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Abstract 

The planted (l, d) motif search is one of the most widely studied problems in bioinformatics, which 
plays an important role in the identification of transcription factor binding sites in DNA sequences. 
However, it is still a challenging task to identify highly degenerate motifs, since current algorithms 
either output the exact results with a high computational cost or accomplish the computation in a 
short time but very often fall into a local optimum. In order to make a better trade-off between 
accuracy and efficiency, we propose a new pattern-driven algorithm, named PairMotif+. At first, 
some pairs of l-mers are extracted from input sequences according to probabilistic analysis and 
statistical method so that one or more pairs of motif instances are included in them. Then an 
approximate strategy for refining pairs of l-mers with high accuracy is adopted in order to avoid 
the verification of most candidate motifs. Experimental results on the simulated data show that 
PairMotif+ can solve various (l, d) problems within an hour on a PC with 2.67 GHz processor, and 
has a better identification accuracy than the compared algorithms MEME, AlignACE and VINE. 
Also, the validity of the proposed algorithm is tested on multiple real data sets. 

Key words: Motif search; Transcription factor binding sites; Pattern-driven algorithms. 

Introduction 
DNA motifs refer to short DNA segments that 

are regulatory elements bound by proteins such as 
transcription factors. Motif discovery is to find the 
unknown motifs in the given sequences, which plays 
an important role in locating transcription factor 
binding sites (TFBSs) in DNA sequences. The planted 
(l, d) motif search (PMS) [1], which is raised from this 
research, has become a widely accepted motif search 
problem formulation. 

Problem Definition. Given a set of n-length se-
quences S = {sl, s2, … , st} over the alphabet {A, G, C, T} 
and nonnegative integers l and d, satisfying 0 ≤ d < l < 
n. The PMS problem is to find an l-mer (i.e., an 
l-length string) m, such that each sequence si contains 
an l-mer mi differing from m in at most d positions. 
The l-mer m is called an (l, d) motif and each mi is 

called an instance of m. 
The PMS problem is NP-hard [2]. With t and n 

fixed, different values of l and d form various PMS 
instances. Usually, the motif length l is 5 to 25 base-
pairs (bps). For a given motif length l, the larger the 
degenerate positions d, the more difficult it is to iden-
tify the planted (l, d) motif in input sequences. Specif-
ically, some researchers [3, 4] use 2d-neighborhood 
probability (i.e., the probability that the Hamming 
distance between two random l-mers is not larger 
than 2d) to measure the difficulty of solving different 
PMS instances, since it is a good indicator to reflect 
the degree of degeneracy of PMS instances [3]. 

The algorithms for PMS are categorized as ap-
proximate and exact depending on whether they are 
guaranteed to find the optimal motif always or not [5]. 
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The approximate algorithms, which commonly model 
motifs using position weight matrix (PWM), can re-
port results in a short time but not guarantee a global 
optimum. Most approximate recognition algorithms 
use potent statistical techniques. For example, the 
most popular algorithms MEME [6] and Gibbs Sam-
pling [7] adopt Expectation Maximization (EM) and 
Gibbs sampling techniques, respectively. Based on 
MEME, there are the extension algorithms, like 
PROJECTION [1] and GADEM [8]. PROJECTION 
partitions all l-mers in S into many buckets and selects 
some valid buckets that contain several occurrences of 
the desired motif and little else, in order to provide a 
good initial state for the EM refinement. GADEM 
employs a genetic algorithm with an embedded EM 
algorithm to improve initial PWMs. The modification 
of Gibbs Sampling is described in [9-11]. In recent 
years, Bayesian theory has also been introduced in the 
field of motif search, such as BayesMD [12], A-GLAM 
[13], SBaSeTraM [14] and BAMBI [15]. Besides the 
statistical methods, some graph-theoretic methods 
either based on clustering or on heuristic search are 
proposed to solve the motif search problem, such as 
MotifCut [16], sMCL-WMR [17] and Vine [18]. In the 
associated graphical model, each node corresponds to 
an l-mer in input sequences and each edge represents 
the similarity between the two l-mers it connects. 

Exact recognition algorithms, which use con-
sensus to represent motifs, find all (l, d) motifs and the 
optimal one by traversing the whole search space. 
Since all exact algorithms produce the consistent re-
sults [19], the main concern on them is the time per-
formance. Based on the graphical model of motif 
search, some exact algorithms, such as DPCFG [20] 
and RecMotif [4], find all maximum cliques in the 
graph, with a search space of O(nt). The time perfor-
mance of these algorithms does not depend on the 
motif length, but it is difficult for these algorithms to 
identify highly degenerate motifs because the associ-
ated graphs are so dense that numerous cliques need 
to be verified. There are some other exact algorithms 
based on pattern-driven. They verify all string pat-
terns of length l, and output the patterns that occur in 
all input sequences with at most d mutations. The 
initial search space of these algorithms, O(4l), is much 
smaller than O(nt). Therefore, the recent research of 
exact recognition algorithms mainly concentrates on 
the pattern-driven algorithms, including the series of 
suffix tree algorithms [21-24] and the series of PMS 
algorithms [5, 25-28]. Pattern-driven algorithms are 
good at finding motifs of length smaller than 20 bps, 
but their time overhead or space requirement will 
become unrealistic with the increase of the motif 
length. 

Although many recognition algorithms have 

been proposed to solve the PMS problem, few of them 
can make a good trade-off between accuracy and time 
performance. In identifying highly degenerate motifs, 
they either output the exact results with a high com-
putational cost or accomplish the computation in a 
short time but have a low accuracy. Thus, it is a 
meaningful work to design an algorithm that can get 
high accuracy results within a reasonable time, e.g., an 
hour on personal computers. To achieve this goal, we 
propose a new algorithm named PairMotif+, by de-
signing the approximate version of PairMotif [29]. 
PairMotif, our recent exact algorithm, adopts the fol-
lowing idea: select multiple pairs of l-mers in which 
there must exist a pair of motif instances, by travers-
ing reference sequences; then, refine each pair of 
l-mers, namely verify whether each d-neighbor of the 
pair of l-mers is a valid (l, d) motif. Obviously, the 
time performance of PairMotif depends on two val-
ues: the number of the selected pairs of l-mers and the 
number of the candidate motifs generated from each 
pair of l-mers.  

