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Abstract 

Steroid receptor coactivator-3 (SRC-3), also known as AIB1, is a member of the p160 
steroid receptor coactivator family. Since SRC-3 was found to be amplified in breast 
cancer in 1997, the role of SRC-3 in cancer has been broadly investigated. SRC-3 initially 
was identified as a transcriptional coactivator for nuclear receptors such as the estrogen 
receptor (ER), involved in the proliferation of hormone-dependent cancers. However, 
increasing clinical evidence shows that dysregulation of SRC-3 expression in several 
human hormone-independent cancers is correlated with pathological factors and clinical 
prognosis. Recently, both in vivo and in vitro studies demonstrate that SRC-3 may in-
fluence a number of cancer cellular processes in several ways independent of nuclear 
receptor signaling. In addition, an SRC-3 transgenic mice model shows that SRC-3 in-
duces tumors in several mouse tissues. These results indicate that the role of SRC-3 in 
cancer is not just as a nuclear receptor coactivator. The focus of this review is to examine 
possible SRC-3 roles in cancer, other than as a nuclear receptor coactivator. 

Key words: Steroid receptor coactivator-3; mice model; tumorigenesis; cell cycle; apoptosis; inva-
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Introduction 

Steroid receptor coactivator-3 (SRC-3) is a 
member of the p160 steroid receptor coactivator fam-
ily. It was discovered initially to be amplified in breast 
cancer in 1997 and so was named amplified in breast 
cancer 1 (AIB1) (1). SRC-3 is also known as nuclear 
receptor coactivator-3 (NCoA-3), receptor associated 
coactivator-3 (RAC3), activator of thyroid hormone 
and retinoid receptor (ACTR), thyroid hormone re-
ceptor activating molecule-1 (TRAM1), and p300/CBP 
interacting protein (p/CIP). The SRC-3 gene is located 
on chromosome 20q12-12. The SRC-3 protein is ap-
proximately 160 kDa and contains three basic struc-
tural domains, consistent with the other two SRC 
family members (SRC-1 and SRC-2). The N-terminal 
basic helix-loop-helix-Per/ARNT/Sim domain 
(bHLH-PAS) mediates the interaction between SRC-3 

and other DNA-binding proteins. The recep-
tor-interaction domain (RID) contains three LXXLL 
motifs, by which SRC-3 binds to the ligand-activated 
nuclear receptors. The C-terminal domain contains 
two intrinsic transcriptional activation domains, AD1 
and AD2, by which SRC-3 interacts with histone 
acetyltransferases and histone methyltransferases, 
respectively. The C-terminal domain of SRC-3 also 
has histone acetyltransferase activity. The function of 
SRC-3 as a transcriptional coactivator for nuclear 
hormone receptors has been described in detail pre-
viously (2, 3). Phosphorylated SRC-3 binds to lig-
and-activated nuclear receptors via its RID, and then 
recruits the histone acetyltransferase p300/CBP 
through AD1. This transcriptional complex subse-
quently alters chromatin structure and facilitates the 
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transcription of the nuclear receptor target gene. In 
addition to its role as a nuclear receptor coactivator, 
SRC-3 is also a transcriptional coactivator for other 
transcription factors, including E2F1 (4), AP-1 (5), 
NF-κB (6), STAT6 (7) and PEA3 (8). Moreover, SRC-3 
acts as a translational repressor to regulate proin-
flammatory cytokine mRNA translation (9). 

The correlation between SRC-3 and cancer has 
been widely discussed since SRC-3 was determined to 
be amplified in breast cancer in 1997 (1). Initially, 
SRC-3 was thought to be involved in the proliferation 
of hormone-dependent cancers, such as ER-positive 
breast cancer, primarily by acting as transcriptional 
coactivator for nuclear receptors such as ER. Howev-
er, more and more studies have shown that hor-
mone-dependent cancers are not the only type of 
cancer that SRC-3 affects, and SRC-3 has roles in can-
cer other than being as a nuclear receptor coactivator. 
Dysregulation of SRC-3 in several hor-
mone-independent cancers correlates with patholog-
ical factors and clinical prognosis. Both in vivo and in 
vitro studies show that SRC-3 affects many aspects of 

cancer in ways independent of nuclear receptor sig-
naling. The SRC-3 transgenic mice model shows that 
SRC-3 is a bona fide oncogene which can induce tu-
morigenesis in many tissues. The focus of this review 
is to summarize roles of SRC-3 in cancer other than a 
nuclear receptor coactivator.  

