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Abstract 

Complex traits are determined by the combined effects of many loci and are affected by gene 
networks or biological pathways. Systems biology approaches have an important role in the 
identification of candidate genes related to complex diseases or traits at the system level. The 
present study systemically analyzed genes associated with bovine marbling score and identi-
fied their relationships. The candidate nodes were obtained using MedScan text-mining tools 
and linked by protein-protein interaction (PPI) from the Human Protein Reference Database 
(HPRD). To determine key node of marbling, the degree and betweenness centrality (BC) 
were used. The hub nodes and biological pathways of our network are consistent with the 
previous reports about marbling traits, and also suggest unknown candidate genes associated 
with intramuscular fat. Five nodes were identified as hub genes, which was consistent with the 
network analysis using quantitative reverse-transcription PCR (qRT-PCR). Key nodes of the 
PPI network have positive roles (PPARγ, C/EBPα, and RUNX1T1) and negative roles (RXRA, 
CAMK2A) in the development of intramuscular fat by several adipogenesis-related pathways. 
This study provides genetic information for identifying candidate genes for the marbling trait 
in bovine. 
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INTRODUCTION 

Marbling (intramuscular fat) is a quantitative 
trait that is controlled by interactions among several 
quantitative trait loci (QTLs) combined with envi-
ronmental influences. Beef industry is looking for 
gene markers that would identify animals that have a 
high propensity to accumulate intramuscular fat in 
order to produce tasty and tender meat [1]. To finding 

the candidate genes of intramuscular fat deposition, 
traditional QTL analysis was used based on position 
dependent strategy such as thyroglobulin (TG), fatty 
acid binding protein 4 (FABP4), or growth hormone 1 
(GH1) [2-4]. Recently, several strategies have been 
developed to break the restriction of information bot-
tleneck of the traditional candidate gene approach. 
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There are comparative functional genomics, compar-
ative structural genomics as the next step of detection 
of genes of interest, function dependent strategy in-
cluding signaling pathway, regulatory network [5]. 
Therefore, animal geneticists have attempted sys-
tem-oriented approaches to investigate livestock traits 
[6-8], resulting in the identification and characteriza-
tion of economically important causal trans-acting 
genes. As a result, candidate genes within these 
trans-QTL regions have direct or indirect interactions 
and share common biological functions (e.g., similar 
gene ontology function, metabolic pathway, tran-
scriptional co-regulation) [9-12]. In marbling of cattle, 
some studies have attempted to identify candidate 
genes affecting phenotypic variation for marbling and 
tenderness using high-density microarrays based on 
the large-scale transcriptome level [6, 8]. Other more 
specific studies that selected candidates according to 
these molecular functions provided a better under-
standing of muscle physiological states and their in-
fluence on meat quality [7]. Recently, three genes, 
myozenin-1 (MYOZ1), titin cap protein (TCAP), and 
PDZ and LIM domain 3 (PDLIM3), were identified as 
being significantly correlated with bovine skeletal 
muscle based on the bovine microarray data from 47 
experimental conditions using gene expression net-
work [13]. From gene co-expression network analysis, 
Jiang et al. [14] reported that the genetic network was 
associated with 19 economically important beef traits. 
In our recent findings, we identified the relationship 
between the expression of heat shock protein β 1 
(HSPB1) and its regulator genes from gene network 
analysis in intramuscular fat of Hanwoo (Korean cat-
tle) [9]. Moreover, we propose that these genes were 
participated in mitogen-activated protein kinase 
(MAPK) signaling pathway and then inhibited 
through the MAPK-mediated phosphorylation of pe-

roxisome proliferator-activated receptor γ (PPAR γ). 

These studies demonstrated that systemic approach is 
useful for understanding the molecular mechanisms 
associated with phenotypic characteristics in animals. 
Because analyses using model organisms have shown 
that direct and indirect interactions among protein 
pairs are responsible for similar phenotypes [15-16]. 
From the technical point of view, systems approaches 
based on gene network have leaded to the discovery 
of novel biology such as pathway-based biomarkers 
and diagnosis, systematic measurement and model-
ing of genetic interactions, systems biology of stem 
cells [17-18]. Among the systemic approaches, several 
studies have attempted integrate genetic networks 
with networks of physical interaction between pro-
teins. In a recent review, two main classed of the 

network-based methods were described for predict-
ing protein functions: direct methods such as neigh-
borhood counting based method [19], graph theoretic 
methods [20], weighted function [21]. Liu et al. (2011) 
also used a systemic integrative approach to analysis 
genetic interactions extracted from gene expression 
and genome wide association (GWAS) data in ob-
structive sleep apnea (OSA) and constructed protein 
interaction networks [22]. The integrated analysis of 
mRNA expression, protein-protein interaction (PPI) 
network can provide a novel approach for combining 
data from disparate sources to identify causal genes 
and sub-pathways. 