The main idea of PairMotif+ is to reduce the 
above two values that determine the time perfor-
mance. PairMotif+ consists of three steps. First, extract 
some pairs of l-mers from input sequences according 
to probabilistic analysis so that more than half of the 
pairs of motif instances are included in them. Second, 
analyze the weights of the extracted pairs of l-mers 
and filter out the pairs with small weights, ensuring at 
least one pair of motif instances are included in the 
remaining pairs of l-mers. Third, in refining each pairs 
of l-mers, use an approximate strategy with high ac-
curacy to avoid the verification of most candidate 
motifs. Experimental results show that PairMotif+ can 
solve various PMS instances within an hour on a PC 
with 2.67 GHz processor, and outperforms the com-
petition in identification accuracy. 

Methods 
Foundations 

In our recent work [29], we discussed how to 
partition and traverse the d-neighbors (candidate mo-
tifs) shared by a pair of l-mers, which is the basic of 
refining pairs of l-mers in this paper. This section 
provides a brief description of the partition and trav-
ersing methods. 

Definition 1. Given a pair of l-mers x1 and x2, the 
common d-neighbors (candidate motifs), Md(x1, x2), is 
defined to be {y: |y| = l, dH(y, x1) ≤ d and dH(y, x2) ≤ d}, 
where dH(·) denotes the Hamming distance between 
two l-mers. 

Definition 2. Given a pair of l-mers x1 and x2 and 
another l-mer y, the l positions in the alignment of 
these three l-mers can be divided into four categories: 
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P00(x1, x2, y), P01(x1, x2, y), P10(x1, x2, y) and P11(x1, x2, y). 
For each position i (1 ≤ i ≤ l), assume that it belongs to 
Pab(x1, x2, y). Then, a is 1 if x1[i] = x2[i], 0 otherwise; b is 
1 if either y[i] = x1[i] or y[i] = x2[i], 0 otherwise. Fig. 1 
shows an example for partitioning the positions in the 
alignment of three l-mers. 

 
 

 
Fig. 1 An example for partitioning positions in the alignment of 
three l-mers. 

 
 
Definition 3. Given a pair of l-mers x1 and x2 and 

another l-mer y ∈ Md(x1, x2), the mapping relation 
from x1 and x2 to y, R(x1, x2, y), is defined to be a 
2-tuple <|P10(x1, x2, y)|, |P00(x1, x2, y)|>. Furthermore, 
the mapping relation from x1 and x2 to Md(x1, x2), R(x1, 
x2), is defined to be 

              …(1) 

Given a pair of l-mers x1 and x2, the elements in 
R(x1, x2) implies the approach to partitioning and 
traversing the candidate motif set Md(x1, x2). We first 
discuss how to compute R(x1, x2). For any candidate 
motif y in Md(x1, x2), let R(x1, x2, y) = <α, β>. From 
Definition 2 and 3, α represents the number of posi-
tions at which x1[·] = x2[·], y[·] ≠ x1[·] and y[·] ≠ x2[·]; β 
represents the number of positions at which x1[·] ≠ 
x2[·], y[·] ≠ x1[·] and y[·] ≠ x2[·]. Thus, we have 0 ≤ α ≤ l - 
dH(x1, x2), 0 ≤ β ≤ dH(x1, x2) and dH(y, x1) + dH(y, x2) = 2α 
+ 2β + (dH(x1, x2) -β). Furthermore, we have dH(y, x1) + 
dH(y, x2) ≤ 2d because y is the d-neighbor of both x1 and 
x2. Based on these considerations, we obtain inequali-
ties (2). Obviously, the values of α and β are deter-
mined by dH(x1, x2), and R(x1, x2) can be calculated by 
listing all 2-tuples <α, β> satisfying (2). For example, 
for the PMS instance (15, 4), R(x1, x2) = {<0, 0>, <0, 1>, 
<0, 2>, <0, 3>, <0, 4>, <1, 0>, <1, 1>, <1, 2>, <2, 0>} 
when dH(x1, x2) = 4. 

                …(2) 

Based on the different 2-tuples in R(x1, x2), the 
candidate motif set Md(x1, x2) can be partitioned to 
|R(x1, x2)| mutually disjoint subsets. For each <α, β> 

in R(x1, x2), the corresponding subset of Md(x1, x2) is 
denoted by Md<α, β>(x1, x2), namely Md<α, β>(x1, x2) = {y: 
y∈Md(x1, x2) and R(x1, x2, y) = <α, β>}. Assume that <α, 
β> and <α', β'> are two different elements of R(x1, x2), 
then we have Md<α, β>(x1, x2) ∩ Md<α', β'>(x1, x2) = Ф ac-
cording to Definition 3. Since R(x1, x2) represents the 
mapping relation from x1 and x2 to all candidate mo-
tifs, the partition of Md(x1, x2) is: 

Md(x1, x2) = {Md<α, β>(x1, x2): <α, β>∈R(x1, x2)}       …(3) 

In terms of equation (3), we can traverse the 
candidate motifs derived from x1 and x2, by generat-
ing the mutually disjoint subsets of Md(x1, x2) one by 
one. For each <α, β> in R(x1, x2), the candidate motifs 
in Md<α, β>(x1, x2) are generated as follows. First, set the 
initial candidate motif y as x2. Second, select α posi-
tions from the positions at which x1[·] = x2[·], and for 
each of these α positions, change y[·] to one of the 
three characters different from x1[·]. Third, select β 
positions from the positions at which x1[·] ≠ x2[·], and 
for each of these β positions, change y[·] to one of the 
two characters different from x1[·] and x2[·]. Fourth, 
select a part of positions from the positions at which 
x1[·] ≠ x2[·] except for those selected in the previous 
step, and change y[·] to x1[·] for each of these posi-
tions. More details about these steps can be found in 
the reference [29]. According to the process of gener-
ating candidate motifs, the size of Md<α, β>(x1, x2) is 
calculated by (4) where dH denotes the Hamming 
distance between x1 and x2. 