 

Clinical evidence of SRC-3 dysregulation in 
cancers 

The altered expression of SRC-3 in human can-
cers is summarized in Table 1. These data demon-
strate that dysregulation of SRC-3 occurs in hor-
mone-dependent as well as hormone-independent 
cancers. Moreover, SRC-3 dysregulation is correlated 
with pathological factors and prognosis of hor-
mone-dependent as well as hormone-independent 
cancers. These observations indicate that SRC-3 has a 
key role in the tumorigenesis and progression of sev-
eral different cancers, and not just a coactivator of 
nuclear hormone receptor. 

 

Table 1. SRC-3 dysregulation in cancers and malignant disease 

Changes  Frequency (Refs) Pathological and Prognostic association (Refs) 

Hormone-dependent cancers 

Breast cancer 

Gene amplification 1.6-9.5% (1, 9-12) Large tumor size (9) 

mRNA overexpression 13-64% (1, 13, 14) High tumor grade (13) 
Shorter DFS and OS (14) 

Protein overexpression 16-53% (11, 15-19) High tumor grade (16, 17), shorter DFS (18), shorter OS 
(18, 20), longer DFS (19) 

Prostate cancer 

Protein overexpression 13.1-37.9% (21, 22) High tumor grade, stage and shorter DSS (21), PSA re-
currence (22) 

Ovarian cancer 

Gene amplification 7.4-25.8% (9, 23) Shorter DFS (23) 

Protein overexpression 64% of the high grade tumors  (24) High tumor grade (24) 

Endometrium cancer 

mRNA overexpression  17% (10) High tumor grade and stage, shorter 24-months survival 
(25)  

Protein expression  93% (26) High tumor grade (26)  

Hormone-independent cancers and malignant disease  

Esophageal squamous cell cancer (ESCC) 

Gene amplification 4.9-13% (27, 28) ND 

Protein overexpression 46-64.3% (28, 29) High tumor grade (28) 
Shorter PFS and DSS (29) 

Colorectal cancer 

Gene amplification 10-32% (30, 31) ND 

Protein overexpression 35-56.5%  (30, 32) High tumor grade (30)  
Longer OS  (32) 

Hepatocellular cancer (HCC) 

Gene amplification  41% of the metastatic HCC; 60% of the recur-
rent HCC (33) 

ND 

Protein overexpression 67.6% (34) ND 
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Pancreatic cancer 

Gene amplification 37% (35) ND 

mRNA overexpression 73.68% (35) ND 

Protein overexpression 64.47% (35) ND 

Gastric cancer 

Gene amplification 41% (36) 
(7% high level amplification; 34% low level 
amplification) 

High regional lymph metastasis, high tumor grade and 
stage, poor prognosis  (36) 

mRNA overexpression 40% (36) ND 

Bladder cancer 

Gene amplification 7.0% (37) ND 

Protein overexpression 32.5% (37) Shorter survival (37) 

Nasopharyngeal cancer 

Gene amplification 7% (38) ND 

Protein overexpression 51% (38) High lymph metastasis and tumor state (38)  

Non-small cell lung cancer (NSCLC) 

Gene amplification 8.2-25% (39, 40) ND 

Protein overexpression 27-48.3% (39-41) Shorter survival (39) 
Shorter DFS and OS (40) 

Meningioma 

Protein expression 76% (42) ND 

DFS, disease free survival; OS, overall survival; DSS, disease specific survival; PFS, progression free survival; PSA, prostatic specific antigen; 
ND, not determined; HCC, hepatocellular cancer; ESCC, esophageal squamous cell cancer; NSCLC, non-small cell lung cancer. 

