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Abstract 

Objective: The WNT signaling pathway effector gene TCF7L2 has been associated with an 
increased risk of type 2 diabetes. However, it remains unclear how this gene affects diabetic 
pathogenesis. The goal of this study was to investigate the effects of Tcf7l2 haploinsufficiency 
on metabolic phenotypes in mice.  

Experimental Design: Tcf7l2 knockout (Tcf7l-/-) mice were generated. Because of the early 
mortality of Tcf7l2-/- mice, we characterized the metabolic phenotypes of heterozygous 
Tcf7l2+/- mice in comparison to the wild-type controls. The mice were fed a normal chow diet 
or a high fat diet (HFD) for 9 weeks.  

Results: The Tcf7l2+/- mice showed significant differences from the wild-type mice with re-
gards to body weight, fasting glucose and insulin levels. Tcf7l2+/- mice displayed improved 
glucose tolerance. In the liver of Tcf7l2+/- mice fed on the HFD, reduced lipogenesis and 
hepatic triglyceride levels were observed when compared with those of wild-type mice. 
Furthermore, the Tcf7l2+/- mice fed on the HFD exhibited decreased peripheral fat deposition. 
Immunohistochemistry in mouse pancreatic islets showed that endogenous expression of 
Tcf7l2 was upregulated in the wild-type mice, but not in the Tcf7l2+/- mice, after feeding with 
the HFD. However, the haploinsufficiency of Tcf7l2 in mouse pancreatic islets resulted in little 
changes in glucose-stimulated insulin secretion.  

Conclusion: These results suggest that decreased expression of Tcf7l2 confers reduction of 
diabetic susceptibility in mice via regulation on the metabolism of glucose and lipid. 

Key words: Tcf7l2, diabetes, high fat diet, glucose tolerance, gluconeogenesis, hepatic steatosis. 

Introduction 

Transcription factor 7-like 2 (TCF7L2, formerly 
called TCF4) is a member of the T-cell-specific 
high-mobility group (HMG) box-containing family of 
transcription factors that plays an important role in 
downstream signals of the canonical morphogenic 
wingless-type MMTV integration site family (WNT) 
pathway [1]. The WNT signaling pathway has been 
well known to be associated with the developmental 
pathways such as embryogenesis including adipo-
genesis and pancreatic islet development, and tu-

morigenesis [2-5]. Activation of this pathway leads to 
accumulation of β-catenin in the nucleus, which in-
teracts with the T-cell factor/lymphoid enhancer fac-
tor (TCF/LEF) family of transcription factors to reg-
ulate the transcription of WNT target genes, many of 
which are associated with the cell proliferation and 
cell fate decision [1,6].  

Besides the developmental role, several lines of 
evidence suggest the role of WNT signaling pathway 
in the etiology of metabolic disorders [7-10]. Particu-
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larly, single nucleotide polymorphisms (SNPs) in 
human TCF7L2 gene are known to be strongly asso-
ciated with an increased risk of type 2 diabetes 
through the extensive genome-wide association 
studies in multiple ethnic populations [11-13]. TCF7L2 
variants have been associated with an impaired β-cell 
function including the impaired insulin secretion and 
processing, an increased insulin resistance, and hy-
perglycemia [14-16]. Yet, the mechanisms by which 
TCF7L2 gene function and its genetic polymorphisms 
affect the susceptibility to type 2 diabetes remain elu-
sive. There are conflicting reports regarding the role 
of TCF7L2 expression in increase in diabetes risk ver-
sus resistance to diabetes. Several reports have sug-
gested that TCF7L2 expression is upregulated in the 
pancreatic islet from diabetic subjects and negatively 
correlated with insulin secretion [16-18]. In other 
context, however, TCF7L2 has been considered to be 
necessary in regulation of β-cell survival and function 
in human pancreatic islets, and a decreased TCF7L2 
protein expression has been suggested to be respon-
sible for the reduced islet insulin secretion in response 
to glucose through impaired GLP-1 signaling [19, 20]. 

To understand the mechanism underlying how 
TCF7L2 function change contributes to susceptibility 
to metabolic derangements and diabetes, we analyzed 
the metabolic phenotypes of the mice with Tcf7l2 
haploinsufficiency in comparison to the wild-type 
mice. In particular, we sought to demonstrate a role of 
TCF7L2 in the regulation of glucose and lipid metab-
olism. 