   …(4) 

Step 1: Extracting Pairs of l-mers 
PairMotif+ only extracts the pair of l-mers that 

contains two l-mers x1 and x2 coming from different 
sequences, i.e., x1∈l si, x2 ∈l sj and i ≠ j. Thus, the pair of 
l-mers x1 and x2 can be denoted by (x1, x2) if i < j, (x2, 
x1) otherwise. The set of all pairs of l-mers in input 
sequences S is denoted by L = {(x1, x2): (∀i, j)(1 ≤ i < j ≤ 
t, x1∈l si and x2∈l sj)}. 

The aim of Step 1 is to extract as few pairs of 
l-mers as possible from L, and ensure that sufficient 
(more than half of) pairs of motif instances are in-
cluded in them. We set a threshold k (0 ≤ k ≤ l), and 
then extract the pairs of l-mers (x1, x2) from L with 
dH(x1, x2) ≤ k. The set of the extracted pairs of l-mers is 
denoted by L1={(x1, x2): (x1, x2)∈L and dH(x1, x2) ≤ k}. 

For a proper choice of the threshold k, we con-
sider two probabilities. One is the probability that the 
Hamming distance between two random l-mers is less 
than or equal to k, denoted by pk. The other is the 
probability that the Hamming distance between two 
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randomly selected motif instances is less than or equal 
to k, denoted by p'k. The probability pk is calculated by 
(5). 

                 …(5) 

In order to calculate p'k, given a motif m and a 
motif instance m', more specific distance relation be-
tween m and m' is required besides 0 ≤ dH(m, m') ≤ d. 
We determine this relation by assuming that m' is ob-
tained from m as follows: select d positions in m at 
random, and then replace each character at the se-
lected positions with a random character in {A, G, C, 
T}. Since each of the selected d positions is changed 
with probability 3/4, the expectation of the distance 
between m and m' is 3d/4, the rationality of which will 
be analyzed in Discussion and Conclusions. On this 
basis, the probability that the Hamming distance be-
tween m and m' is k (0 ≤ k ≤ d) can be calculated by (6).  

          …(6) 

Let m1 and m2 be two randomly selected in-
stances of the motif m. <dH(m, m1), dH(m, m2)> repre-
sents the distance between m and the pair of motif 
instances (m1, m2), corresponding to a sample space Ω 
= {<i, j>: 0 ≤ i ≤ d, 0 ≤ j ≤ d }. Let P(<i, j>) denote the 
probability of <dH(m, m1), dH(m, m2)> = <i, j>. As dH(m, 
m1) = i and dH(m, m2) = j are independent with each 
other, we have: 

P(<i, j>) = P(dH(m, m1) = i) × P(dH(m, m2) = j)    …(7) 

Based on the above equations, p'k can be calcu-
lated using the Theorem of Total Probability: 

     …(8) 

In (8), P(dH(m1, m2) ≤ k | <i, j>) represents the 
probability of dH(m1, m2) ≤ k given <dH(m, m1), dH(m, 
m2)> = <i, j>. Its value can be calculated according to 
the actual situation. For example, for the PMS instance 
(15, 4), P(dH(m1, m2) ≤ 4 | <2, 2>) = 1, and 

 

With p'k, it is easy to calculate the expectation of 
the number of extracted pairs of motif instances 
E[Nm]. For the PMS problem, each input sequence 
contains a motif instance, so there are totally t(t-1)/2 
pairs of motif instances. Moreover, in extracting pairs 
of l-mers with the restriction of the threshold k, each 
pair of motif instances has a probability of p'k to be 

extracted. Therefore, 

E[Nm] = t(t-1)/2 × p'k                         …(9) 

According to these two probabilities pk and p'k, 
we analyze how to set the threshold k for the given 
problem parameters l, d and t. Taking the PMS in-
stance (15, 4) and t = 20 as an example, Table 1 gives 
the values of pk, p'k and E[Nm] under different values of 
k. As mentioned above, we want to extract as few 
pairs of l-mers as possible while including sufficient 
pairs of motif instances. When k is 4, the value of pk is 
very small, which allows us to extract very few pairs 
of l-mers; however, the value of p'k is also so small that 
we cannot get sufficient pairs of motif instances. 
When k is 6 or a greater value, the value of p'k is large 
enough that more than 80% of pairs of motif instances 
are extracted, but the value of pk is also large, which is 
not conducive to reducing the scales of extracted pairs 
of l-mers. Therefore, it is appropriate to set k as 5 to 
perform extraction: on the one hand, only 0.08% of 
pairs of l-mers are extracted; on the other hand, nearly 
60% of pairs of motif instances can be extracted. In 
doing so, we can not only reduce data scales greatly, 
but also retain sufficient motif information, providing 
a good foundation for the subsequent processing. 

 

Table 1. pk, p'k and E[Nm] under different values of k for the 
PMS instance (15, 4). 

k 4 5 6 7 8 
pk 0.0001 0.0008 0.0042 0.0173 0.0570 
p'k 0.3461 0.5845 0.8469 0.9242 1.0000 
E[Nm] 65.759 111.06 160.91 175.60 190.00 

 
 

Step 2: Filtering Pairs of l-mers 
This section discusses how to filter the extracted 

pairs of l-mers (i.e., the pairs of l-mers in L1), in order 
to further reduce data scales and still retain one or 
more pairs of motif instances. Motifs often occur in 
sequences in a conservative form, and the similarity 
between motif instances is larger than that between 
most l-mers in background sequences. We define the 
weight of a pair of l-mers (x1, x2) to be the similarity 
between (x1, x2) and other l-mers. On this basis, we 
analyze the weight distribution of the pairs of l-mers 
in L1, and then filter out the pairs of l-mers whose 
weights are small.  

Given an l-mer x, its weight w(x) is calculated by 
(10). The larger the weight of x, the higher the simi-
larity between x and other l-mers in L1. In (10), sim(·) = 
l - dH(·), which represents the similarity between two 
l-mers. 
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              …(10) 

Based on (10), the weight of a pair of l-mers (x1, 
x2), w(x1, x2), is calculated as follows: 

w(x1, x2) = w(x1) + w(x2)                 …(11) 

For the PMS instances (15, 4) and (18, 6), we 
sample both the pairs of l-mers (i.e., all elements in L1, 
including both the background and motif infor-
mation) and the pairs of motif instances from L1. Then 
we observe their weight distribution. The sampling 
process is: first, randomly generate 20 sequences of 
length 600 with each of them implanted a random 
motif instance; second, extract pairs of l-mers to form 
L1, with k = 5 and 6 for the instances (15, 4) and (18, 6), 
respectively; third, sample the pairs of l-mers and the 
pairs of motif instances from L1. Fig. 2 shows the 
weight distribution (histogram) of the sampling data, 
which is the average of 10 times random sampling. 