 

Mouse model reveals the oncogenic prop-
erty of SRC-3 

SRC-3 knockout mice model 

To analyze the relationship between SRC-3 and 
cancer, researchers generated several mouse models 
of cancers in which SRC-3 is depleted. The results 
showed that SRC-3 knockout significantly inhibited 
carcinogen-induced tumorigenesis by inducing 
down-regulation of other signaling pathways, as well 
as nuclear receptor signaling. For example, in two 
different mouse models, SRC-3 knockout totally in-
hibited the mouse mammary tumor virus-v-Ha-ras 
(MMTV-v-Ha-ras) or chemical carcinogen 7, 
12-dimethyl-benz[a] anthracene (DMBA)-mediated 
mammary gland tumorigenesis (44, 45). The 
down-regulation of the IGF-I signaling detected in 
both of these models is considered one reason, as is 
the down-regulation of ER signaling. Moreover, 
SRC-3 depletion led to the inhibition of the oncogene 
MMTV-HER2/neu induced mammary gland tumor-
igenesis in another mouse model, in which HER-2 
phosphorylation was suppressed (46). More recently, 
it was reported that SRC-3 knockout also prevented 
the initiation of thyroid cancer induced by domi-
nant-negative mutant thyroid hormone receptor-β 
(TR-β), and multiple signaling pathways, but not nu-
clear receptor signaling, were disrupted in this mouse 
model (47).Taken together, these results indicate that 
SRC-3 contributes to the tumorigenesis induced by 
several different carcinogens. 

SRC-3 transgenic mice model 

To detect whether SRC-3 overexpression could 
induce tumorigenesis in the mammary gland, 
Torres-Arzayus and colleagues (48) established the 
first SRC-3 transgenic mouse model in 2004. In this 
model, tumors were induced in the mammary gland 
(48%). Surprisingly, tumors were also found in the 
pituitary (42%), uterus (18%) and lung (18%). More-
over, 16.7% of the mammary gland tumors were 
ERα-negative. Further studies revealed that activation 
of IGF-I signaling was enhanced in this SRC-3-tg 
mouse model, indicating that SRC-3 induced tumor-
igenesis by up-regulating IGF-I signaling. More re-
cently, the same group developed another estrogen 
receptor signaling-eliminated SRC-3 transgenic 
mouse model by two methods, ovariectomy (ovx) and 
ERα null mutant (49). In both groups, ectopic SRC-3 
overexpression still induced tumorigenesis in lung, 
pituitary, skin, and bone tissues. Meanwhile, in the 
ovx group, although the ovariectomy attenuated es-
trogen receptor signaling and inhibited mammary 
gland development, some mice still developed 
mammary hyperplasia and ductal carcinoma. Taken 
together, the data from these two SRC-3 transgenic 
mouse models strongly indicate that SRC-3 triggers 
tumorigenesis through either other nuclear receptor 
signals or in a nuclear receptor signaling-independent 
manner, although the details of the mechanism are 
not fully understood. 
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SRC-3 is involved in cancers in a nuclear receptor 
signaling-independent manner  

Several investigations indicated that SRC-3 is 
implicated in cancer through nuclear receptor signal-

ing-independent as well as nuclear receptor signal-
ing-dependent mechanisms. Here, we intend to focus 
on the role of SRC-3 in cancer other than as a nuclear 
receptor coactivator (Figure 1). 

 
 
 

 

Figure 1. SRC-3 is involved in many cancer processes independent of nuclear receptor signaling. SRC-3 promotes cell 
cycle progression by coactivating E2F1 and activating Akt. SRC-3 up-regulates IGF-I and EGF signaling by phosphor-
ylating Akt, EGFR and HER2, respectively, and induces tumorigenesis. SRC-3 inhibits apoptosis through activation of 
NF-ΚB and Akt signaling. SRC-3 promotes invasion and metastasis by coactivating AP-1 and PEA3 and activating FAK. 

