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Abstract 

The physiological roles of polyphosphates (poly P) recently found in arthropod mitochondria 
remain obscure. Here, the possible involvement of poly P with reactive oxygen species generation 
in mitochondria of Rhipicephalus microplus embryos was investigated. Mitochondrial hexokinase 
and scavenger antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione re-
ductase were assayed during embryogenesis of R. microplus. The influence of poly P3 and poly P15 
were analyzed during the period of higher enzymatic activity during embryogenesis. Both poly Ps 
inhibited hexokinase activity by up to 90% and, interestingly, the mitochondrial membrane exo-
polyphosphatase activity was stimulated by the hexokinase reaction product, glucose-6-phosphate. 
Poly P increased hydrogen peroxide generation in mitochondria in a situation where mitochondrial 
hexokinase is also active. The superoxide dismutase, catalase and glutathione reductase activities 
were higher during embryo cellularization, at the end of embryogenesis and during embryo 
segmentation, respectively. All of the enzymes were stimulated by poly P3. However, superoxide 
dismutase was not affected by poly P15, catalase activity was stimulated only at high concentrations 
and glutathione reductase was the only enzyme that was stimulated in the same way by both poly 
Ps. Altogether, our results indicate that inorganic polyphosphate and mitochondrial membrane 
exopolyphosphatase regulation can be correlated with the generation of reactive oxygen species in 
the mitochondria of R. microplus embryos. 

Key words: inorganic polyphosphate; reactive oxygen species; arthropod; mitochondria; scavenger 
antioxidant enzymes. 

Introduction 
Inorganic polyphosphates (poly P) are long 

chains of a few to several hundred phosphate residues 
linked by phosphoanhydride bonds. Polyphosphates 
have been found in all cell types examined to date and 

have been demonstrated to play diverse roles de-
pending on the cell type and circumstances [1, 2]. The 
biological roles played by polyphosphates have been 
most extensively studied in prokaryotes and unicel-
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lular eukaryotes, where they have been shown to 
regulate many biochemical processes including the 
metabolism and transport of inorganic phosphate, 
cation sequestration and storage [1], membrane 
channel formation [3, 4], cell envelope formation and 
bacterial pathogenesis[5, 6], regulation of gene and 
enzyme activities [7] and activation of Lon proteases 
[8].  

Conversely, poly P functions have not been ex-
tensively investigated in higher eukaryotes, although 
some functions have been described such as the acti-
vation of TOR kinase [9], involvement in blood coag-
ulation [10], and apoptosis [11-13]. Regarding mito-
chondrial metabolism, mammalian mitochondrial 
poly P production is directly linked to their energetic 
state [14], as the level of poly P regulates the level of 
cellular ATP [14] and Ca2+ accumulation [15]. The 
interest in mitochondrial poly P is focused on two 
aspects: poly P as a macroenergetic compound with 
the same energy of hydrolysis of the phosphoanhy-
dride bond as ATP, and the fact that, according to the 
endosymbiotic theory, mitochondria originated from 
ancient prokaryotic cells; thus, it would be intriguing 
to discover whether or not mitochondria have pre-
served polyphosphate functions such as the regula-
tion of energy metabolism [16, 17]. Recently, we have 
demonstrated that electron flux and redox states may 
exert some influence and be influenced by the activity 
of membrane exopolyphosphatase (PPX), the enzyme 
that splits Pi off the end of a poly P chain, suggesting 
that it plays a role in energy supply during R. mi-
croplus embryogenesis [18]. 

The metabolism of free hexoses begins by 
phosphorylation in a reaction catalyzed by the hexo-
kinase (ATP: hexose-6-phosphotransferase, E.C. 
2.7.1.1; HK). This enzyme has been characterized in 
several organisms [19-24]. Four distinct hexokinase 
isozymes are reported for mammalian tissues and are 
named types I–IV. These isozymes have an internal 
repeat sequence in their N- and C- terminal halves 
that is found in mammals, insects and nematodes [20, 
25, 26]. In arthropods the binding mechanism of HK 
to the outer mitochondrial membrane is not fully es-
tablished.  