In the weight distribution of the pairs of l-mers, 
the pairs of motif instances are at the area where the 
weight is large, both for the PMS instance (15, 4) and 
(18, 6). That is, for the pairs in L1, almost all of the ones 
with small weights are the pairs of background 
l-mers, whereas the ones with large weights corre-
spond to both the pairs of motif instances and the 
pairs of background l-mers. By observing the histo-
gram of pairs of l-mers, we can find that their weights 
are approximately distributed as a normal distribu-
tion. Let μ and σ denote the mean and the standard 
deviation of the weights of pairs of l-mers, respec-
tively. We filter the pairs of l-mers in L1 by making the 

remaining ones satisfy: 

w(x1, x2) > μ + qσ                            …(12) 

In (12), the parameter q (q ≥ 0) indicates the fil-
tering strength. To filter out more pairs of background 
l-mers, we should set q as high as possible and not 
remove all pairs of motif instances. For example, for 
the PMS instance (15, 4), q can be set to 4, and μ + qσ = 
202 + 4 × 47 = 390. Then the pairs of l-mers in L1 with 
weight greater than 390 are retained and stored in the 
set L2, namely L2 = {(x1, x2): (x1, x2)∈L1 and w(x1, x2) > μ 
+ qσ}. Thus, L2 is composed of a (small) part of ele-
ments in L1 with a certain amount of motif infor-
mation included. 

Step 3: Refining Pairs of l-mers 
The process of refining pairs of l-mers is to verify 

the candidate motifs derived from the pairs of l-mers 
in L2 one by one, and then report the motif with 
maximum score. Each candidate motif y is measured 
by Consensus score [19]: 

                    …(13) 

This section gives an approximate refinement 
strategy in order to avoid the verification of most 
candidate motifs with high accuracy. Specifically, in 
refining each pair of l-mers (x1, x2), instead of gener-
ating all subsets in the partition of Md(x1, x2) as we did 
in our recent work [29], we just generate a part of 
subsets according to probabilistic analysis. 

 
Fig. 2 Weight distribution of pairs of l-mers and pairs of motif instances in L1. (A) l = 15 and d = 4. (B) l = 18 and d = 6. 
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Observation 1. Given an (l, d) motif y and its two 
instances x1 and x2 with dsum denoting dH(y, x1) + dH(y, 
x2), the value of dsum ranges from dH(x1, x2) to 2d. The 
first column of Table 2 gives all the possible values of 
dsum for the PMS instance (15, 4), when dH(x1, x2) = 4. 

 

Table 2 . Two values related to dsum under the instance (15, 
4) and dH(x1, x2) = 4. 

dsum Associated sub-
sets of R(x1, x2) 

Occurrence 
probability of dsum 

Number of candidate 
motifs (Percentage) 

8 {<0,4>, <1,2>, 
<2,0>} 

0.11 4570 (66.7%) 

7 {<0,3>, <1,1>} 0.19 1648 (24.0%) 
6 {<0,2>, <1,0>} 0.36 558 (8.1%) 
5 {<0,1>} 0.24 64 (0.9%) 
4 {<0,0>} 0.10 14 (0.2%) 

 
 
Given a pair of l-mers (x1, x2), taking the PMS 

instance (15, 4) and dH(x1, x2) = 4 as an example, this 
table shows two values related to dsum, the basic to 
understand the approximate strategy for refining 
pairs of l-mers. One is the probability that a specific 
value of dsum occurs. The other is the number of can-
didate motifs generated from (x1, x2) under a specific 
value of dsum. Moreover, this table shows mutually 
disjunct subsets of R(x1, x2), which are used to calcu-
late the number of candidate motifs under different 
values of dsum. Note that, R(x1, x2) is divided as follows. 
As mentioned previously, dsum = 2α + β + dH(x1, x2), and 
thus the first inequality in (2) can be converted to 2d - 
dH(x1, x2) + 1 equations by Observation 1: 2α + β + 
dH(x1, x2) = dH(x1, x2), … , 2α + β + dH(x1, x2) = 2d; then, 
each subset of R(x1, x2) is obtained by solving a dif-
ferent equation. 

We introduce the approximate refinement 
strategy by considering two values related to dsum, 
which are given in the third and fourth column of 
Table 2. One is the probability that a specific value of 
dsum occurs, equal to the sum of the probability of all 
the possible samples in Ω. For example, when dsum = 7, 
the possible samples in Ω are <3, 4> and <4, 3>, and 
the probability that dsum = 7 occurs is equal to P(<3, 4>) 
+ P(<4, 3>). To facilitate the analysis, the occurrence 
probability of dsum under different values is normal-
ized. The other is the number of candidate motifs 
generated from (x1, x2) under a specific value of dsum, 
which indicates the computational amount of refining 
(x1, x2) under the specific value of dsum. According to 
different values of dsum, R(x1, x2) can be divided into 2d 
- dH(x1, x2) + 1 mutually disjunct subsets, as shown in 
the second column of Table 2. Thus, the candidate 
motifs generated under a specific value of dsum are 
those generated in terms of the associated subset of 

R(x1, x2); accordingly, we can calculate the number of 
candidate motifs under the specific value of dsum by 
(4). 

As shown in Table 2, the number of generated 
candidate motifs grows dramatically with the increase 
of the value of dsum. When dsum = 8, its occurrence 
probability is 0.11, but the associated candidate motifs 
account for 66.7% of the total amount. That is, the 
probability of finding the correct solution is only 0.11, 
but 66.7% of total computation amount is required. 
On the contrary, if we verify the associated candidate 
motifs when dsum is from 4 to 6, we only use 9.2% of 
total computation amount to find the correct solution 
with probability 0.7. 