Materials and methods 

Generation of Tcf7l2 Knockout Mice 

Tcf7l2 knockout mice (Tcf7l2-/-) were generated 
via the International Knockout Mouse Consortium 
(http://www.knockoutmouse.org). The procedure 
involved the insertion of a LoxP site together with a 
Flippase Recognition Target (FRT) flanked neomycin 
selection cassette within the intron 4 of mouse Tcf7l2 
gene and a single distal LoxP in the intron 5 down-
stream of exon 5 (Figure 1A). The animals used in the 
present study were derived from heterozygous 
Tcf7l2+/- and wild-type C57BL/6 breeding pairs. The 
genotype of all progeny was confirmed by PCR anal-
ysis of DNA extracted from tail biopsies. All proce-
dures were performed in accordance with NIH 
guidelines for animal experimentation, and all ex-
perimental protocols were approved by the Institu-
tional Animal Care and Use Committee (IACUC) of 
the School of Pharmacy, University of Maryland Bal-
timore. Animals were housed 4-5 mice/cage and 
maintained under standard laboratory conditions (21 

 2 C, humidity 60  10% and 12 h / 12 h dark / light 
cycle) with food and water provided ad libitum. All 
animals used in the present study were male mice 
with the same genetic background of C57BL/6. 
Wild-type and Tcf7l2+/- groups were matched for ages 
in all experiments. Mice were fed a normal chow diet 
for 11 weeks or a high-fat diet (HFD) from 13 weeks of 
ages for 9 weeks, which were purchased from Harlan 
Laboratories. The HFD consisted of 45 kcal% fat, 14.8 
kcal% protein and 41 kcal% carbohydrate (4.7 kcal/g), 
whereas normal chow diet contained 18 kcal% fat, 
24% kcal protein, and 58 kcal% carbohydrate (3.1 
kcal/g). For each experiment, animals were brought 
into the experimental room 30 min prior to the ex-
periment in order for them to acclimate to the envi-
ronment. Body weight was determined once a week at 
the same time each week.  

Glucose Tolerance Test and Insulin Meaure-

ment 

Glucose tolerance tests were carried out in the 
mice at 11 weeks of age under a normal chow diet or 
22 weeks of age after 9 weeks on the HFD. Mice were 
fasted overnight, and then intraperitoneally injected 
with 2 g/kg glucose in saline. Blood glucose levels 
were analyzed using a glucometer (TRUEresult, 
HOMEdiagnostics). To measure insulin levels, blood 
was taken by tail bleeding, collected in microcentri-
fuge tubes and placed on ice. Following immediate 
centrifugation at 4°C, serum was separated and stored 
at -80 °C until analysis. Insulin was determined using 
a rat/mouse insulin ELISA kit from Mercodia.  

Primary Mouse Hepatocyte Isolation and 

shRNA Construct for Tcf7l2 Knockdown 

Primary hepatocytes were isolated from 
wild-type and Tcf7l2+/- mice using the standard col-
lagenase method [40]. The cells were plated in Wil-
liams E medium supplemented with 100 U/ml peni-
cillin, 100 μg/ml streptomycin, 0.1% bovine albumin, 
0.1 μM dexamethasone, 2 mM l-glutamine, 1 X ITS 
(100 X Insulin-Transferrin-Selenium; Invitrogen) at a 
density of 1.5 × 105 cells/cm2 on collagen-coated 
6-well plates (BD). After attachment (2–3 hours), 
hepatocytes were maintained in the completed me-
dium with 0.25 mg/ml Matrigel (BD Biosciences) for 
16 hours followed by RNA extraction or regular me-
dium change and lentivirus transduction as described 
below.  

The oligonucleotides encoding a shRNA specific 
for the Tcf7l2 sequence were subcloned into the 
shRNA expression vector pGreen-puro containing the 
H1 promoter (System Bioscience, Mountain View, 
CA). The sense oligonucleotide is: 
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5'-GATCCACTCACACCTCTCATCACGTTTCAAGA
GAACGTGATGAGAGGTGTGAGTTTTTTG-3', and 
the antisense: 5'- AATTCAAAAAACTCACAC 
CTCTCATCACGTTCTCTTGAAACGTGATGAGAG
GTGTGAGTG-3'. For the scramble shRNA, the sense 
oligonucleotide is: 5'-GATCCGAGAGTCAGT 
AAGGATAACATTTCAAGAGAATGTTATCCTTAC
TGACTCTCTTTTTG-3', and the antisense: 
5'-AATTCAAAAAGAGAGTCAGTAAGGATAACAT
TCTCTTGAAATGTTATCCTTACTGACTCTC-3'. The 
successful constructs were verified by sequencing. 
The plasmids were packaged into lentivirus with 
three other packaging plasmids VSV-G, REV and CPG 
(Cell Biolabs Inc., San Diego, CA) in HEK-293LTV 
cells. Mouse primary hepatocytes were transducted 
by the lentivirus containing Tcf7l2 shRNA or scramble 
shRNA for 48 hours followed by RNA extraction.  