The mitochondrial electron transport system 
(ETS) represents one of the major sources of cellular 
reactive oxygen species (ROS) such as superoxide 
(O2•__) and hydrogen peroxide (H2O2), providing 
continuous generation of these toxic products [27]. 
The scavenger activity of antioxidant enzymes con-
stitutes an essential mechanism directed against the 
primary ROS generated by mitochondrial ETS. Su-
peroxide dismutase (SOD) rapidly converts O2•__ to 
H2O2, protecting the mitochondrial iron-sulfur clus-
ter-containing enzymes from O2•__ attack [28]. This 

enzyme is present in the matrix (Mn-SOD) and in the 
intermembrane space (Zn-SOD) [29-32]. The abun-
dance of this enzyme, as well as its presence in both 
mitochondrial compartments, attests to the im-
portance of removing mitochondrially-generated 
O2•__ [33]. Catalase (CAT) acts by decomposing H2O2 
into H2O and O2, avoiding the production of hydroxyl 
radicals (HO•) in the presence of transition metals. 
The presence of CAT in mitochondria is of great im-
portance, as decomposition of H2O2 protects these 
organelles against intra- and extra-mitochondrially 
generated H2O2 [34, 35]. Glutathione reductase (GR) is 
the enzyme that regenerates reduced glutathione in 
the mitochondrial matrix. Reduced glutathione can 
scavenge ROS non-enzymatically or by serving as an 
electron-donating substrate to several enzymes in-
volved in ROS-detoxification [36]. 

Ticks are vectors of parasites that cause hemo-
parasitic diseases and are endemic in many cattle 
production areas [37]. The present study focuses on 
Rhipicephalus microplus, which causes heavy economic 
losses to bovine herds, particularly in tropical regions; 
thus, major efforts have been directed toward devel-
oping immunoprophylactic tick-control tools [38, 39]. 
R. microplus has only one host throughout its three life 
stages, which is usually a bovine, and has a long 
feeding period (approximately 21 days). Female ticks, 
after engorgement, drop off the host and initiate ovi-
position approximately three days later. Being an 
oviparous animal, embryogenesis occurs in the ab-
sence of exogenous nutrients; maternal nutrients are 
packaged into oocytes and stored mostly as yolk 
granules. Hatching occurs approximately 21 days 
after egg laying and the emerging larvae can survive 
for several weeks before finding a host, using the re-
maining yolk as their only energy source [40, 41]. 

The aim of this study was to investigate the pos-
sible involvement of poly P in reactive oxygen species 
generation in mitochondria of R. microplus embryos. 
Such findings could reveal an important role for poly 
P metabolism in arthropods. 

Materials and Methods 
Ticks and reagents 

Ticks were obtained from a colony maintained at 
the Faculdade de Veterinária, Universidade Federal 
do Rio Grande do Sul (UFRGS), Brazil as previously 
described [39]. R. microplus (Acarina, Ixodidae) ticks 
from the Porto Alegre strain, free of parasites, were 
reared on calves obtained from a tick-free area. En-
gorged adult females were maintained in Petri dishes 
at 28°C and 80% relative humidity upon completion 
of oviposition, which starts approximately three days 
after adult ticks drop off calves. Animals were treated 
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in compliance with the UFRGS review committee for 
animal care. The reagents were purchased from Sigma 
(USA), Amersham Biosciences (USA), Invitrogen 
(USA) and Merck (Germany). 