Here we report the result PPI network analysis 
of marbling-related genes and experimental evidence 
confirming that highly connected genes (hubs) are 
significantly different between high- and 
low-marbled groups in bovine. The object of this 
study is to identify candidate genes and their poten-
tial relationship in a PPI network in m.longissimus 
with a wide range of marbling phenotypes. The re-
sults also suggest likely biological pathways and reg-
ulatory elements of marbling-related genes. 

MATERIALS AND METHODS 

The analysis involved three main steps: (1) 
finding candidate genes associated with marbling 
score from the literature using the MedScan program 
database and PPI information to construct a PPI net-
work related to the “marbling score” trait, (2) ana-
lyzing the network topology and functional enrich-
ment, and (3) confirming gene expression results for 
hub genes using quantitative reverse-transcription 
PCR (qRT-PCR). 

Identification of candidate genes and con-

struction of the PPI network 

To obtain a systemic view of candidate genes 
associated with marbling score, we searched the lit-
erature using MedScan [23] software (Ariadne Ge-
nomics, Rockville, MD, USA). The MedScan program 
is a natural processing language engine with da-
ta-mining algorithms that automatically extract bio-
logical information from literature in the PubMed 
database. To check the accuracy, we manually con-
firmed whether these genes are associated with the 
marbling trait. Additional File 1: Supplementary Data 
1 presents evidence of the relationships between 
genes and the marbling trait from the literature. The 
PPI network for marbling was constructed from the 
proteins extracted by the data-mining algorithms. We 
obtained PPI between candidate proteins as links, 
which were determined from the Human Protein 
Reference Database (HPRD, Release 9 version) [24]. 
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Although the database has been created from human 
protein information, we used the PPI information to 
construct our bovine network because the functions of 
proteins are closely conserved among species.  

Because biological functions are carried out from 
stably or transiently related groups of proteins, we 
reasoned that interactions in potential functional rela-
tionships have higher confidence than others. We de-
termined two types of PPI network, a core network 
and an extended network. We constructed a core 
network consisting of a set of genes as the seed genes 
and the connections between these genes; the genes 
were extracted by the MedScan text-mining algo-
rithm. We also found additional genes that may also 
be involved in the network via the extended network. 
The extended network consisted of not only candidate 
proteins associated with the marbling trait but also 
interacting proteins. This criterion has been used to 
identify genes related to complex traits or diseases 
[25-26]. 

Network topology analysis 

To characterize the overall network topology, we 
used the node degree (or connectivity), betweenness 
centrality (BC), edge BC, and closeness centrality (CC) 
[26]. The node degree is the number of connections or 
edges the node has to other nodes. The degree dis-
tribution of a network has a generalized power-law 
form p(k) ~ k-r, which is the defining property of a 
scale-free network [27]. The genes of nodes highly 
connected to nodes with few connections (hubs) play 
an important role as a local property in a network [28]. 
A node with high BC has great influence over what 
flows in the network. BC may play a major role as a 
global property since it is a useful indicator for de-
tecting bottlenecks in a network. For node k, BC is the 
fraction of the number of shortest paths that pass 
through each node [29] and is defined as 

 ( )  ∑     ( )    ∑
    
 