Islet Isolation and Measurement of Glucose- 

stimulated Insulin Secretion 

Islets at 11 weeks of age under a normal chow 
diet or after 9 weeks on the HFD were aseptically 
isolated by collagenase digestion of mouse pancreas 
and the glucose-stimulated insulin secretion was 
measured in batch incubations as previously de-
scribed [21].  

Histology 

Mouse liver at 11 weeks of age under a normal 
chow diet or after 9 weeks on the HFD was removed 
and pieces were fixed in 10 % (v/v) neutralized for-
malin solution (Sigma-Aldrich), embedded in paraf-
fin, sectioned at 5 µm, and stained with haematoxylin 
and eosin. For Oil Red O staining, frozen liver tissues 
embedded in O.C.T. compound (Tissue-Tek) were 
used [22]. Stained liver sections were examined under 
a light microscope.  

Immunohistochemistry 

The pancreas from wild-type and Tcf7l2+/- mice 
at 11 weeks of age under a normal chow diet or after 9 
weeks on the HFD were fixed in 10 % (v/v) neutral-
ized formalin solution (Sigma-Aldrich), embedded in 
paraffin and sectioned (5 µm). For immunohisto-
chemical analyses, sections were treated with 0.03% 
H2O2 in methanol for 15 min, the slides were then 
immersed in citrate buffer (0.01 M; pH 6.0) and incu-
bated for 25 min at 90 °C in a steam bath. Slides were 
washed in 1x Tris Buffered Saline with 0.01% 
Tween-20 (TBST) and incubated in blocking solution 
(5% BSA in TBST) for 1 hour at room temperature to 
block non-specific binding. The primary antibodies 
were goat anti-TCF-4 (1:200, Santa Cruz) and donkey 
rabbit anti−insulin antibody (1:200, Santa Cruz). Sec-

tions were incubated in an antibody solution over-
night at 4 °C. The anti-TCF-4 antibody was visualized 
with Alexa Fluor® 568 donkey anti-goat IgG (H+L) 
(Invitrogen); the anti-insulin antibody was detected 
with Alexa Fluor® 488 goat anti-rabbit IgG (H+L). 
The tissue was counterstained lightly with DAPI. 
Digital images of stained sections were captured us-
ing a confocal microscope (Nikon).  

Measurement of Serum and Hepatic 

Triglyeride Content 

Blood from mice that had been food deprived for 
overnight at 11 weeks of age under a normal chow 
diet or after 9 weeks on the HFD was collected by 
cardiac puncture under deep anesthesia and placed 
on ice. Following immediate centrifugation at 4°C, 
serum was separated and stored at -80 °C until analy-
sis for triglycerides. To extract lipids from the liver, 
each piece of tissues was weighed and homogenized 
in 4 ml of chloroform: methanol (2:1; v/v) mixture. 
One milliliter of PBS was then added, and the result-
ing suspension was mixed vigorously for 15 seconds 
then centrifuged at 1,500 g for 10 min at room tem-
perature. Five-hundred microliters of the organic 
phase was transferred into a tube and evaporated 
under nitrogen gas at room temperature. The residue 

was resuspended in 200 l of 10 % Triton X100 in 
methanol. Serum and hepatic triglyceride levels were 
determined by an assay kit obtained from Sig-
ma-Aldrich. 

Quantitative Real-Time Polymerase Chain Reaction. 
Total RNA was extracted from the liver, primary 
hepatocytes, and isolated pancreatic islets of mice 
using TRIzol (Invitrogen, Carlsbad, CA) in accordance 

with the manufacturer’s instruction. Total RNA (2 g) 
was reverse transcribed to a complementary DNA 
with high capability reverse transcript kit (Roche Ap-
plied Science, Indianapolis, IN). Quantitative re-
al-time polymerase chain reaction (qRT-PCR) was 
conducted on an ABI PRISM 7000 sequence detection 
system (Applied Biosystems, Foster City, CA) using 
SYBR Green (Applied Biosystems, Foster City, CA). 
All primers used in the study were designed by the 
software Primer3.0 and as follows: Tcf7l2: 

5-CACAGCTCAAAGCATCAGGA-3 and 

5-CTGCATGTGAAGCTGTCGTT-3; G6pc: 

5-CATCAATCTCCTCTGGGTGGC-3 and 

5-TGTTGCTGTAGTAGTCGGTGTCC-3; Fasn: 

5-AAGGCTGGGCTCTATGGATT-3 and 

5-GGAGTGAGGCTGGGTTGATA-3; Acc2: 