Isolation of Mitochondria 
The cell fractionation procedure used required 

large amounts of fresh eggs (at least 2 g) to obtain 
functionally active mitochondrial fractions. Mito-
chondria were isolated by differential centrifugation, 
following the procedure described by [42]. Eggs were 
homogenized in a buffer containing 0.5 M sucrose, 100 
μM leupeptin, 100 nM pepstatin, 1 mM PMSF, 10 mM 
EGTA, 1% bovine albumin (fat acid free) and 50 mM 
HEPES, pH 7.4. The homogenate was centrifuged at 
500 X g for 5 min. The supernatant was carefully re-
moved and centrifuged at 2,000 X g for 10 min to yield 
a nuclear pellet. Then, the supernatant was submitted 
to another centrifugation at 7,000 X g for 15 min and 
the mitochondrial pellet that resulted was 
re-suspended in a storage buffer containing 120 mM 
KCl, 1 mM EGTA, 0.2% bovine albumin, and 10 mM 
Tris HCl, pH 7.4. Isolation of the mitochondrial 
membrane fraction was performed by sonication of 
freshly prepared mitochondria three times for 20 s at 
the maximal output using an MSE ultrasonic disinte-
grator. The suspension was centrifuged for 10 min at 
12,000 × g to remove unbroken mitochondria. The 
supernatant was centrifuged at 100,000 × g for 60 min 
to yield the mitochondrial membrane fraction and the 
pellet was re-suspended in a buffer containing 10 mM 
Tris HCl, pH 7.4[18]. Protein was determined by the 
Folin-Lowry method using bovine serum albumin as 
a standard [43]. 

Determination of mitochondrial hexokinase 
activity 

The activity of mitochondrial hexokinase was 
determined based on [27]. A 0.1 mg/mL dilution of 
mitochondrial protein was used and mitochondrial 
hexokinase was determined by NADH formation; the 
absorbance was followed at 340 nm at 37oC using a 
molar extinction coefficient of 6.22 M−1. The assay 
medium contained 10 mM Tris HCl, pH 7.4, 5 mM 
glucose, 10 mM MgCl2, 1 mM β–NAD+, 2 units/ml 
G6PDH (glucose-6-phosphate dehydrogenase) from 
Leuconostoc mesenteroides and 50 mM Ap5A 
(P1,P5-di(adenosine 50)-pentaphosphate), in a final 
volume of 1 mL. The reaction was started by adding 1 
mM ATP. 

Exopolyphosphatase Assay 
The reaction mixture consisted of 50 mM Tris 

HCl buffer (pH 7.4) and 5 mM MgCl2, using 5 mM 
polyP3 as the substrate. Reactions were performed at 

37°C. The Pi formed during the reaction was spec-
trophotometrically determined as described by[44], 
adding a solution of 0.5% ammonium molybdate, 0.35 
M sulfuric acid, 0.5% sodium dodecyl sulfate, and 
10% ascorbic acid. Measurements of absorbance at 750 
nm were performed after 15 min. One unit of enzyme 
activity (U) was defined as the quantity of enzyme 
liberating 1 μmoL of Pi per min. PPX activity during 
mitochondrial respiration was measured using a re-
action mixture consisting of 50 mM Tris HCl buffer 
(pH 7.4), 120 mM KCl, 1 mM EGTA, 5 mM MgCl2, and 
0.2 mM adenosine diphosphate (ADP) in the absence 
of any Pi source. PolyP3 (0.5 μM) was used as a sub-
strate for PPX activity and 5 mM pyruvate was used 
as an oxidative substrate. Potassium cyanide (KCN, 1 
mM) and 20 μg/mL heparin were used to inhibit cy-
tochrome oxidase and PPX activities, respectively. 
The reaction was performed at 28 °C for 15 min [42]. 

Spectrofluorometric measurements of mito-
chondrial H2O2 generation 

Mitochondrial release of H2O2 was assessed by 
the Amplex Red oxidation method [45]. Mitochondria 
(0.2 mg protein/ mL) were incubated in buffer con-
taining 10 mM Tris HCl, pH 7.4, 0.32 M mannitol, 8 
mM inorganic phosphate, 5 mM MgCl2, 0.08 mM 
EDTA, 1 mM EGTA, 1 mM ATP, 10 mM succinate and 
0.2 mg/mL fatty acid-free bovine serum albumin 
supplemented with 10 mM Amplex Red and 2 
units/mL horseradish peroxidase. After 5 min incu-
bation, the fluorescence (Ex: 563nm; Em: 587nm) was 
measured using a Cary Eclipse spectrofluorometer. 
The total H2O2 released was corrected for non-specific 
oxidation of Amplex Red measured in the absence of 
horseradish peroxidase. The maximal rate (100%) of 
mitochondrial H2O2 formation was assumed to be the 
difference between the rate of H2O2 formation in the 
absence of oxidative substrate and that measured af-
ter the addition of succinate. 

