group 
and Wound group were re-suspended in α-MEM 
containing 7% FCS, 100 IU/ml penicillin, 100 μg/ml 
streptomycin and 0.2 mM L-glutamine. These cells 
were seeded in 6-well plate at a density of 1×105 
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cells/cm2 and incubated in a humidified atmosphere 
with 5% CO2 at 37℃. Mononuclear cells isolated from 
Wound+conditioned medium group were 
re-suspended in the medium containing 50% of 
α-MEM and 50% of conditioned medium, 7% FCS, 100 
IU/ml penicillin and 100 μg/ml streptomycin. The 
medium was refreshed every 3 days and the floating 
cells were removed.  

CFE assay 

The CFE was originally defined as the number of 
MSC colonies in per 1×105 marrow nucleated cells in 
the original bone marrow cell suspension [18]. Herein, 
the CFE was employed to quantitate the number of 
ipbMSC colonies in per million mononuclear cells in 
each group. The cells (1×105 cells) from bone marrow 
aspiration in each group were seeded in sextuplicates 
in 35-mm dishes and maintained for 14 days. The 
medium was refreshed every 3 days and colonies (>50 
cells) were counted under a dissecting microscope.  

RT- PCR 

Total RNA was extracted using the RNeasy ex-
traction kit (Invitrogen, USA) and genomic DNA was 
removed by DNase I, according to the manufacturer’s 
instructions. RNA was reversely transcribed in 20-μl 
reaction mixture including 10 μl of total RNA, 0.5 μg 
of oligo-dT, 200 μM each dNTP, 20 U of RNasin and 
200 U of M-MLV Reverse Transcriptase (TaKaRa, Ja-
pan) and the buffers. The primers for β-actin, Colla-
gen I and III were as follows:  

β-actin forward: 5’-TGG AAT CCT GTG GCA 
TCC ATG AAA C-3’ 

reverse: 5’-TAA AAC GCA GCT CAG TAA CAG 
TCC G-3’ 

Collagen I forward: 5’-GGA GAG TAC TGG 
ATC GAC CCT AAC-3’ 

reverse: 5’-CTG ACC TGT CTC CAT GTT 
GCA-3’ 

Collagen III forward: 5’-GAA AAA ACC CTG 
CTC GGA ATT-3’ 

reverse: 5’-GGA TCA ACC CAG TAT TCT CCA 
CTCT-3’ 

PCR was performed in 50-μl reaction mixture 
with 2 μl of cDNA, 1.25 U of Taq polymerase 
(TaKaRa, Japan), 200 μM dNTPs, 0.4 μM each primer, 
1.5 mM MgCl2, the buffer and deionized water. The 
PCR conditions were as follows: for β-actin: 
pre-denaturation at 94℃ for 2 min followed by 35 cy-
cles of denaturation at 94℃ for 45 sec, annealing at 
57℃ for 45 sec and extension at 72℃ for 60 sec, and a 
final extension at 72℃ for 10 min was also carried out. 
for Collagen I and III: 35 cycles of denaturation at 95℃ 
for 30 sec, annealing at 90℃ for 10 sec, and extension 

at 64℃ for 30 sec. The products were separated by 1% 
agarose gel electrophoresis and stained with ethidium 
bromide. β-actin served as an internal reference. 

Phenotype and cell cycle analysis 

The ipbMSCs of passage 3 were grown on co-
verslips overnight for cell adherence. After washing 
with PBS, cells were fixed in formaldehyde for 10 min 
at room temperature and stained with mouse-anti-rat 
CD45 (1:100; AbD Serotec, UK), CD34 (1:100; Santa 
Cruz, USA), Collagen I (1:400; abcam, UK) or Vi-
mentin (1:100; Millipore, USA) overnight at 4℃. After 
washing with PBS 3 times, the slides were then re-
acted and visualized using DAB (EnVisionTM Detec-
tion system, DAKO, Denmark). The mononuclear 
cells served as control positive for CD45 and CD34. 