5-CCTGTTGCCCAAGAGAGAG-3 and 

5-ACAGCGGTCAGGTCAAAGTT-3; Cpt1a: 

5-ATGACGGCTATGGTGTTTCC-3 and 

5-GGCTTGTCTCAAGTGCTTCC-3; Acox1: 
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5-TTGGAAACCACTGCCACATA-3 and 

5-GCCAGGACTATCGCATGATT-3; Srebp1c: 

5-TGATGCTACGGGTACACACC-3 and 

5-TTGCGATGTCTCCAGAAGTG-3; Srebp2: 

5-CCAAGGAGAGCCTGTACTGC-3 and 

5-ACTGCTGGAGAATGGTGAGG-3; Acc1: 

5-TGGCAGACCACTATGTTCCA-3 and 

5-GTTCTGGGAGTTTCGGGTTC-3; Scd1: 
5'-CTGACCTGAAAGCCGAGAAG-3' and 
5'-GATGAAGCACATCAGCAGGA-3'. All gene ex-
pression results were normalized to an internal con-
trol with the following primer set: Gapdh: 

5-TCAACGGATTTGGTCGTATTG-3 and 

5-GCTCCTGGAAGATGGTGATG-3. 

Statistical Analysis 

All of the experiments were repeated at least 
twice. All data were expressed as the mean ± standard 
deviation (SD). Statistical analyses were performed 
with the two-tailed Student’s t-test. A P value < 0.05 
was considered statistically significant. 

Results 

Generation of Tcf7l2 Knockout Mice 

To explore the potential in vivo role of TCF7L2 
gene, we generated the mice of which the Tcf7l2 gene 
was disrupted by insertion of a LoxP site together 
with an FRT flanked neomycin selection cassette 
within the intron 4 of mouse Tcf7l2 gene and a single 
distal LoxP in the intron 5 downstream of exon 5 
(Figure 1A), using the “knock-out first strategy” [23]. 
During the breeding, we could not obtain Tcf7l2 ho-
mozygous null mice (Tcf7l2-/-), consistent with pre-
vious reports that Tcf7l2-/- mice died within ~ 24 h of 
birth [24, 25]. We therefore utilized heterozygous 
Tcf7l2+/- mice for the remaining study. To determine 
the Tcf7l2 transcript levels, quantitative RT-PCR was 
performed in isolated islets and livers of mice at 11 
weeks of age. As shown in Figure 1B, there were sig-
nificantly decreases in Tcf7l2 expression up to 55% 
and 45% in the isolated islets and livers, respectively, 
of Tcf7l2+/- mice compared with those of wild-type 
mice. These results indicated that, as expected, the 
insertion of the cassette within Tcf7l2 locus had dis-
rupted the gene locus and led to decrease in Tcf7l2 
mRNA expression in the heterozygotes.  

 

Figure 1. Generation of Tcf7l2 knockout mice. (A) Targeting construct for mouse Tcf7l2 knockout. There is insertion of a LoxP site and 

an FRT flanked neomycin selection cassette within intron 4 and a single distal LoxP in intron 5 downstream of exon 5. Detailed information 

is available from the IKMC web portal (http://www.knockoutmouse.org). (B) qRT-PCR analysis of mouse Tcf7l2 mRNA levels in islets and 

liver from wild-type (+/+, n = 3) and Tcf7l2 +/- (+/-, n = 3) mice at 11 weeks of age. (**) p < 0.01, (***) p < 0.001 compared with the 

wild-type mice. 
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Metabolic Phenotypes of Tcf7l2 Heterozygous 

Mice 

We monitored the body weight of Tcf7l2+/- and 
wild-type mice beginning from the age of 2 weeks. On 
a normal chow diet, there was no significant differ-
ence in body weight between the two genotypes of 
mice until 6 weeks of age. From 6 weeks of age, 
Tcf7l2+/- mice exhibited a significantly less body 
weight than that observed in the wild-type mice 
(Figure 2A). At 11 weeks of age, Tcf7l2+/- mice showed 
12 % less body weight compared with wild-type mice 
(P < 0.001). Whereas the liver mass/body weight ratio 
between Tcf7l2+/- and wild-type mice were not signif-

icantly different, the visceral fat mass/body weight 
ratio decreased in Tcf7l2+/- mice at 11 week old (Figure 
2B and 2C). In addition, we observed that the Tcf7l2+/- 
mice fed with the normal chow diet had reduced lev-
els of fasting glucose and insulin (Figure 2D and 2E), 
but the level in serum triglyceride was not statistically 
significant when compared to wild-type mice (Figure 
4C). Importantly, compared with the wild-type mice, 
Tcf7l2+/- mice showed an improved glucose tolerance 
(Figure 2F). In islets from Tcf7l2+/- mice at 12 weeks 
old, basal- and glucose-stimulated insulin secretion 
did not differ between the wild-type and the Tcf7l2+/- 
mice fed on the normal chow diet (data not shown).  