Determination of Mn-SOD activity 
The mitochondrial fraction (20 µg/mL) was used 

to determine Mn-SOD activity using an indirect 
competition assay between SOD and an indicator 
molecule, nitroblue tetrazolium [46]. The reaction 
mixture contained 13 mM methionine, 75 µM nitro-
blue tetrazolium, 100 mM ethylenediamine tetraacetic 
acid (EDTA), and 2 µM riboflavin in phosphate buffer 
(50 mM, pH 7.4) to a final volume of 1 mL at 25oC; the 
change in absorbance was observed at 560 nm. One 
unit of SOD was defined as the amount of enzyme 
needed to inhibit the reduction of nitroblue tetrazo-
lium (NBT) by 50%. Sodium cyanide (5 mM) was used 
to inhibit Cu/ZnSOD activity. 
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Determination of CAT activity 
CAT activity was determined according to the 

method of Aebi[47]. The mitochondrial fraction (50 
mg/mL) was added to phosphate buffer (50 mM, pH 
7.0) containing 15 mM H2O2 as substrate; the change 
in absorbance was noted at 240 nm at 25oC using an 
extinction coefficient of 43.6 M-1cm-1. The specificity of 
CAT activity to degrade H2O2 was confirmed by in-
hibiting the activity with aminotriazole (20 mM), a 
compound that is a specific catalase inhibitor [48]. 

Determination of GR activity 
GR activity was measured by monitoring the 

oxidation of β-NADPH [49]. The reaction mixture 
contained 1 mM GSSG and 0.1 mM β-NADPH in 
phosphate buffer (0.1 M, pH 7.0) in a final volume of 1 
mL at 30oC. The reaction was initiated by adding the 
mitochondrial fraction (50 mg/mL) to the cuvette and 
following the decrease in absorbance at 340 nm at 
30oC. One unit of GR was equivalent to the oxidation 
of 1 mmol of NADPH per min at pH 7.0 at 30oC. 

Statistical analysis 
Results were expressed as mean ± standard error 

(± SE) and one-way ANOVA was used for statistical 
analysis, followed by the post hoc Tukey test. Data 
were considered statistically significant when P < 
0.05. 

Results and Discussion 
Although the first evidence for the presence of 

poly P in mammalian cells was obtained a long time 
ago [50], relatively few studies have addressed its 
physiological roles in animal cells [1, 9-12, 14, 18, 42, 
51, 52].  

Early R. microplus embryonic stages are similar to 
those of mosquitoes [53]. Tick embryogenesis is char-
acterized by the formation of a cellularized blasto-
dermal cell layer up to day 4. Thereafter, the embryo 
starts segment formation and initiates organogenesis 
[24, 54]. Previously, we provided evidence that mito-
chondrial membrane PPX plays a role in energy me-
tabolism in R. microplus during embryo development 
[18]. Here, we demonstrate that inorganic polyphos-
phate and mitochondrial membrane PPX regulation 
can be correlated to the generation of reactive oxygen 
species in mitochondria during R. microplus embryo 
development.  

Regulation of mitochondrial hexokinase by 
inorganic polyphosphate 

Mitochondria from tick embryos were previ-
ously characterized by our research group [18, 42, 51]. 
Mitochondria from tick embryos were isolated and 
the mitochondrial hexokinase activity was analyzed 

during R. microplus embryogenesis. The activity was 
higher (320.7 ± 50) during embryo cellularization, on 
the 3rd day of development (Figure 1A). The profile 
was not altered after normalization for mitochondrial 
recovery using the specific activity of F1Fo APTase as a 
specific mitochondrial marker instead of mitochon-
drial protein (data not shown). Cytoplasmic hexo-
kinase activity during R. microplus embryogenesis has 
already been determined by da-Silva [55], and 
showed a distinct profile. Our results suggest that a 
mitochondrial hexokinase isoform exists, because 
higher levels of activity were observed in mitochon-
dria during early embryogenesis, while higher levels 
were observed in the cytoplasm near larval eclosion 
[55] indicating different roles for these isoforms dur-
ing embryo development. The day corresponding to 
the peak of activity (day 3) was used to analyze the 
influence of poly P3 and poly P15 on mitochondrial 
hexokinase. Both poly Ps inhibited mitochondrial 
hexokinase activity by up to 90% at a 20 µM concen-
tration (Figure 1B and 1C). 