 
 
 

SRC-3 is involved in cell cycle control 

Cancer is considered to be a disease of the cell 
cycle, and compromised cell cycle control is detected 
frequently in several cancers (50). There is evidence 
that SRC-3 may promote the cancer cell cycle. For 
example, SRC-3 overexpression maintained the S 
phase cell number in fulvestrant-treated breast cancer 
cell line T47D (4). In contrast, the SRC-3 stable 
knockdown by siRNA decreased S phase cell number 
and increased G1 phase cell number both in human 
embryonic lung fibroblast and HCC cell lines (35, 51). 
Moreover, SRC-3 depletion induced a significant in-
crease in G1/G0 phase cells and a decrease in G2/M 
phase cells in TR-β-induced thyroid cancer mouse 
model (47). Another proof was that SRC-3 nuclear 
translocation was coincident with the G1/S phase 
transition of cancer cell (51, 52). 

Other research examined the mechanism by 
which SRC-3 modulates cell cycle control in cancer 
cells. One group found that SRC-3 acted as a tran-
scriptional coactivator for the G1/S phase transi-
tion-associated transcription factor E2F1, and enhance 
the transcription of the E2F1 target genes, which are 
mostly G1/S cycle transition-related proteins (4, 51). 
Therefore, SRC-3 dysregulation eventually led to cell 
cycle activation through E2F1 signaling. This conclu-
sion is supported by the fact that SRC-3 overexpres-
sion induced proliferation and transformation of the 
ER-negative human mammary epithelial cell line 
MCF10A in an E2F1-dependent manner (51). Inter-
estingly, other studies show that SRC-3 may promote 
its own transcription with E2F1 (53, 54). This positive 
feedback regulatory loop may enhance the influence 
SRC-3 exerted on cell cycle control. In addition, SRC-3 
also influenced cell cycle control through activation of 
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the Akt signaling pathway. For example, SRC-3 in-
hibited cell cycle inhibitor p21Cip1/Waf1 expression by 
activating Akt signaling in HCC cells (35). Taken to-
gether, these data demonstrate that SRC-3 is involved 
in cell cycle control-related signaling. The dysregula-
tion of SRC-3 may disturb normal cell cycle progres-
sion and promote cancer initiation and proliferation. 

SRC-3 and growth factor signaling 

SRC-3 regulates the insulin-like growth factor I 
(IGF-I) signaling  

IGF-I signaling is involved in many important 
cell processes related to cancer (55). Many studies 
showed that SRC-3 is associated with the regulation of 
IGF-I signaling in cancer. In vivo, SRC-3 knockout 
down-regulated IGF-I mRNA and protein expression, 
and thus inhibited tumorigenesis (44, 56, 57). In con-
trast, ectopic SRC-3 overexpression up-regulated 
IGF-I mRNA and protein expression and induced 
tumorigenesis in a mouse model (48). Moreover, 
SRC-3 expression also influenced the expression of 
many IGF-I signaling components, such as IGF-I re-
ceptor β (IGF-IRβ) (45), IRS-1 and IRS-2 (44, 45). In 
accordance with in vivo studies, the in vitro studies 
also demonstrated that SRC-3 could regulate the ex-
pression of IGF-I signaling components (58, 59). In 
addition, SRC-3 modulated the activation of IGF-I 
signaling components in vitro and in vivo. For exam-
ple, SRC-3 overexpression enhanced Akt phosphory-
lation in two prostate cancer cell lines, PC3 and 
LNCaP (58). The cancer cells derived from the SRC-3 
transgenic mice showed excessive activation of com-
ponents of the IGF-I/PI3K/Akt/mTOR pathway, in 
particular Akt (48). Both in vivo and in vitro studies 
indicate that SRC-3 is tightly correlated with IGF-I 
signaling in cancers. 

Quite a few studies have been performed on the 
mechanism of SRC-3 regulating the IGF-I signaling in 
cancers. SRC-3 can bind to the transcription factor 
AP-1 and enhance AP-1-mediated transcription of 
IGF-I and IRS-1 (5). IGF-binding protein 3 (IGFBP3) 
inhibited the degradation of serum IGF-I by forming a 
complex with IGF-I (60). A recent study showed that 
SRC-3 could affect the IGF protein level through reg-
ulation of IGFBP3 expression (61). In this study, mu-
tation of the phosphorylation sites of SRC-3 increased 
IGF-I expression by up-regulating IGFBP3, and re-
sulted in tumorigenesis in the mouse liver. These re-
sults can account partly for the association between 
SRC-3 and IGF-I signaling. However, the mechanism 
by which SRC-3 modulates the expression and acti-
vation of IGF-I signaling components, in particular 
the activation of Akt, needs further exploration. Col-

lectively, the above results indicate that dysregulation 
of SRC-3 influences the expression and activation of 
IGF-I signaling components.  