 

Figure 2. Metabolic characterization of Tcf7l2 +/- mice and wild-type mice on a normal chow diet (NCD). (A) Growth curve for wild-type 

(■, n = 6) and Tcf7l2 +/- (▲, n = 7) mice from 2 to 11 weeks of age. The Tcf7l2 +/- mice had a significantly less body weight than the wild-type 

mice since week 6. (B, C) Percentages of liver and visceral fat weight normalized by body weight in wild-type (+/+, n = 6) and Tcf7l2 +/- (+/-, 

n = 7) mice. (D, E) Fasting blood glucose and serum insulin levels in wild-type (+/+, n = 6) and Tcf7l2 +/- (+/-, n = 7) mice. (F) Intraperitoneal 

glucose tolerance test (IPGTT) curves of wild-type (■, n = 6) and Tcf7l2 +/- (▲, n = 7) mice. Data are shown as mean ± standard deviation 

(SD). (*) p < 0.05, (**) p < 0.01, (***) p < 0.001 compared with the wild-type mice.  
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To determine whether Tcf7l2+/- mice were less 
prone to diabetes than wild-type mice, we fed mice on 
the HFD for 9 weeks. As shown in Figure 3A, 
HFD-fed wild-type mice had a significantly greater 
body weight than Tcf7l2+/- mice, even though the 
body weight gain in both groups were similar 
(wild-type : 73.9 ± 5.4 % vs. Tcf7l2+/- : 73.4 ± 8.0 % ) . 
The food intake was not significantly different be-
tween the two genotypes (Figure 3B). The Tcf7l2+/- 
mice fed with the HFD had significantly less gains of 
liver and fat mass (Figure 3C and 3D). In addition, 
although the HFD caused an elevated levels of fasting 
blood glucose and insulin in both groups, Tcf7l2+/- 

mice displayed significantly lower levels than those 
observed in wild-type mice (Figure 3E and 3F). Dur-
ing glucose tolerance tests in the HFD-fed mice, the 
change of blood glucose levels were also significantly 
different between wild-type and Tcf7l2+/- mice (Figure 
3G). The wild-type mice exhibited an impaired glu-
cose tolerance compared with the Tcf7l2+/-mice. The 
value of area under the glucose response curves in the 
Tcf7l2+/- mice was significantly lower than that in the 
wild-type mice (data not shown). The Tcf7l2+/- mice 
also showed a lower level of serum triglyceride (P < 
0.01, Figure 4C). 

 

Figure 3. Metabolic characteri-

zation of Tcf7l2 +/- mice and 

wild-type mice on a high fat diet 

(HFD). (A) Growth curve for 

wild-type (■, n = 7) and Tcf7l2 +/- 

(▲, n = 6) mice on a HFD from 

the ages of 13 weeks old for 9 

weeks. The Tcf7l2 +/- mice had a 

significantly less body weight than 

the wild-type mice during the 

period of HFD treatment. (B) 

Food intake in wild-type (■, n = 

7) and Tcf7l2 +/- (▲, n = 6) mice 

on a HFD. (C, D) Percentages of 

liver and visceral fat weight 

normalized by body weight in 

wild-type (+/+, n = 7) and Tcf7l2 
+/- (+/-, n = 6). (E, F) Fasting blood 

glucose and serum insulin levels 

in wild-type (+/+, n = 7) and 

Tcf7l2 +/- (+/-, n = 6). (G) Intra-

peritoneal glucose tolerance test 

(IPGTT) curves of wild-type (■, n 

= 7) and Tcf7l2 +/- (▲, n = 6) mice 

on a HFD. Data are shown as 

mean ± SD. (*) p < 0.05, (**) p < 

0.01, (***) p < 0.001 compared 

with the wild-type mice.  
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Figure 4. In vivo effects of Tcf7l2 haploinsufficiency on liver histology, triglycerides and hepatic gene expression in mice. The age of mice 

and feeding duration are described in Materials and Methods. Representative hematoxylin-eosin (A) and Oil Red O (B) stained liver 

sections in wild-type (+/+) and Tcf7l2 +/- (+/-) mice fed on a NCD and a HFD. Scale bars 100 μm. Tcf7l2 +/- groups showed less hepatic fat 

deposits than wild-type groups. (C and D) Serum and hepatic triglyceride contents in wild-type (+/+, n = 4) and Tcf7l2 +/- (+/-, n = 4) mice. 