    
   , 

Where gi→j is the number of shortest geodesic 
paths from node i to node j, and gi→j is the number of 
geodesic paths among gi→j from node i to node j that 
pass through node k. We calculated BC as a global 
property according to all nodes in a network. Edge BC 
is defined in the same way as BC, where an edge is 
central if it is included in many of the shortest paths 
connected to nodes. CC uses information about the 
average shortest distance to other nodes, which is 
calculated for a node as 1/average distance to all 
other nodes. Genes with high CC have the ability to 
contact any node in the network in the shortest possi-
ble path. In addition, the CC describes the connect-

edness of a node in undirected networks. A node that 
is connected by a lot of short paths to other nodes can 
be interpreted as relatively autonomous in opposite to 
all nodes that are less connected by short paths. The 
CC can calculate the geodesic distance of every node 
to every other node is computed. From the results of 
the network topology analysis, we selected 
high-degree nodes and high-centrality (BC and CC) 
nodes as key drivers that are most associated with our 
trait of interest in the network. In the simulation of 
attack tolerance of network, when hub nodes were 
attacked, the scale-free network was broken into 
many isolated fragments. The attack performed re-
moving the nodes with the highest number of edges. 
After removing large degree nodes, we checked the 
change of the number of clusters and the isolated 
fragments. 

Pathway analysis based on the Gene Ontology 

and Kyoto Encyclopedia of Genes and Ge-

nomes 

We performed functional enrichment analysis 
against 1,090 genes of the extended network that were 
associated with marbling score enrichment in the 
Gene Ontology and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway terms using the Database 
for Annotation Visualization and Integrated Discov-
ery (DAVID) tool (http://david.abcc.ncifcrf.gov/). 
The functional relationship of our genes of interest 
was used in the Pathway Studio software (Stratagene, 
La Jolla, CA, USA) [30]. We constructed gene 
co-annotation network based on the significant terms 
in the biological processes of GO using nodes of the 
core network. The significant GO terms identified 
from the DAVID tool. The p-values were computed 
by a modified Fisher‟s exact test. The genes were an-

alyzed for overrepresented (p ≤ 0.05) categories based 

on Gene Ontology or KEGG data. We defined an edge 
as a functional linkage that is co-annotated to a Bio-
logical Process GO term (i.e., more than two genes are 
annotated to the GO term). We also determined the 
number of genes sharing the same GO terms. We also 
examined the effect of regulations (positive, negative, 
and unknown) in only the core network using Path-
way Studio, because of its limited processing capacity, 
and constructed the biological integrated network. 

Confirmation of gene expression results by 

qRT-PCR 

We determined whether any associations existed 
between expression levels and intramuscular fat con-
tent in the longissimus tissue of Korean cattle 
(Hanwoo). Twelve steers each from a low-marbled 
group (9.54 ± 1.35%) and a high-marbled group (20.84 
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± 1.52%) were used in this study for qRT-PCR and 
statistical analyses (Table 2). Total RNA was prepared 
from each tissue sample (100 mg) with TRIzol reagent 
(Invitrogen Life Technologies, Carlsbad, CA, USA) 
and purified using an RNeasy MinElute Clean-up Kit 
(Qiagen, Valencia, CA, USA). RNA concentration was 
measured with a NanoDrop ND-1000 spectropho-
tometer (Thermo Scientific, Waltham, MA, USA). 
RNA purity (A260/A280) was over 1.90. For cDNA 
synthesis, 2 µg RNA was reverse transcribed in a 20 µl 
reaction volume using random primers (Promega, 
Madison, WI, USA) and reverse transcriptase (Su-
perScript II Reverse Transcriptase; Invitrogen Life 
Technologies). Reactions were incubated at 65°C for 5 
min, 42°C for 50 min, and then 70°C for 15 min to in-
activate the reverse transcriptase. qRT-PCR was per-
formed using a 2× Power SYBR Green PCR Master 
mix (Applied Biosystems, Foster City, CA, USA) with 
a 7500 Real Time PCR system (Applied Biosystems) 
using 10 pM of each primer. PCR was run for 2 min at 
50°C and 10 min at 95°C, followed by 40 cycles at 95°C 
for 10 s and then 60°C for 1 min. Following amplifica-
tion, a melting curve analysis was performed to verify 
the specificity of the reactions. The endpoint used in 
the qRT-PCR quantification, Ct, was defined as the 
PCR threshold cycle number. To determine major 
patterns in the gene expression data, we performed 
principal component analysis (PCA) for the nodes 
with large degree and BC. A regression model was 
also used to examine the association between gene 
expression value and intramuscular fat content using 

the „lm‟ function in R. This produced the following 
equation:  

IMFij = μ + Expressioni + Ageij + residualij, 

where IMFij is the intramuscular fat content of 
each animal, μ is an overall mean, Expressioni is a 
normalized gene expression value, and Ageij is 
slaughtering age in months, which was included as a 
covariate; the mRNA level of the ß-actin, ribosomal 
protein, large, P0 (RPLP0), which are well-known as 
housekeeping genes, was also introduced as a covari-
ate [31].  