For flow cytometry analysis, following two 
washes, aliquots containing 105 cells of mixture and 
ipbMSCs were incubated at 4℃ for 1 h with 100 μl of 
saturating concentration of mouse mAb against 
FITC-conjugated mouse mAb against CD45, CD90, 
PE-conjugated mouse mAb against CD34 and CD73, 
APC- conjugated mouse mAb against CD105 (all 
bought from eBioscience, USA) and isotype-matched 
control, independently. Following two washes, these 
cells were re-suspended in PBS. Quantitative fluores-
cence analysis was performed using an FACS Calibur 
cytometer and CellQuest software program (Becton 
Dickinson, USA). The cell number (at least 10,000 
cells) versus fluorescence intensity was recorded in 
each sample.  

When cell confluence reached 80%, ipbMSCs in 
Wound+conditioned medium group and mononu-
clear cells in Wound group were trypsinized and the 
cell cycles were detected by flow cytometry (Beckman 
Coulter, USA). 

Osteogenic and adipogenic differentiation 

Osteogenic differentiation: The ipbMSCs of 
passage 3 were seeded in a 12-well plate at a density 
of 1×104 cells/cm2. When cell confluence reached 80%, 
the medium was replaced with osteogenic induction 
medium containing α-MEM, 7% FCS, 0.1 μM dexa-
methasone, 10 mM β-glycerolphosphate (Sigma, USA) 
and 50 mg/L ascorbate-2-phosphate. The medium 
was refreshed every 3 days. Three weeks later, min-
eralized nodules were stained with Alizarin Red S 
(Sigma, USA). 

Adipogenic differentiation: The ipbMSCs of 
passage 3 was seeded in a 12-well plate at the same 
density. When cell confluence reached 80%, the me-
dium was replaced with adipogenic induction me-
dium consisting of α-MEM, 7% FCS, 0.25 μM dexa-
methason, 100 μM indomethacin (Sigma, USA), 0.5 
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mM 3-isobutyl methylxanthine (Sigma, USA) and 10 
mg/L insulin. The medium was refreshed every 3 
days. Two weeks later, neutral lipid vacuoles were 
stained with Oil-red O (Sigma, USA). 

Cell labeling and skin grafts preparation 

The ipbMSCs and bmMSCs were labeled with 10 
μM fluorescent dye Hoechst33342 (Sigma, USA) in 
serum-free medium for 15 min. Fluorescence was 
examined under inverted fluorescence microscope 
(Olympus IX51, Japan). After trypsinization, cells 
were mixed with type I collagen (Sigma, USA) and 
skin grafts were prepared as previously described in 
our lab [19]. 

Preparation of skin wound and skin grafting 

Thirty six 10-week-old female nude mice were 
purchased from the Animal Center of the Fourth Mil-
itary Medical University and divided into 3 groups 
(Graft+ipbMSCs+ Collagen I group; Graft+bmMSCs+ 
Collagen I group; Graft+Collagen I group). Animals 
were intraperitoneally anesthetized with 0.1% pento-
barbital sodium and a full-thickness wound of skin 
(1.5 cm2) including the panniculus carnosus muscle 
was excised. Because the wound in the dorsal area 
was easily scratched by the animal and susceptible to 
spontaneous contraction due to the presence of sur-
rounding loose tissue, the wound was created in the 
low part of the dorsal area. Skin grafts together with 
Collagen I and ipbMSCs (1×106 cells) or bmMSCs 
(1×106 cells) were transplanted to the wound inde-
pendently. Then, the wound was covered with 
transparent semi-permeable membrane (Tegaderm, 
3M, USA).  

Wound observation and fluorescence detection 

At 10 and 20 days after transplantation, the di-
ameter of the wound was measured and the regener-
ated tissues including marginal normal skin (2 mm in 
width) were collected. Half of the tissues were fixed in 
cool acetone for immunofluorescence detection and 
the remaining tissues fixed in 10% formalin for H&E 
staining. 