Taking these considerations into account, we use 
the following approximate strategy to reduce com-
putational amount: verify the candidate motifs cor-
responding to the dsum with small value first. If the 
motif is found, then end the discovery process; oth-
erwise, verify the candidate motifs corresponding to 
the dsum with large values gradually. Specifically, we 
first verify the candidate motifs in the subsets of 
Md(x1, x2) that correspond to the 2-tuples <α, β> satis-
fying (14). 

2α + β + dH(x1, x2) ≤ 3d/2                    …(14) 

In (14), 2α + β + dH(x1, x2) represents dsum, and 
3d/2 is the threshold set to calculate the 2-tuples <α, 
β>. There are two reasons why we use 3d/2 as the 
threshold. First, in terms of the description in Step 1, 
the expectation of the distance between a motif and its 
instance is 3d/4, so the expectation of dsum is 3d/2. 
Second, after the operation of Step 1 and 2, the motif 
instances in L2 have a relatively high similarity and 
they are close to the original motif, so the value of dsum 
that corresponds to motif instances is likely to be 
smaller than the expectation 3d/2.  

PairMotif+ 
Based on the above three steps, the whole algo-

rithm is described as follows: 

Algorithm PairMotif+ 
Input: l, d, S = {s1, s2, … , st} 
Output: a motif m 
1: L1 ← Ф, L2 ← Ф, maxScore ← 0, set the values of 

k and q 
2: for each pair of l-mers (x1, x2) in S do 
3: if dH(x1, x2) ≤ k then add (x1, x2) to L1 
4: Calculate μ and σ for weights of all pairs of 

l-mers in L1 
5: for each pair of l-mers (x1, x2) ∈L1 do 
6: if w(x1, x2) > μ + qσ then add (x1, x2) to L2 
7: for each pair of l-mers (x1, x2) ∈ L2 do 
8: for each <α, β> ∈R(x1, x2) do 
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9: if 2α + β + dH(x1, x2) ≤ 3d/2 then 
10: for each y ∈ Md<α, β>(x1, x2) do 
11: if score(y) > maxScore then 
12: m ← y, maxScore = score(y) 
13: Output m 
 
 
Line 1 carries out the initialization. The values of 

k and q, which depend largely on l and d, are set ac-
cording to the probabilistic analysis and statistical 
method described in Step 1 and 2, and their values 
under different (l, d) instances will be given in Results 
section. Lines 2 - 3, which are Step 1, extract pairs of 
l-mers from input sequences S with the restriction of 
the threshold k and store them in L1. Lines 4 - 6, which 
perform Step 2, filter the pairs of l-mers in L1 accord-
ing to the filtering strength q with remaining ones 
stored in L2. Lines 7 - 13, which correspond to Step 3, 
verify each candidate motif derived from the pairs of 
l-mers in L2 and output the motif with maximum 
score. 

The time complexity of PairMotif+ depends 
mainly on Step 3 (lines 7 - 13). First, let N denote the 
number of pairs of l-mers in L2, whose order of mag-
nitude is 102 or 103 in terms of the analysis in Step 2 
and our experimental verification; since N is ap-
proximately equal to the sequence length n, we re-
place N with n in the time complexity. Second, for 
each pair of l-mers (x1, x2) in L2, the approximate re-
finement strategy makes the distance from a candi-
date motif to x1 or x2 usually less than or equal to 
3d/4, and thus the probability that a random l-mer y 
becomes a candidate motif is Prob.[dH(y, x1) ≤ 3d/4 & 
dH(y, x2) ≤ 3d/4] = p23d/4; furthermore, the number of 
candidate motifs derived from (x1, x2) is approxi-
mately equal to 4lp23d/4, where 4l is the number of all 
possible l-mers. Third, verifying each candidate motif 
y is to compare y with O(tn) l-mers in input sequences. 
Therefore, the expected time complexity of PairMotif+ 
is O(tn24l p23d/4). 

The memory usage of PairMotif+ will reach its 
peak when Step 1 is being processed; accordingly, the 
space complexity of PairMotif+ depends on the 
number of pairs of l-mers in L1. There are a total of 
O(t2n2) pairs of l-mers in S and each pair has a proba-
bility of pk to be extracted, so the number of pairs of 
l-mers in L1 is O(t2n2pk). Note that, the memory usage 
in refining each pair of l-mers is negligible, because 
PairMotif+ does not generate the whole candidate 
motif set in Step 3. Actually, in traversing the candi-
date motif set, the algorithm verifies each candidate 
motif y immediately after y is generated, and then 
releases the associated storage space. Therefore, the 
space complexity of PairMotif+ is O(t2n2pk). 

Results 
Test on Simulated Data 

Simulated data provide quantitative measures to 
compare the performance of PairMotif+ with the ex-
isting algorithms. We generate the simulated data sets 
following [1]: generate a motif of length l and t iden-
tically distributed sequences of length n; then, for each 
sequence s, implant a random motif instance, which 
differs from the motif in at most d positions, to a 
random position in s. To evaluate the prediction ac-
curacy, we use the nucleotide level performance coef-
ficient (nPC) following [30], namely |K∩P|/|K∪P|, 
where K is the set of nucleotide positions corre-
sponding to motif occurrences and P is the set of pre-
dicted nucleotides positions. 

Several representative algorithms are selected to 
compare with PairMotif+, including MEME [6], 
AlignACE [10], VINE [18] and PairMotif [29]. MEME 
and AlignACE are the most popular motif recognition 
algorithms based on PWM; they were also involved in 
a comparison of different recognition algorithms in 
the review articles [30] and [31]. Vine, a recent meth-
od, is a polynomial-time heuristic algorithm based on 
graphical model, outperforming widely used ap-
proximate algorithms on the simulated data. PairMo-
tif is a fast exact algorithm, capable of reporting all (l, 
d) motifs; its prediction accuracy is obtained by eval-
uating the (l, d) motif with maximum score. All algo-
rithms are performed in the same experimental envi-
ronment with a 2.67 GHz processor and a 4 Gbyte 
memory. The experimental results are the average 
derived by executing algorithms on five simulated 
data sets. 