RESULTS AND DISCUSSION 

Topology analysis of the PPI network associ-

ated with bovine marbling  

We extracted 121 genes associated with marbling 
from MedScan results and constructed the core net-
work composed of 69 isolated nodes and 52 nodes in 
eight clusters, with the largest cluster containing 21 
nodes. The clustered 52 nodes were linked via 61 PPIs, 
corresponding to an effective mean degree of 2.34. 
Degree is the number of nearest neighbors of a node, 
and the effective mean degree is the average degree of 
all nodes except isolated nodes. The extended net-
work consisted of 1,090 nodes and 1,517 edges, with a 
mean degree of 2.78. The network comprised 16 clus-
ters, including a single giant cluster that contained 
1,026 (94%) nodes. An overview of the core and ex-
tended PPI networks is shown in Figure 1. 

 

Table 1. Summary statistics of tissue sample for gene expression analysis 

Group Animal Age 
(month) 

IMF (%) Group Animal Age  
(month) 

IMF (%) 

Low 509 26 7.11 High 508 26 27.97 

537 27 6.02 582 31 18.94 

539 26 11.56 603 31 18.3 

543 27 6.6 648 29 20.78 

590 27 12.6 652 29 17.89 

706 28 13.37 685 29 21.2 

 

Table 2. Functional enrichment analysis using KEGG pathway terms from 121 genes in the core network. 

Pathway terms Genes Fold 
Enrichment 

P-value 

bta03320:PPAR signaling pathway FABP7,FABP3,ADIPOQ,NR1H3,LPL, 
FABP4,FABP6,FABP5,PPARG,SCD 

13.65395 2.47E-08 

bta04080:Neuroactive ligand-receptor interaction LEP,UTS2R,ADRB3,PRL,ADRB2,S1PR1, 
MC4R, ADRB1,GHR 

3.444909 0.00357 

bta04920:Adipocytokine signaling pathway LEP,NPY,ADIPOQ,TNF,POMC 7.260435 0.00441 

bta05216:Thyroid cancer CTNNB1,CCND1,PPARG 10.55556 0.03114 

bta05414:Dilated cardiomyopathy TNF,DES,IGF1,ADRB1 4.752285 0.04892 
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Figure 1. The topological view of the marbling PPI network. (A) The extended PPI network (B) The core network. 

The circle and line indicate node and edge. The size of node indicates degree that is the number of connections or edges the 

node has to other nodes.The graph rendering software is Pajek program [60]. 

 
We examined whether both the core and ex-

tended networks followed a power-law distribution 
with an exponent using log((p(k)) and log(k), i.e., the 
model fitting index, R2, of the linear module that re-
gresses log((p(k)) and log(k). This plot between 
log10(p(k)) and log10(k) showed that the network fol-
lowed a scale-free topology. The exponent of the ex-
tended network was 3 (standard error = 0.04, R 2= 
0.92) and that of the core network was 2.1 (standard 
error = 0.13, R 2= 0.92). The degree exponent r is usu-

ally in the range 2 ≤ r ≤ 3 in scale-free networks such 

as the internet, human collaboration networks, or 
metabolic networks [32]. Therefore, our networks 
have scale-free topology like the other biological 
networks. The core network was more fitted to the 
scale-free topology than the extended network. The 
degree-rank plot approximates power law, repre-
senting a high diversity of node degrees, with no 
typical node in the network for use in indicating the 
rest of the nodes [33]. The network transivity (clus-
tering) can be indicated by the clustering coefficient, 
which is the ratio of the number of the actual connec-
tions between the neighbors of the node to the num-
ber of possible connections between them [34]. In 
other words, the clustering coefficient (C) determines 
how close the neighborhood of a node is to being part 
of a clique. On average, the core network had higher C 
(C = 0.15) than the extended network (C = 0.05). We 
found that the direct relationship among genes has a 

tight neighborhood, which provide evidence that the 
result can be important for predicting the biological 
significance of a gene. Error tolerance was examined 
based on the response of the scale-free network to 
random fragmentation [35]. To examine attack toler-
ance in the extended network, we removed the 10 
largest degree nodes (about 1%) among all nodes. As 
a result, the largest cluster with 1,026 nodes broke into 
405 fragments, among which the largest contained 
only 621 nodes. 