SRC-3 regulates EGF signaling 

EGF signaling is important for the initiation and 
progression of cancer (62). Clinical studies showed 
that SRC-3 overexpression correlated with expression 
of the EGFR family member HER2 in breast cancer 
specimens, and the expression of both of these pro-
teins correlated with shorter survival and primary 
tamoxifen resistance in breast cancer patients (13, 20). 
A recent in vitro study showed that endogenous SRC-3 
knockdown by siRNA in lung, pancreatic and breast 
cancer cell lines reduced EGF-mediated phosphoryla-
tion of EGFR and HER-2, and thereby inhibited the 
activation of EGF signaling (63). As a result, cancer 
cell proliferation was inhibited. An in vivo study 
showed that SRC-3 depletion completely inhibited 
mammary tumorigenesis induced by the oncogene 
MMTV-HER2/neu (46). Further studies revealed that 
SRC-3 depletion strongly prevented HER-2 phos-
phorylation and thus inhibited the HER2-induced 
activation of EGF/MAPK signaling. Although neither 
of these studies thoroughly elucidated the mechanism 
by which SRC-3 regulate EGFR and HER2 phosphor-
ylation, they still confirm that SRC-3 regulates EGF 
signaling.  

SRC-3 and apoptosis 

Apoptosis is a normal physiological process of 
the cell; altered regulation of apoptosis is common in 
cancer (64). Many studies showed that SRC-3 is im-
plicated in the cancer cell apoptosis. In vitro, overex-
pression of SRC-3 reduced H2O2-mediated apoptosis 
in the HEK293 cell line (65). In contrast, SRC-3 
down-regulation by siRNA restored the sensitivity of 
chronic myeloid leukemia cell line K562 to tumor ne-
crosis factor (TNF)-related apoptosis-inducing ligand 
(TRAIL)-mediated apoptosis (66), decreased apopto-
sis inhibitor Bcl-2 expression in the prostate cancer 
cell line PC3 (23), and increased the level of cleaved 
caspase-7 in the NSCLC cell line H1299 (23, 41). 
Moreover, in vivo studies also showed that SRC-3 
possessed anti-apoptotic properties (47, 48).  

NF-κB signaling inhibits apoptosis by regulating 
the transcription of many anti-apoptotic proteins, 
such as Bcl-2 and the FLICE inhibitory protein (FLIP) 
(67, 68). SRC-3 activated NF-κB signaling in coordina-
tion with IκB kinase (IKK) and acted as a transcrip-
tional coactivator for NF-κB in cancer cells (6, 69). 
Therefore, researchers examined whether SRC-3 af-
fected apoptosis through NF-κB signaling. SRC-3 
knockdown by siRNA indeed reduced activation of 
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NF-κB signaling and resulted in apoptosis in human 
chronic myeloid leukemia K562 cells (66), while an-
other study showed that SRC-3 overexpression acti-
vated NF-κB-mediated anti-apoptosis gene transcrip-
tion in HEK293 cells (65). More recently, another 
study showed that SRC-3 down-regulation induced 
by deguelin in Jurkat cells inhibited the expression of 
NF-κB target genes known to be anti-apoptotic (70). 
All of these results demonstrate that SRC-3 may de-
crease apoptosis by activating NF-κB signaling in 
cancer cells. In addition, SRC-3 also disturbed apop-
tosis through Akt signaling, which is involved in 
multiple apoptosis signaling pathways (71-73). An in 
vitro study showed that SRC-3 knockout reduced Akt 
activation, and thus attenuated Akt-mediated JNK 
suppression, resulting in apoptosis of DT40 chicken 
B-lymphocytes (74). Another study revealed that in-
hibiting SRC-3 expression by gambogic acid in the 
human leukemia cell line K562 also inactivated Akt 
signaling, thereby decreasing Bcl-2 expression (75). In 
contrast, SRC-3 overexpression in HEK293 cells pre-
vented apoptosis in part by activating Akt signaling 
(65). These data demonstrate that SRC-3 suppression 
of apoptosis in several cancer cells is through activa-
tion of NF-κB and Akt signaling. 