First, the comparisons are carried out on differ-
ent PMS instances with fixed t = 20 and n = 600. As 
described above, 2d-neighborhood probability (p2d), 
which can be calculated by (5), reflects the degree of 
degeneracy of a PMS instance. We select ten PMS in-
stances with different value of p2d as follows: l is less 
than or equal to 25, conforming to the general motif 
length; d is selected by setting the value of p2d from 
0.05 to 0.7, where 0.05 is approximately equal to the 
p2d value of the classical PMS instance (15, 4), and the 
upper bound 0.7 makes the (l, d) motifs degenerate 
enough so that there is a lot of background noise. 

Table 3 gives the prediction accuracy and run-
ning time of compared algorithms on these selected 
PMS instances. In PairMotif+, the parameters k and q 
are set according to the specific (l, d) instance. The 
threshold k for extracting pairs of l-mers increases 
with the increase of l so that sufficient pairs of motif 
instances can be extracted. The filtering strength q is 
related to p2d; we decrease the value of q when p2d is 
larger than 0.25, and thus we can still retain a certain 
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amount of pairs of motif instances in the strong in-
terference case. For these PMS instances, PairMotif+ 
can solve each of them within an hour, and its perdi-
tion accuracy is better than that of the compared ap-
proximate algorithms (MEME, AlignACE and VINE) 
and close to that of the exact algorithm (PairMotif). 
Although the exact algorithm can achieve the optimal 
solution, its computational cost is unrealistic for the 
PMS instances with large p2d value. For example, in 
solving the instances (24, 8), (19, 7), (21, 8) and (23, 9), 
PairMotif requires a running time of more than five 
hours. 

Among these tested PMS instances, (15, 5), (17, 
6), (19, 7), (21, 8) and (23, 9) are challenging ones [1]. 
An instance is challenging if the input sequences are 
expected to contain one or more (l, d) motifs that occur 
by random chance. From the viewpoint of computa-
tional cost of exact algorithms, solving challenging 
instances with large l (l > 15) requires huge time 
overhead. PMS5 [27] is an outstanding exact algo-
rithm for solving challenging instances. Fig. 3 shows 
the time overhead and prediction accuracy of Pair-
Motif+ and PMS5 on these challenging instances. 

Compared with PMS5, PairMotif+ requires much less 
time overhead. Particularly, PairMotif+ can solve the 
instance (23, 9) within an hour, while the time over-
head of PMS5 exceeds 40 hours. For the prediction 
accuracy, PairMotif+ shows a competitive perfor-
mance: the accuracy of PairMotif+ is equal or close to 
that of PMS5 on different challenging instances. In the 
subsequent experiments, we no longer compare 
PairMotif+ with the exact algorithms. 

Second, we carry out comparisons on different 
sequence length n by fixing the PMS instance as (15, 4) 
and t = 20. Fig. 4 plots the prediction accuracy of 
compared algorithms against the increase of n, where 
n is from 200 to 2000. All the algorithms show the 
trend toward degradation in prediction accuracy, 
since the signal strength of motifs decreases gradually 
with the increase of n. In spite of this fact, we can find 
that PairMotif+ performs better than other algorithms: 
(1) PairMotif+ outperforms other algorithms on the 
whole prediction accuracy; (2) The prediction accu-
racy of PairMotif+ is relatively stable and decreases 
slowly, while all the other algorithms show a sharp 
decline in some cases, especially when n = 2000.

Table 3. Comparisons on PMS instances with different 2d-neighborhood probability. 

(l, d) p2d k q PairMotif+ MEME AlignACE VINE PairMotif 
(15, 4) 0.057 5 4 1.00 (2s) 0.93 (6s) 0.64 (4.3m) 0.98 (7.1m) 1.00 (2s) 
(14, 4) 0.112 4 4 0.94 (2s) 0.77 (6s) 0.59 (2.7m) 0.91 (8.4m) 0.96 (14s) 
(25, 8) 0.149 10 4 1.00 (2.4m) 1.00 (6s) 0.97 (2.5m) 1.00 (9.6m) 1.00 (52.3m) 
(24, 8) 0.234 9 4 1.00 (3.0m) 0.98 (6s) 0.86 (2.2m) 0.98(12.2m) > 5h 
(18, 6) 0.283 6 3 1.00 (14s) 0.89 (6s) 0.51 (2.1m) 1.00 (9.3m) 1.00 (12.1m) 
(15, 5) 0.319 5 3 0.95 (3s) 0.76 (6s) 0.43 (2.2m) 0.70 (8.7m) 0.95 (4.7m) 
(17, 6) 0.426 6 3 0.90 (26s) 0.66 (6s) 0.40 (3.6m) 0.80 (9.5m) 0.93 (53.3m) 
(19, 7) 0.534 7 3 0.96 (58s) 0.56 (6s) 0.42 (3.2m) 0.76 (10.1m) > 5h 
(21, 8) 0.633 8 3 0.94 (18.1m) 0.68 (6s) 0.48 (3.2m) 0.88 (13.4m) > 5h 
(23, 9) 0.698 9 3 0.98 (47.9m) 0.76 (6s) 0.53 (3.5m) 0.85 (15.2m) > 5h 
Time units, s: seconds; m: minutes; h: hours. 

 

 
Fig. 3 Comparisons on challenging PMS instances. 
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Fig. 4 Comparisons on different sequence length. 

 

 
Fig. 5 Comparisons on different number of planted motif in-
stances. 

 
 
Third, the algorithms are compared on different 

number of planted motif instances, with fixed PMS 
instance (15, 4), t = 20 and n = 600. In reality, there 
may not exist motif instances in some input sequenc-
es, which increases the problem difficulty. To simulate 
this case, we only select a part of input sequences 
randomly with each of them implanted a motif in-
stance. In this way, the number of selected sequences 
is equal to the total number of planted motif instances. 
The smaller the number of planted motif instances, 
the more difficult it is to discover the planted (l, d) 
motif. Fig. 5 shows the prediction accuracy of com-
pared algorithms by varying the number of planted 
motif instances form 20 to 11. Obviously, PairMotif+ 

has a better prediction accuracy than other algo-
rithms; meanwhile, it shows a slow downward trend 
with decreasing the number of planted motif in-
stances. 