Key nodes of the PPI network of bovine mar-

bling  

Highly connected nodes are statistically more 
significant in a scale-free network than in a random 
graph. Most biological networks are characterized by 
a small number of highly connected nodes, while 
most of the other nodes have few connections [28]. 
The highly connected nodes act as hubs that mediate 
interactions between other nodes in the network and 
have an important role in constructing the network. In 
this study, 5% of the total node set of the network was 
used as the critical point of high-degree and -BC 
nodes. Of 1,090 total nodes, 55 nodes were selected as 
high degree nodes. The selected key nodes are also 
about 5% of the largest connected cluster of network. 
Catenin beta 1 (CTNNB1) was the largest hub gene in 
the extended network. The role of CTNNB1 is induc-
tion of the MAPK Kinase (MAPKK) cascade and Wnt 
receptor signaling pathway through β-catenin. Be-
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ta-catenin is the 88-kDa product of the CTNNB1 gene. 
Wnts can inhibit adipocyte differentiation through 
both β-catenin-dependent and β-catenin-independent 
mechanisms [36]. Beta-catenin plays a major role as a 
transcriptional coactivator in the Wnt/β-catenin sig-
naling pathway. CTNNB1 interacted with 135 pro-
teins in the extended network; its linked proteins were 
enriched functions in adherens junctions (p = 9.7e-18), 
Wnt signaling pathway (p = 4.4e-9), TGF-beta signal-
ing pathway (p = 8.4e-4), insulin signaling pathway (p 
= 6.3e-3), and MAPK signaling pathway (p = 3.3e-2) 
related to the adipogenesis. The second hub gene was 
actin, alpha 1 skeletal muscle (ACTA1), which is in-
volved in muscle contraction, skeletal muscle fiber 
development/adaptation, and muscle thin filament 
assembly and is downregulated in pre-adipogenesis 
as a differentially expressed gene (DEG) [37]. Intra-
muscular fat is accumulated from perimysial connec-
tive tissue surrounding the myofiber bundles. ACTA1 
interacted with 91 proteins that have statistically en-
riched pathway terms, such as regulation of actin cy-
toskeleton (p = 1.6e-5), vascular smooth muscle con-
traction (p = 0.012), and neurotrophin signaling 
pathway (p = 0.017). Neurotrophin signaling is con-
trolled by connecting some intracellular signaling 
cascades, including the MAPK pathway, PI-3 kinase 
pathway, and Phospholipase C (PLC) pathway. It is 
not clear whether ACTA1 is a major factor in marbling 
traits, but it participated as a key node for 
gene-related muscle-specific adipogenesis in the 
network. 

The BC is an indicator of a global central node. 
The effect of removing nodes with large BC values is 
similar to that of removing hub nodes because large 
BC nodes are correlated with hub nodes [38]. How-
ever, large BC nodes are not hub nodes; they imply 
that a site is relatively central between all other sites. 
This means that such sites are advantageously located 
to act as intermediaries. Therefore, we investigated 
communication between nodes and confirmed that 
hub and large-BC nodes are located in the topological 
center of the network by calculating the CC for the 
whole network. As well as hub proteins, there are five 
interesting protein nodes that may or may not be 
important in the core network, but which are large-BC 
nodes in the extended network: Casein kinase 2, alpha 
1 polypeptide (CSNK2A1), Protein kinase C, alpha 
(PRKCA), Retinoblastoma 1 (RB1), V-src sarcoma 
(Schmidt-Ruppin A-2) viral (SRC), and Estrogen re-
ceptor alpha (ESR1) (Additional File 2: Supplemen-
tary Data 2). CSNK2A1 is involved in Wnt receptor 
signaling as a positive mediator and encoded casein 
kinase II (Ck2) with two isoforms: Ck2a and Ck2a‟ 
[39]. The Wnt signaling pathway inhibits adipogene-