Histologic analysis 

Samples were cut into 5-μm sections and antigen 
retrieval was performed in 10 mM citrate buffer (pH 
6.0) at 121℃ for 15 min. The sections were then treated 
with 3% hydrogen peroxide to inactivate the endog-
enous peroxidase. After incubation with normal goat 
serum for 30 min to block the non-specific staining, 
the sections were treated with mouse-anti-rat collagen 
type I monoclonal antibody (1:800; Abcam, UK), or 
rabbit-anti-rat Ki67 polyclonal antibody (1:50; Abcam, 

UK) for 1 h at 37℃. The sections were then treated and 
visualized with DAB kit (EnVisionTM Detection sys-
tem, DAKO, Denmark), finally stained with hema-
toxylin and observed under light microscope. Sam-
ples from Collagen group served as negative control.  

Statistical analysis 

Data were expressed as mean ± standard devia-
tion (SD), and statistical analysis was performed with 
SPSS version 11.0 statistic software package. Com-
parisons were performed with t test. A value of 
P<0.05 was considered statistically significant. 

 

RESULTS 
CFE of fibroblast-like cells were increased after wound and 
conditioned medium induction  

On the 3rd day, adherent and spindle-shaped fi-
broblastic cells were noted in all groups, and the 
number of cells in Wound group was 3~5 times higher 
than that in the Normal group. In the 
Wound+conditioned medium group, the spin-
dle-shaped cells were less noted and mostly replaced 
by cells with polygonal morphology. These cells ag-
gregated forming clones. On the 6th day, the cells 
propagated in Normal group and extensive cell net-
work formed in Wound group. Clones in the 
Wound+conditioned medium group became enlarged 
and some of them contacted with each other (Fig. 1A). 
The morphology of ipbMSCs was stromal-like, espe-
cially at the 3rd passage. They presented similar mor-
phology in vitro to bmMSCs (Fig. 1B).  

From the 3rd day, colonies formed by fibroblastic 
cells were found in the mononuclear cells. The 
ipbMSCs colonies enlarged over time and the discrete 
colonies (1~5 mm in diameter) were observed on the 
14th day. The fibroblast colony-forming units (CFU-Fs) 
in Wound+conditioned medium group were about 3 
times higher than that in the Wound group, and the 
CFU-Fs in the Wound+conditioned medium group 
and the Wound group were significantly higher than 
that in the Normal group (P<0.01) (Fig. 1C). 

Mesenchymal features of ipbMSCs 

The gene expressions of Collagen I and III were 
detected by RT-PCR and β-actin served as positive 
control (Fig. 2A). As shown in Figure 2A, ipbMSCs 
had expressions of Col-I and III. In addition, im-
munohistochemistry showed the ipbMSCs were neg-
ative and mononuclear cells positive for CD45 and 
CD34. ipbMSCs were also positive for collagen I and 
vimentin (Fig. 2B).  
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[1.5%]), but highly expressed markers for MSCs (CD73 [85.1%], CD90 [99.7%] and CD105 [89.7%]). The proportion of 
FITC, PE and APC positive cells in isotype controlwas 1.8%, 1.9% and 1.9%, respectively. (D) The proportion of ipbMSCs in 
G2+S phase and S phase was 5.1 and 2.7, respectively which was significantly lower than those of mononuclear cells (12.7 and 
10.9, respectively). 

 
 
 
 
 
ipbMSCs of passage 3 had almost no expressions 

of markers for hematopoietic stem cells (CD34 [1.6%] 
and CD45 [1.5%]), but highly expressed markers for 
MSCs (CD73 [85.1%], CD90 [99.7%] and CD105 
[89.7%]). The proportion of FITC, PE and APC posi-
tive cells in isotype control was 1.8%, 1.9% and 1.9%, 
respectively. These results suggested ipbMSCs were 
MSCs derived. Cell cycle analysis showed the pro-
portions of ipbMSCs in the G2+S phase and the S 
phase were 5.1 and 2.7, respectively, both of which 
were significantly lower than those of mononuclear 
cells (12.7 and 10.9, respectively) (Fig. 2D). These 
findings suggested, under the conditioned medium 
induction, the proliferation of mononuclear cells was 
inhibited but their differentiation into mesenchymal 
lineages was enhanced.  