 

Test on Biological Data 
For real biological data, the nucleotide composi-

tion of the sequences may be biased, so we use rela-
tive entropy to measure each candidate motif y: 

                    …(15) 

where frj is the frequency of character r in position j in 
the occurrences of y and br is the background fre-
quency of character r. Relative entropy measures the 
difference between the motif nucleotide frequency 
and the background nucleotide frequency. 

At first, PairMotif+ is tested on the widely used 
real data sets, including DHFR, c-fos, preproinsulin, 
metallothionein and Yeast ECB [1], LexA[32] and 
E.coli CRP[33]. Each of these data sets corresponds to 
a specific (l, d) problem, because each sequence con-
tains a motif instance and all motif instances of a motif 
have the same length. The purpose of testing on these 
data sets is to check whether the proposed algorithm 
can find known TFBSs using the specific (l, d), where l 
is the length of the published motif and d is set to 
make 2d equal the maximum Hamming distance be-
tween different motif instances (binding sites). 

Table 4 gives the used parameters and the pre-
dicted motifs. The threshold k is set with respect to l, 
consistent with the values in Table 3. For the filtering 
strength q, besides the value of p2d, it is also deter-
mined by the number of input sequences. To avoid 
filtering out all pairs of motif instances, we set q as 0 
when the number of input sequences is small (≤ 6). 
The underlined part of each predicted motif repre-
sents the part overlapped with the published motif. 
We can see that PairMotif+ works well for all of these 
data sets. Particularly, for the data sets c-fos, metal-
lothionein, Yeast ECB and E.COLI CRP, PairMotif+ 
achieves accurate predictions. Also, Fig. 6 shows se-
quence logos [34] of the predicted motifs, which 
graphically shows the degree of motif conservation 
measured by relative entropy. Note that, many exist-
ing recognition algorithms [1, 3-5, 18, 29] also test 
their validity on these data sets. Since all of these al-
gorithms (including PairMotif+) show a good per-
formance on these data sets, here we do not make 
comparisons.
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Table 4. Results on several widely used real data sets. 

Data (# of sequences) (l, d) K q Predicted motifs Published motifs 
DHFR (4) (11, 3) 2 0 GCGCCAAACTT ATTTCGCGCCA 
c-fos (6) (16, 4) 5 0 CCATTTTAGGACATCT CCATATTAGGACATCT 
preproinsulin (4) (15, 4) 5 0 TGCAACCTCAGCCCC CAGCCTCAGCCCCCA 
metallothionein (4) (15, 4) 5 0 CTCTGCACCCGGCCC CTCTGCACRCCGCCC 
Yeast ECB (5) (16, 5) 5 0 TTACCCAGTAAGGAAA TTTCCCNNTNAGGAAA 
LexA (16) (20, 7) 7 2 ATACTGTATATGCATTCAAC TACTGTATATATATACAGTA 
E.coli CRP (18) (16, 7) 5 2 TGTGAACGAGTTCACA TGTGANNNNGNTCACA 

 
 

 
Fig. 6 Sequence logos of predicted motifs. 

 
Moreover, we give the prediction performance 

of PairMotif+ on Tompa data [30], which provides a 
group of standard data sets to evaluate the newly 
designed algorithms. In three types of Tompa data, 
we choose the data of real type, including 52 data sets 
obtained from the TRANSFAC database and involv-
ing four species: human (hm), mouse (mus), Dro-
sophila melanogaster (dm) and Saccharomyces cere-
visiae (yst). Furthermore, we select 31 out of the 52 
data sets: we do not consider the data sets that only 
contain one or two sequences because PairMotif+ re-
quires at least three input sequences; we only select 
the hm data sets of length 500, since the length of most 
hm data sets is so long that it is difficult to make ef-
fective predictions. Specifically, the selected hm data 
sets are hm06r, hm08r, hm10r, hm17r, hm19r, hm22r, 
hm23r and hm24r; the selected mus data sets are 
mus01r, mus02r, mus03r, mus04r, mus05r, mus06r, 
mus07r, mus08r, mus10r, mus11r and mus12r; the 
selected dm data sets are dm01r, dm03r, dm04r and 
dm05r; the selected yst data sets are yst01r, yst02r, 
yst03r, yst04r, yst05r, yst06r, yst08r and yst09r. 

We obtain the predicted motifs and calculate the 
prediction accuracy (nPC) as follows. For each data 

set, since the motif length is not known in advance, 
we obtain eight predicted motifs, with each one hav-
ing a different length ranging from 9 to 16. For each 
predicted motif of length l, it is obtained by running 
PairMotif+ on the most degenerate (l, d) instance with 
the p2d value less than 0.7. The threshold k is set to 2, 3, 
4 and 5 when the motif length is 9 and 10, 11 and 12, 
13 and 14, and 15 and 16, respectively. The filtering 
strength q is set to 0. In the eight predicted motifs, the 
one most close to TFBSs is selected to calculate the 
prediction accuracy. To better show the results, we 
take MEME as a reference algorithm and calculate its 
prediction accuracy in the same way. The reason why 
we choose MEME is: MEME is a mature and widely 
used tool and is able to report multiple motifs quickly 
under a given length range, whereas few of the other 
algorithms can do so. 

Fig. 7 gives the comprehensive performance of 
PairMotif+ and MEME on each species of Tompa data 
by showing two values. One is the valid prediction 
rate, namely the ratio of Nvalid to Nall, where Nvalid de-
notes the number of data sets on which the prediction 
accuracy is nonzero, and Nall denotes the number of 
all data sets. The valid prediction rate indicates the 
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adaptability of an algorithm on a specific species. The 
other is the average of prediction accuracy on all data 
sets, which represents the prediction ability of an al-
gorithm on a specific species. PairMotif+ is compara-
ble with MEME for both the valid prediction rate and 
the average of prediction accuracy. Particularly, the 
valid prediction rate of PairMotif+ is better than that 
of MEME on the dm and yst species; for the average of 
prediction accuracy, PairMotif+ outperforms MEME 
on all species except for dm. 