sis by preventing the induction of the key adipogenic 
transcription factors, C/EBPα and proxisome prolif-
erator-activated receptor γ (PPARγ) [40]. This possible 
player is involved in the connection between mar-
bling and the adipocyte phenotype within the Wnt 
signaling pathway among many metabolic pathways 
in adipocytes that could contribute to the variation of 
intramuscular fat (IMF) content. PRKCA plays a role 
in the negative regulation of the insulin receptor sig-
naling pathway and regulation of muscle contraction. 
Insulin sensitivity is associated with the accumulation 
of IMF and stimulates proliferation of pre-adipocytes 
and muscle glucose oxidation [41]. RB1 regulates lipid 
kinase activity and striated muscle cell differentiation 
and is a known tumor suppressor gene. It is upregu-
lated in muscle differentiation with MyoD [42] as an 
essential factor in assisting the execution of the myo-
genic program [43]. SRC is known to factor in the 
positive regulation of the insulin receptor signaling 
pathway in contrast to PRKCA and interacts with 
genes associated with adipogenesis such as Retinoid X 
receptor alpha (RXRA), Adrenergic beta-2-receptor 
(ADRB2), and Adrenergic beta-3- receptor (ADRB3). 
ADRB2 has a role of positive regulation of skeletal 
muscle growth and activation of MAPK activity. 
ADRB3 is involved in positive regulation of the 
MAPKKK cascade. MAP kinases have an inhibitory 
effect on adipogenesis that can phosphorylate PPARγ 
and its heterodimerization partner RXR, leading to 
negative regulation of adipocyte differentiation [44]. 
ESR1 has not been reported to have any direct rela-
tionship in adipocyte cell development, although type 
II diabetes and atherosclerosis have been related to 
polymorphism of ESR1 [45-46]. Lkhagvadorj et al. [47] 
suggested that ESR1 may have served as a regulator 
to change adipocyte cell-to-cell interaction in the ho-
meostatic mechanism in a microarray experiment. 
Using Pathway Studio, we also investigated which 
biological functions were enriched against those 
linked-proteins. We found that most of the connected 
proteins appeared to interact with the large degree 
nodes or nodes in the core network. In the enriched 
biological functions shown in this analysis, the inter-
acted proteins were identified in multiple pathways, 
such as adipocytokine, insulin, and MAPK signaling. 
These results agree with previous findings of differ-
entially expressed genes playing a role in the 
re-differentiating bovine pre-adipocytes into mature 
adipocytes by several biological pathways such as 
PPAR, insulin, adipocytokine, or MAPK signaling [48]. 
In particular, the functional enrichment analysis 
showed adipocytokine signaling to be commonly en-
riched. These are not central proteins in the core net-
work or the extended network. However, they are 
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important in communication and connection between 
both well-known and unknown proteins. PPARs lead 
to inductions of several downstream biological 

pathways, such as lipid metabolism, adipocyte 

differentiation, and gluconeogenesis. Genes with a 

large BC may contribute to the cooperation with the 
hub genes in other pathways for fat development and 
metabolism underlying the PPAR pathway. These 
genes may be useful for identifying candidate genes 
related to complex traits and should be investigated 
further.  

Additional File 2: Supplementary Data 3 shows 
the integrated biological network between interaction 
partners within 121 genes, including PPI information 
from our analysis and the various types of regulation 
using Pathway Studio software. In the PPI interaction 
result, nuclear receptor coactivator 6 (NCOA6) was 
the hub gene with the largest degree in the core net-
work and involved the following genes: VDR, RXRA, 
RORC, RARA, PPARγ, NR1H3, NR1H2, GHR, and 
C/EPBα. NCOA6, a variation of retinoic acid recep-
tor-related orphan receptor c (RORC), is significantly 
associated with intramuscular fat, marbling score [49], 
and fatness [50]. In our results, insulin (INS) seemed 
to be a mediator with a large BC rather than a hub 
gene with a large degree in the extended and core PPI 
networks. However, INS had a node with the most 
connections within the integrated network, PPI, and 
regulations (Additional File 2: Supplementary Data 3). 
We assumed that INS may have a global impact from 
a topological point of view as a regulator through 
various biological pathways associated with the mar-
bling trait. INS has relationships between adipogenic 
(fat cell) activity in the blood serum and marbling 
performance in beef cattle [51]. It participates in var-
ious pathways, such as positive regulation of the in-
sulin signaling pathway, negative regulation of the 
fatty acids metabolic process, activation of MAPK 
activity, and fatty acid homeostasis. INS stimulates a 
wide range of mechanisms, including glucose utiliza-
tion and synthesis of protein and lipid, and inhibits 
gluconeogenesis, proteolysis, and lipolysis  