Multi-differentiation potential of ipbMSCs  

ipbMSCs exhibited osteogenic and adipogenic 
potentials when they were maintained in specific in-
duction medium, which was demonstrated by the 
formation of calcium nodules and lipid droplets de-
tected by staining of Alizarin Red S and Oil red-O, 
respectively (Fig. 3).  

Skin graft in combination with ipbMSCs and collagen I 
accelerates wound healing 

ipbMSCs and bmMSCs were labeled with 
Hoechst33342 and round skin grafts (1.5-cm in diam-
eter) were prepared and preserved in culture medium 
(Fig. 4A). After solidification, the grafts were trans-
planted to the wound (Fig. 4B). On the 10th day, the 
diameter of wound in both ipbMSCs group and 
bmMSCs group were about 5 mm, and that in Colla-
gen group was 7 mm (P<0.05). There was no signifi-

cant difference in the wound diameter between the 
ipbMSCs group and the bmMSCs group (P>0.05). On 
the 20th day, scar was noted in the ipbMSCs group 
and the bmMSCs group, but a 2-mm wound was still 
unclosed in Collagen group (P<0.05) (Fig. 4B). These 
findings revealed ipbMSCs possessed similar potency 
in tissue repair to bmMSCs.  

 

Detection of fluorescence labeled cells and examination of 
skin structure after transplantation 

Blue fluorescence was detected in the ipbMSCs 
group and the bmMSCs group and the morphology of 
fluorescence was in consistent with the appearance in 
H&E staining. No fluorescence was detected in the 
Collagen group (Fig. 5A). 

Twenty days after transplantation, H&E staining 
of the healed wound in the ipbMSCs and the bmMSCs 
group showed the number of epidermal cells was 
markedly higher than that in the Collagen group. The 
regenerated epidermal cells distributed unevenly in 
different layers, and the ridge became obvious in the 
epidermis. Even there were hair follicle-like structures 
in the regenerated dermis. In the healed wound in the 
Collagen group, however, the regenerated epidermal 
cells mainly distributed in the basal layer, and ridge 
or appendage-like structures were not found (Fig. 5B). 

Positive staining for Ki67 and Collagen I was 
found in the regenerated epidermis and append-
age-like structures in the wounds of both ipbMSCs 
and BMSCs groups. But the staining in the bmMSCs 
group was slightly stronger than that in the ipbMSCs 
group. However, the wound in the Collagen group 
was negative for Ki67 and Collagen I (Fig. 5C).  
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differentiation of cells [33], and may maintain the 
progenitor cells in a quiescent state until the tissue 
architecture is disrupted. Thus, the peripheral blood 
becomes a pure land for primitive MSCs circulating 
outside the bone marrow. 

In the present study, more pbMSCs were isolat-
ed after wound pretreatment than under normal con-
dition, which was consistent with previous studies 
[34, 35] that pbMSCs and endothelial progenitor cells 
were increased in the peripheral blood during wound 
repair. Badiavas et al. indicated that there was a sig-
nificant number of bone marrow cells trafficing 
through both wounded and non-wounded skin, 
which implied that wounding could be a stimulus for 
the mobilization of bone marrow-derived mesen-
chymal stem cells to organs which facilitates the re-
generation of damaged tissues [36]. In recent years, 
several studies suggest that bmMSCs, endothelial 
progenitor cells and fibrocytes may be involved in the 
tissue repair, contributing to differentiation into skin 
cells and/or release of regulatory cytokines [22, 37, 
38]. Therefore, wounding may stimulate the engraft-
ment of bone marrow cells to the wounded skins and 
induce these cells to incorporate and differentiate into 
non-hematopoietic skin cells.  