More detailed results on Tompa data are shown 
in Fig. 8 by plotting the prediction accuracy of Pair-
Motif+ and MEME on each data set. We can find that 
the prediction accuracy of PairMotif+ is better than 

that of MEME on some data sets (i.e., hm17r, hm22r, 
etc.), but worse than on the other data sets (i.e., hm06r, 
hm08r, etc.). For this phenomenon, there exists realis-
tic meaning for identifying TFBSs. The predicted mo-
tifs of different algorithms need to be complemented 
with each other, since motif discovery algorithms 
show a poor ability to identify TFBSs in higher eu-
karyotes [18, 30]. Combining the results of different 
algorithms is conducive to improving the prediction 
accuracy and the related research corresponds to en-
semble algorithms [31]. From the perspective of en-
semble research, PairMotif+ provides a good candi-
date for the selection of fundamental algorithms. 

 
Fig. 7 Comprehensive performance on each species of Tompa data. 

 
Fig. 8 Detailed prediction accuracy on Tompa data. 
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Discussion and Conclusions 
Buhler and Tompa introduced a formal descrip-

tion of the motif search problem in 2002, the planted 
(l, d) motif search (PMS) [1]. In the next year, Evans et 
al. proved the NP-hardness of the PMS problem by 
analyzing the complexity of finding common ap-
proximate substrings [2]. The initial version of PMS 
assumed that there are exactly d different positions 
between a motif and a motif instance. To more effec-
tively predict motifs in real biological data, in recent 
years researches (including us) have begun to focus 
on an improved version where a motif instance differs 
from the associated motif in at most d positions. 

Numerous algorithms, either exact or approxi-
mate, have been proposed to identify (l, d) motifs. The 
principle of the exact algorithms is to report all (l, d) 
motifs and the optimal one using as little time as pos-
sible. In our previous work, we proposed an exact 
algorithm named PairMotif [29]. PairMotif is able to 
quickly solve many PMS instances except for the 
challenging ones with large l, such as (21, 8) and (23, 
9). To the best of our knowledge, PMS5 [27] is the 
fastest exact algorithm for solving challenging in-
stances with large l, but its time overhead is still far 
from satisfactory. The aim of most approximate 
recognition algorithms is to get as good results as 
possible in a short time, such as MEME [6], which 
always returns results within several seconds. In 
solving some PMS instances, such as (15, 4) and (18, 
6), MEME achieves a good prediction accuracy. 
However, MEME, as well as many other approximate 
algorithms, shows a poor ability to identify highly 
degenerate motifs. 

In the present study, we aim to make a good 
trade-off between prediction accuracy and time per-
formance for motif search. Specifically, our goal is to 
use a reasonable time (within an hour on personal 
computers) to obtain results with high accuracy. This 
goal is achieved by designing a new algorithm called 
PairMotif+ using the strategy of PairMotif: extract 
some pairs of l-mers from input sequences S, and then 
refine each of them. Unlike PairMotif, PairMotif+ 
completes these tasks using the method based on 
probabilistic analysis rather than the exhaustive 
search.  

From the theoretical perspective, PairMotif+ 
guarantees both a good time performance (efficiency) 
and a good prediction accuracy (validity). To get good 
time performance, we extract pairs of l-mers from S 
with the restriction of the threshold k and further filter 
them using the filtering strength q. After these opera-
tions, the number of pairs to be refined by PairMotif+ 
is about O(n), far less than the number of pairs pro-
cessed by PariMotif, O(n2). Moreover, in refining pairs 

of l-mers, unlike PairMotif that verifies all possible 
candidate motifs, PairMotif+ adopts an approximate 
refinement strategy and avoids the verification of 
most candidate motifs. 

To achieve good prediction accuracy, first, the 
pairs of l-mers to be refined should contain at least 
one pair of motif instances, and the key point is to set 
the parameters k and q according to probabilistic 
analysis and statistical method; second, in refining 
pairs of l-mers, the generated candidate motifs should 
contain the desired motif, and the key point is to de-
termine which part of subsets in the partition of can-
didate motifs should be generated in terms of proba-
bilistic analysis. The foundation required by all of 
these work is the distance relation between a motif m 
and its instance m'. The basic distance relation that m 
and m' differ by at most d positions is not specific 
enough to carry out probabilistic analysis. Therefore, 
based on the basic relation, we adopt a more specific 
version, namely the expectation of the distance be-
tween m and m' is 3d/4, which allows us to quantita-
tively analyze how to set appropriate parameters. The 
choice of this expectation is reasonable: if the expec-
tation is too small, then our algorithm can only iden-
tify the highly conserved motifs and lacks a good 
scalability; if the expectation is d, it is not consistent 
with the practical biological case and will also de-
crease the time performance of our algorithm.  

Experimental results also demonstrate the effi-
ciency and validity of PairMotif+. From the results on 
simulated data, we can find: (1) PairMotif+ is able to 
solve various PMS instances within an hour on per-
sonal computers. Particularly, all instances except for 
(21, 8) and (23, 9) are solved within several seconds to 
several minutes. (2) The prediction accuracy of Pair-
Motif+ is better than that of the compared algorithms 
and close to the optimal solution. (3) PairMotif+ 
shows a stable prediction as the sequence length is 
increased. (4) It is easy to extend PairMotif+ to solve 
the motif search problem that is not in the case of 
OOPS (one motif occurrence per sequence), and the 
prediction accuracy is stable over different number of 
planted motif instances. Moreover, for the experi-
ments on real biological data, we use two groups of 
data sets: (1) The first group includes DHFR, c-fos, 
preproinsulin, metallothionein and Yeast ECB [1], 
LexA[32] and E.coli CRP[33], which are used by many 
existing recognition algorithms to test their validity. 
For each of these data sets, PairMotif+ is able to find 
all or a large part of TFBSs. (2) The second group of 
data sets is the Tompa data [30], the standard data sets 
to evaluate the newly designed recognition algo-
rithms. The comprehensive performance of PairMo-
tif+ is comparable with that of the mature and popu-
lar algorithm MEME. 
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In summary, we have proposed a new approxi-
mate algorithm for the PMS problem and tested it on 
both simulated data and real biological data. This 
algorithm is good at identifying highly degenerate 
motifs, and outperforms the compared algorithms in 
identification accuracy. Although the execution time 
increases with the increase of the motif length, which 
is determined by the used pattern-driven framework, 
the proposed algorithm is able to solve various PMS 
instances within an hour on personal computers. 
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