To address functional associations between gene 
products, we constructed a gene-co annotation net-
work based on the significant terms in the biological 
processes of Gene Ontology (GO) using 121 nodes of 
the core network (Additional File 2: Supplementary 
Data 4). We defined an edge as a functional linkage 
that is co-annotated to a Biological Process GO term 
(i.e., more than two genes are annotated to the GO 
term). In this evaluation, the genes were skewed to-
ward 59 biological processes. The large GO terms 
shared by two processes were positive regulation of 

biological processes (GO:0048518, p = 7.3e-13), regu-
lation of cellular processes (GO:0050794, p = 2.3e-4), 
regulation of metabolic processes (GO:0019222 , p = 
2.5e-7), and regulation of biological processes (p = 
1.3e-5). The genes in the system with a wide range of 
regulation (e.g., from carbohydrates, fats, and pro-
teins in food to energy, or other physiological pro-
cesses) were thus considered to identify a number of 
genes that determine marbling.  

Experimental validation and statistical analysis 

using PCA and a regression model 

To further confirm gene expressions and rela-
tionships, 20 genes were selected after network to-
pology analysis based on their degree size (≥ 25). Then 
qRT-PCR was performed between divergent groups, 
which were grouped by marbling scores. Table 3 
shows gene expression results of 20 genes. The gene 
expression values (log2-transformed) were analyzed 
by regression analysis and principal component 
analysis (PCA). qRT-PCR showed that PPARγ, 
C/EBPα, RUNX1T1, RXRA, CAMK2A genes had 
higher expression in the high-marbled group than in 
the low-marbled group. Expression values of five 
genes (PPARγ, C/EBPα, RUNX1T1, RXRA, 
CAMK2A) changed two-fold between groups. The 
expression levels of PPARγ, RUNX1T1, and C/EBPα 
genes (which are involved as a transcriptional factor 
for adipogenesis) in the high-marbled group, were 
approximately 4.0, 3.8, and 3.5 times higher than in 
the low-marbled group, respectively. 

Using the R statistical package, we also con-
ducted a linear regression analysis to examine the 
association between IMF contents and expression of 
gene level. Five genes were shown to be significant for 
IMF content. Of the five genes, PPARγ (p = 0.008), 
C/EBPα (p = 0.01), and RUNX1T1 (p = 0.013) were 
significantly upregulated according to IMF content 
increase, and RXRA (p = 0.001) and CAMK2A (p = 
0.01) were negatively related to changes in IMF con-
tent (Figure 2(B)). Retinoid X receptor alpha (RXRA) is 
a strong suppressor of adipocyte differentiation from 
interaction with vitamin A [52]. Tourniaire et al. [53] 
reported that retinal can also be oxidized to retinoic 
acid (RA), the most active form of vitamin A via liga-
tion to retinoid receptors RARs and RXRs. RA inhibits 
C/EBP proteins that suppress induction of down-
stream target genes, such as PPARγ. RXR also acts as 
a heterodimerization partner of PPARγ and then in-
hibits adipogenesis by MAP kinases. Core binding 
factor, runt domain, alpha subunit 2, translocated to 1 
(CBFA2T1) is a protein that is encoded by the 
RUNX1T1 gene and is known to affect lipid metabo-
lism in other species [54]. Its polymorphism was 
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found to have significant association with ultrasound 
marbling score in beef cattle [55]. Calci-
um/calmodulin-dependent protein kinase II alpha 
(CAMK2A) contributes to myogenesis [56] and can be 
a candidate gene for activity-dependent skeletal mus-
cle adaptation [57]. From our results, PPARγ and 
C/EBPα are the best known key regulators in the 

PPAR signaling pathway associated with adipogene-
sis and marbling trait in beef cattle [3, 58-59]. How-
ever, RXRA, CAM2KA, and RUNX1T1 have not been 
reported previously in bovine gene expression studies 
on marbling. These genes may have important roles in 
the biological interaction associated with the lipid and 
muscle metabolism in the marbling trait. 