Because the re-epithelialization and formation of 
granulation tissues are the major factors involving in 
the wound healing [39,40], we speculate that MSCs 
play an important role in the healing process of mes-
enchyme, which was confirmed by the formation of 
appendage-like structure and epidermal ridge in the 
present study. This was also consistent with a recent 
study of Wu et al [41], who found that implanted 
CD34+ bone marrow cells did not express cytokeratin 
or incorporate into skin epidermis and its appendages 
in the wound. bmMSCs also have the angiogenic po-
tential. They can differentiate into smooth muscle 
cells in vitro [42], and the bone marrow-derived cells 
seeded on a synthetic vascular graft can form smooth 
muscle and endothelial layers in vivo [43], which im-
plies that the growth of MSCs in the injured vascular 
tissues may regenerate the normal vascular tissues. 

Sufficient cell provision is one of the important 
factors determining the successful application of cell 
therapy. Insufficiency of MSCs circulating in the pe-
ripheral blood limits the wide application of these 
cells. In the present experiment, the isolation effi-
ciency and CFE of the pbMSCs after conditioned me-
dium incubation (Wound+ conditioned medium 
group) were much higher than that in the Wound 
group and the normal group. We speculate that the 
developmental microenvironment is critical for the 
growth and differentiation of pbMSCs. The cytokines 
secreted by the bmMSCs can induce the differentia-

tion of mononuclear cells into the mesenchymal line-
age and stimulate the mobilization of MSCs from the 
bone marrow into the peripheral blood. Some studies 
have confirmed that bmMSCs can secret a variety of 
cytokines including TGF-β1 [44], G-CSF, GM-CSF 
[45,46] and VEGF [47]. bmMSCs in vitro have been 
found to secret VEGF, basic fibroblast growth factor 
(bFGF), placental growth factor (PlGF), and monocyte 
chemoattractant protein-1 (MCP-1) [48]. Although 
these factors play important roles in the cell growth 
and differentiation, the maintenance of the primitive 
characteristics of MSCs as in the bone marrow possi-
bly cannot be done by any one of them and requires 
interaction with each other. 

The ipbMSCs have the characteristics of MSCs, 
and are negative for CD34 and CD45, but positive for 
Vimentin and Collagen I. Results from skin grafting 
showed the skin graft in combination with ipbMSCs 
and Collagen I effectively promoted the wound heal-
ing and showed similar potency in the promotion of 
wound healing to bmMSCs. These findings suggest 
ipbMSCs can be used as a candidate for cell therapy 
and have the potential to substitute bmMSCs as seed 
cells in the tissue engineering of skin. Because bmM-
SCs have the potential in the cutaneous reconstitution, 
human bmMSCs populated porcine skin substitute 
has been applied in the treatment of full-thickness 
wound of skin in nude rats achieving favorable out-
come [49]. It has been confirmed that bmMSCs can 
contribute to the wound healing through their dif-
ferentiation, deposition of collagen secreted by these 
cells and their angiogenesis [41,50]. Direct injection of 
bmMSCs into the injured site shows improved repair 
due to the differentiation of bmMSCs and/or the re-
lease of paracrine factors. The ipbMSCs may play 
similar roles in this process. 

As a source of seed cells for tissue repair, the 
ipbMSCs have advantage of promptness and effi-
ciency in cell propagation under control in vitro. Fur-
thermore, the acquisition of these cells is less painful 
and they are more accessible when compared with 
bmMSCs. Nevertheless, there are still problems re-
maining to resolve: 1) The conditioned medium of 
bmMSCs is a mixture of growth factors and chemo-
kines, and it is unclear which factor plays the most or 
more important role or which factor cooperates well 
to support the cell growth and differentiation; 2) The 
conditioned medium of bmMSCs is critical for the 
efficient and stable induction of MSCs; 3) Assurance 
of normal bmMSCs is crucial for the safe application 
of ipbMSCs.  
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