(E) qRT-PCR analysis of gluconeogenic and lipogenic gene expression in the liver from HFD-fed mice. Data are shown as mean ± SD. (*) 

p < 0.05, (**) p < 0.01 compared with the wild-type mice. (#) p < 0.05, (##) p < 0.01, (###) p < 0.001 compared with the NCD-fed mice.  

 

Regulation of Glucose and Lipid Homeostasis 

The liver contributes to regulate glucose and li-
pid homeostasis through gluconeogenesis and lipo-
genesis [26, 27]. We found that the livers of Tcf7l2+/- 
mice were less pale and fatty as well as smaller than 
those of wild-type mice on the HFD. We histologically 
confirmed the decreased lipid deposition in the liver 
of Tcf7l2+/- mice on the HFD. In contrast to the 

wild-type mice with a remarkable hepatic lipid de-
posit, the Tcf7l2+/- mice had a normal liver histology 
and no steatosis after 9-week HFD (Figure 4A and 4B). 
The levels of triglyceride in the liver and serum were 
consistent with these histological findings (Figure 4C 
and 4D). We also determined gene expression associ-
ated lipid metabolism. While carnitine palmito-
yltransferase 1a (CPT1a encoded by CPT1a) and pe-
roxisomal acyl-coenzyme A oxidase 1 (ACOX1 en-
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coded by ACOX1) are thought to be the rate-limiting 
enzymes of the fatty acid β-oxidation, fatty acid syn-
thase (FAS encoded by FASN) and acetyl-CoA car-
boxylase 2 (ACC-2 encoded by ACC2) are the genes 
associated with de novo lipogenesis [28]. In Tcf7l2+/- 
mice fed with a normal chow diet, there was little or 
no effect on hepatic expression of Fasn, Acc2 and Cpt1a 
but significantly decreased Acox1 expression com-
pared with in wild-type mice. Interestingly, Tcf7l2+/- 
mice fed with a HFD showed increased expressions of 
Cpt1a and Acox1 as well as reduced expressions of 
Fasn and Acc2 (Figure 4E), in line with the histological 
results. However, we did not detect any significant 
differences in the expression of sterol regulatory ele-
ment-binding protein gene 1c (Srebp1c), Srebp2, 
ACC-1, and stearoyl-Coenzyme A desaturase 1 
(Scd-1), which are also critical lipogenic genes, be-
tween the wild-type mice and the Tcf7l2+/- mice. Since 
glucose homeostasis was improved in Tcf7l2+/- mice 
as shown by the IPGTT (Figure 2F and 3F), we also 
determined hepatic gene expression involved gluco-
neogenesis (Figure 4E). Glucose-6-phosphatase 
(G6Pase, which is encoded by G6PC) and phosphoe-
nolpyruvate carboxykinase (PEPCK1, which is en-
coded by PCK1) are thought to be the rate-limiting 
enzymes involved in in hepatic gluconeogenesis [6]. 
On a normal chow diet, Tcf7l2 haploinsufficiency did 
not significantly affect hepatic expression of these 
glucose homeostasis genes. However, on the HFD, 
Tcf7l2+/- mice exhibited a significantly decreased G6pc 
expression, while it showed slightly increased Pck1 
expression (Figure 4E). The increased Pck1 expression 
seemed contradictory to the data of decreased blood 

glucose (Figure 3E) and improved glucose intolerance 
(Figure 3G). To ensure this was not a false result, we 
knocked down Tcf7l2 expression in the primary 
hepatocytes isolated from wild-type mice and meas-
ured the expression of G6pc and Pck1. The shRNA via 
lentivirus achieved more than 70% of Tcf7l2 knock-
down efficiency in the mouse primary hepatocytes 
(data not shown). We observed that the Tcf7l2 
knockdown caused more than 70% decrease in G6pc 
expression (p < 0.001), while it resulted in approxi-
mately 1-fold increase in Pck1 expression (p < 0.05) 
(data not shown).  

High-fat Diet Regulates Tcf7l2 Expression in a 

Tissue-specific Manner 

Several literatures have reported TCF7L2 ex-
pression in pancreatic islet from type 2 diabetic pa-
tients [16-18]. To determine the Tcf7l2 expression in 
the mice fed with either normal chow diet or HFD, 
immunohistochemistry was carried out. Triple stain-
ing for TCF7L2, insulin and DAPI revealed localiza-
tion of TCF7L2 in β-cells of pancreatic islet. As shown 
in Figure 5A, Tcf7l2 was almost undetectable in the 
sections of pancreatic islet from wild-type and 
Tcf7l2+/- mice fed with the normal chow diet. In con-
trast, TCF7L2 expression was upregulated in the 
wild-type mice, but not much in the Tcf7l2+/- mice fed 
the HFD (Figure 5B). We also determined the Tcf7l2 
expression in the liver from wild-type and Tcf7l2+/- 
mice. Interestingly, Tcf7l2 expression was 
down-regulated in the liver when the mice were fed 
on the HFD (Figure 6). 