 

 

Figure 2. Analysis results of gene expression data by PCA and regression model. (A) Biplot of the first two 

principal components. The symbol of L(left) and H(right) represent low- and high-marbled samples in the plot, respectively. 

(B) Regression analysis between expression level (x-axis) and intramuscular fat content (%, y-axis) for each sample. 

 

Table 3. qRT-PCR results of 20 genes with high degrees in the network. 

Gene symbol Gene description expressiona p-valueb 

Low High  

C/EBPα CCAAT/enhancer binding protein (C/EBP), alpha 0.23 0.63 0.0102* 

PPARγ proxisome proliferator-activated receptor γ 0.21 0.66 0.0080** 

RUNX1T1 runt-related transcription factor 1; translocated to, 1 (cyclin D-related) 0.22 0.74 0.0132* 

RXRA retinoid X receptor alpha 0.67 0.40 0.0018** 

CAMK2A calcium/calmodulin-dependent protein kinase II alpha  1.56 0.43 0.0109* 
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Gene symbol Gene description expressiona p-valueb 

Low High  

CTNNB1 cadherin-associated protein beta 1 1.43 0.81 0.7519 

ACTA1 actin, alpha 1 skeletal muscle 1.49 0.87 0.7630 

SP1 Sp1 transcription factor 1.72 0.88 0.9625 

MAPK14 mitogen-activated protein kinase 14 1.90 0.99 0.7780 

RARA retinoic acid receptor, alpha 1.58 0.85 0.6370 

C/EBPβ CCAAT/enhancer binding protein (C/EBP), beta 0.69 0.66 0.5725 

MYOD1 myogenic differentiation 1 1.45 0.64 0.3458 

CAPN1 calpain 1, (mu/I) large subunit 1.17 1.09 0.0678 

CCND1 cyclin D1 2.02 1.21 0.5590 

NCOA6 nuclear receptor coactivator 6 1.92 1.30 0.7765 

FAS Fas (TNF receptor superfamily, member 6) 1.16 0.61 0.9459 

PRNP prion protein 1.74 0.96 0.7010 

VDR vitamin D (1,25- dihydroxyvitamin D3) receptor 2.24 1.59 0.7337 

RUNX1 runt-related transcription factor 1 1.11 1.71 0.5674 

ADRB2 adrenergic beta-2-receptor 1.05 1.28 0.8550 

aExpression shown as the mean of normalized expression value of each gene within low- and high-marbled group. bp-value was calculated 
using the regression analysis 

 

 
 
Principal component analysis (PCA) is a useful 

tool for data simplification and visualization of rela-
tionships. Therefore, we applied PCA to the gene ex-
pression data set. The relationships among these 
genes were illustrated by principal component (PC) 
analyses. The first two principal components ex-
plained approximately 90.4% of the total variance, 
allowing most of the information to be visualized in 
two dimensions. Principal component analysis indi-
cated that the most important pattern of gene expres-
sion (PC1, accounting for 78.7% of variance in the data) 
was associated with differences in intramuscular fat. 
Individual samples were clearly partitioned into two 
separate groups, high- and low-marbled group based 
on PC1. In this analysis, the first PC illustrated the 
link among RUNX1T1, PPARγ, and C/EBPα genes, 
which have a positive relationship by PC1 (Figure 
2A). On the other hand, CAMK2A and RXRA genes 
have a negative relationship against PC1. Our ex-
perimental results suggest that these genes warrant 
further investigation as metabolic indicators of mar-
bling in bovine.  

In this study, we systematically examined rela-
tionships between the importance of genes and sev-
eral of their topological characteristics in PPI net-
works. The goal of PPI study is typically to identify 
candidate genes associated with human diseases or 
phenotypes. We propose that the network analysis 
based on PPI information is also useful for identifying 
causal genes associated with economic traits of ani-
mals. This study provides information on individual 
protein functions and those directly associated with a 

functional class or process. Furthermore, candidate 
genes based on interaction relationships can be iden-
tified by epistatic interaction in a genome-wide study 
using the SNPs associated with the gene set to obtain 
further information regarding the physiological biol-
ogy of a given trait or disease.  
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