SRC-3 promotes invasion and metastasis  

Invasion and metastasis play critical roles in 
cancer progression (76). Several studies indicated that 
SRC-3 promoted cancer invasion and metastasis. 
Clinically, SRC-3 overexpression was associated with 
local invasion (25, 26, 34, 77) and lymph node metas-
tasis (30, 37, 39, 77). In vitro, SRC-3 modulated cell 
invasion and migration in a nuclear receptor signal-
ing-independent manner (25, 77, 78). In an SRC-3-tg 
mouse model, most cancers induced by ectopic SRC-3 
overexpression were invasive and metastatic (48, 49). 
In contrast, the SRC-3 knockout mouse model showed 
that loss of SRC-3 inhibited cancer invasion and me-
tastasis (8, 44, 47, 79). 

There have been many studies on the mechanism 
by which SRC-3 regulates cancer invasion and me-
tastasis. Some studies focused on the correlation be-
tween SRC-3 and matrix metalloproteinases (MMPs). 
One study found that SRC-3 stimulated MMP7 and 
MMP10 expression in ER-negative MDA-MB-231 
breast cancer cells by acting as coactivator for tran-
scription factor AP-1 (78). Another study found that 
SRC-3 promoted MMP2 and MMP13 expression in 
LNCaP prostate cancer cells by coactivating PEA3, an 
Ets transcription factor family member, as well as 
AP-1 (77). In accordance with the in vitro studies, an in 
vivo study also demonstrated that SRC-3 enhanced 
MMP2 and MMP9 expression by functioning as a 

transcriptional coactivator for PEA3 (8). In addition to 
regulating the expression of MMPs, SRC-3 also was 
shown to activate focal adhesion kinase (FAK) sig-
naling, and thus enhance cell motility, which is critical 
to the cancer invasion and metastasis. A study 
showed that SRC-3 promoted FAK phosphorylation 
and thus induced tumor cell migration (77). More re-
cently, another study showed that SRC-3Δ4, a nuclear 
localization signal (NLS)-deleted isoform of SRC-3, 
could function as an adaptor protein for signal 
transmission from EGFR to FAK (80). Taken together, 
the above studies demonstrated that SRC-3 promotes 
cancer invasion and metastasis by mechanisms other 
than nuclear receptor signaling.  

Conclusion 

Accumulating evidence indicates that the role of 
SRC-3 in cancer is more than as a nuclear receptor 
coactivator. Clinical investigations showed that SRC-3 
is not only associated with hormone-dependent can-
cers. In the SRC-3-tg mouse model, SRC-3 ectopic 
overexpression induced tumorigenesis in several or-
gans, even when a prototypical nuclear hormone re-
ceptor signaling is eliminated. In contrast, SRC-3 
knockout in mice inhibited tumorigenesis induced by 
multiple different carcinogens. Both in vitro and in 
vivo studies demonstrated that SRC-3 is involved in 
many cancer processes through several mechanisms, 
in particular the nuclear receptor-independent sig-
naling. SRC-3 controlled cell cycle progression by 
coactivating E2F1, up-regulated IGF-I and EGF sig-
naling, inhibited apoptosis through activation of 
NF-κB and Akt signaling and promoted invasion and 
metastasis by coactivating AP-1 and PEA3 and acti-
vating FAK.  

A recent study showed that SRC-3 deficiency 
reduced apoptosis by up-regulating NF-κB signaling 
in T and B lymphocytes, and eventually lead to lym-
phoma (81). This indicated that the mechanisms in-
dependent of nuclear receptor signaling by which 
SRC-3 is involved in cancers is complex and requires 
further investigation in the future. All of the above 
data demonstrate that SRC-3 has roles in cancer initi-
ation and progression other than being as a nuclear 
receptor coactivator. Therefore, SRC-3 may be an at-
tractive target of cancer therapy. 
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