 

Figure 5. Expression of Tcf7l2 in mouse pancreatic sections from wild-type (+/+) and Tcf7l2 +/- (+/-) mice fed on a NCD (A) and a HFD 

(B). Scale bars 50 μm. The Immunohistochemistry was conducted as described in the Materials and Methods. 
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Figure 6. Expression of mouse Tcf7l2 in the liver from wild-type (+/+, n = 3) and Tcf7l2 +/- (+/-, n = 3) mice fed on either NCD or HFD. 

The age of mice and feeding duration are described in the Materials and Methods. (**) p < 0.01 compared with the wild-type mice. (#) p < 

0.05, (##) p < 0.01 compared with the NCD-fed mice. 

 

Discussion 

In the present study, we described that Tcf7l2 
haploinsufficiency had an effect on glucose- and lipid 
homeostasis in vivo, suggesting the role of TCF7L2 in 
metabolic regulation and type 2 diabetic susceptibil-
ity. We showed that global reduction of Tcf7l2 ex-
pression led to not only a decrease in the level of cir-
culating glucose but also an improved glucose toler-
ance (Figure 2 and 3). These phenotypes are consistent 
with those in a recent report [25], where exon 11 of 
mouse Tcf7l2 was disrupted. Although a detailed 
profile of gene expression alteration following Tcf7l2 
expression change has yet to be characterized to de-
fine the effect of Tcf7l2 on hepatic gluconeogenesis, 
our observation of metabolic phenotypes might be at 
least partially due to a decreased hepatic glucose 
production in the Tcf7l2+/- mice. We detected a sig-
nificant decrease in the expression of G6pc, a 
rate-limiting enzyme in hepatic gluconeogenesis in 
the liver from Tcf7l2+/- mice and the wild-type pri-
mary hepatocytes of Tcf7l2 knocked-down. Indeed, it 
has been shown that disruption of WNT signaling by 
Cre recombinase-mediated deletion of β-catenin re-
duces the mRNA abundance of G6PC and PCK1 both 
in vitro and in vivo [6]. However, we surprisingly 
found a slightly increase in the expression of Pck1, 
another rate-limiting enzyme in hepatic gluconeo-
genesis in the liver from Tcf7l2+/- mice and the 
wild-type primary hepatocytes of Tcf7l2 
knocked-down, despite the decreased blood glucose 
and improved glucose intolerance in the Tcf7l2+/- 
mice. It is possible that the Pck1 expression increase is 
due to a feedback mechanism secondary to the more 
dramatic G6pc suppression by Tcf7l2 knockdown. 
Tcf7l2 is a transcription factor that may work as either 
an activator or repressor [41]. It would also be inter-

esting to examine the direct roles of Tcf7l2 on the 
transcription of G6pc and Pck1 respectively. Lastly, the 
decreased blood glucose and improved glucose in-
tolerance in the Tcf7l2+/- mice may be reflective of im-
proved glucose utilization due to the global Tcf7l2 
knockdown in the whole body. Further in vivo studies, 
in particular the characterization of glucose disposi-
tion and global gene expression using tissue-specific 
Tcf7l2 knockout mice, are needed to confirm our re-
sults and explore the function of hepatic TCF7L2 in 
pathophysiology of type 2 diabetes.  

Obesity and type 2 diabetes are highly associated 
with hepatic steatosis, which is accompanied by not 
only impaired insulin clearance, but also impaired 
inhibition of hepatic glucose output [29-31]. In this 
study, we accelerated hepatic steatosis by feeding a 
HFD in wild-type and Tcf7l2+/- mice. We observed 
that HFD-fed wild-type mice exhibited a uniformly 
pale fatty liver and hepatomegaly. Intriguingly, these 
phenotypes were abolished by Tcf7l2 haploinsuffi-
ciency. There was no significant difference in food 
intake between the wild-type and the Tcf7l2+/- mice. 
However, the Tcf7l2+/- mice under a HFD displayed a 
reduced expression of Fasn and Acc-2, which are as-
sociated with de novo lipogenesis, as well as increased 
expression of Cpt1a and Acox1, the genes for fatty acid 
oxidation [28]. The effect of Tcf7l2 expression on the 
transcription of Cpt1a and Acox1 was also observed 
with primary hepatocytes isolated from the wild-type 
mice and the Tcf7l2+/- mice (data not shown). These 
changes in gene expression caused by Tcf7l2 down-
regulation may contribute to the improvement of di-
et-induced hepatic steatosis, even though the changes 
seemed to be mild and need to be confirmed by direct 
analysis such as indirect calorimetric analysis [32]. In 
addition, visceral adiposity is associated with in-
creased rates of lipolysis and fat deposition in those 
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vital metabolic organs including the liver [27]. On the 
HFD, wild-type mice displayed a higher extent of 
visceral adiposity, which seemed to fail to adequately 
store excess triglyceride and contribute to the elevated 
serum triglyceride levels. It should be noted that 
Tcf7l2 is ubiquitously expressed in different mouse 
tissues. It is thus likely that the metabolic phenotypes 
observed in the Tcf7l2+/- mice may also result from a 
global Tcf7l2 function change in multiple tissues, and 
the molecular mechanism underlying the effect of 
Tcf7l2 haploinsufficiency on nutrient metabolism re-
mains to be fully characterized.  

Both increased and decreased TCF7L2 expres-
sions in β-cells have been associated with altered in-
sulin secretion and β-cell apoptosis in human islets 
[16-20]. Recently, Gaulton et al. reported that the re-
gion surrounding the diabetic risk allele of the SNP 
(rs7903146) at TCF7L2 is in a more open chromatin 
state than is the non-risk C allele in human pancreatic 
islets [33]. They also showed that the T allele had a 
greater enhancer activity than the C allele by using an 
in vitro reporter gene assay. Similar results were re-
ported by Stitzel et al [34]. These studies suggest an 
effect associated with the risk allele of the TCF7L2 
gene, whereby its open chromatin status leads to in-
creased transcription of the gene [33-34]. In our study, 
TCF7L2 expression was upregulated by feeding the 
HFD in the pancreatic islets of wild-type mice, but not 
much in the Tcf7l2+/- mice (Figure 5B). In addition, 
although islet transcript level of Tcf7l2, as expected, 
was only about 50% in Tcf7l2+/- mice compared to 
wild-type mice, there were no apparent defects in 
insulin secretion. Tcf7l2+/- mice exhibited normal 
pancreatic histology. We did not detect any difference 
in glucose-stimulated insulin secretion in the isolated 
islets between the two genotypes either. Our data 
suggest that while a minimal Tcf7l2 expression is re-
quired for normal insulin secretion in vivo; enhanced 
expression may interfere with islet function, confer-
ring a metabolic risk. Overall, our in vivo results favor 
that a global overexpression of TCF7L2 may lead to an 
increased susceptibility to type 2 diabetes. In con-
sistent with this hypothesis, Savic et al. recently re-
ported that Tcf7l2 over-expressing transgenic mice are 
likely to develop diabetes and glucose intolerance 
after a HFD feeding, showing the reciprocal pheno-
types compared to the heterozygous Tcf7l2 null mice 
[25].  

Interestingly, the regulation of TCF7L2 expres-
sion seems to be varied in different tissues. In our 
mouse study with the HFD, the expression levels of 
Tcf7l2 in pancreatic islets was upregulated (Figure 
5B), whereas it was down-regulated in the liver (Fig-
ure 6). Consistently, Hindle et al. reported that hepatic 

expression of TCF7L2 is decreased in diabetic patients 
as their body mass index (BMI) increase [35]. Cur-
rently, we do not know if a decreased Tcf7l2 expres-
sion in the liver is simply protective as a feedback 
mechanism during metabolic disregulation. Fur-
thermore, TCF7L2 gene is known to display a complex 
pattern of spliced variants with several alternative 
exons and splice sites. These TCF7L2 splice variants 
are distributed in a tissue-specific manner, which 
could strongly influence tissue-specific effects of 
TCF7L2 as a nuclear effector of WNT signaling [36-39]. 
Although studies have shed a light on the effect of 
TCF7L2 expression on metabolic homeostasis, further 
investigation is required to make informative conclu-
sions of the functional consequences of the tis-
sue-specific regulation of TCF7L2 expression, e.g. via 
utilization of in vivo model targeting Tcf7l2 in a tis-
sue-specific manner. It would also be intriguing to 
examine the functional consequences of human 
TCF7L2 genetic polymorphisms in different tissues.  

In summary, the current study demonstrated 
that TCF7L2 plays an important role in regulation of 
glucose and lipid metabolism, wherein its biological 
function change may cause alteration in the suscepti-
bility to type 2 diabetes. Our findings may provide 
insights into the etiology of type 2 diabetes and im-
portant information essential for evaluating the role of 
TCF7L2 in metabolic regulation.  
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