To confirm the relationship between mitochon-
drial hexokinase and poly P metabolism, the effects of 
glucose-6-phosphate, a hexokinase reaction product, 
on mitochondrial membrane PPX activity was evalu-
ated. In fact, mitochondrial membrane PPX activity 
was stimulated by about 40% when using 2 mM glu-
cose-6-phosphate (Figure 2). The observed decrease in 
mitochondrial hexokinase activity by poly P and the 
increase in mitochondrial membrane PPX activity by 
glucose-6-phosphate indicate a co-regulation between 
these enzymes. 

A portion of basal mitochondrial respiration re-
sults from the consumption of oxygen that is pro-
moted by ADP recycling by mitochondrial kinases 
[56]. We have previously demonstrated that poly P 
can be used as a Pi donor for adeno-
sine-5’-triphosphate (ATP) synthesis in ticks [42]. To 
obtain further insight into the relationship between 
these enzymes during mitochondrial respiration, mi-
tochondrial membrane PPX activity was measured 
using pyruvate as the substrate and poly P3 as the 
only source of Pi. Poly P3 was used in this assay be-
cause the affinity of mitochondrial membrane PPX for 
polyP3 is 10 times stronger than for polyP15 [18]. Dur-
ing this assay, the addition of small amounts of ADP 
(0.2 mM) induces state 3 followed by state 4, when all 
of the ADP was converted to ATP. Thus, during state 
3, a balance exists between Pi released by PPX and 
ATP synthesis, because PPX is measured by the 
amount of Pi. Membrane PPX activity increased by a 
factor of three during mitochondrial respiration when 
pyruvate and ADP were added, and increased signif-
icantly when glucose-6-phosphate was added. Hepa-
rin, a PPX inhibitor, and KCN, a mitochondrial elec-
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tron transport inhibitor, were used as controls. Hepa-
rin completely inhibited the membrane PPX activity 
and the stimulatory effects disappeared after mito-
chondrial respiration inhibition by KCN (Figure 3). 

This increase did not occur without ADP addition, 
indicating that PPX is stimulated during state 3 and 
the velocity of Pi release is higher than the rate of ATP 
synthesis [18]. 

 
Fig 1. Activity profile of mitochondrial hexokinase and regulation by polyphosphate. (A) Specific HK activity was measured in mitochondria on 
different days after oviposition and is represented as units per milligram of mitochondrial protein. The HK activity was normalized for mitochondrial 
recovery using the specific activity of F1Fo ATPase as a mitochondrial marker, instead of mitochondrial protein, and the same activity profile was obtained 
(data not shown). (B) Mitochondria were isolated from eggs on the 3rd day of embryogenesis and HK activity was determined in the presence of 5, 10 and 
20µM poly P3. (C) Mitochondria were isolated from eggs on the 3rd day of embryogenesis and HK activity was determined in the presence of 5, 10 and 20µM 
of poly P15. Data are the mean±S.E. of three independent experiments, in triplicate. *p < 0.05; **p < 0.001. 

 
Fig 2. Regulation of membrane mitochondrial PPX by glucose-6-phosphate. Membrane mitochondrial PPX activity was measured in mito-
chondria from eggs on the 9th day of development using poly P3 as a substrate in the presence of 0.5, 1.0 and 2.0 mM glucose-6-phosphate. Data are the 
mean±S.E. of three independent experiments, in triplicate. **p < 0.001. 
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Fig 3. Regulation of mitochondrial PPX activity during mito-
chondrial respiration. PPX activity was measured in egg mitochondria 
on the 9th day of development during mitochondrial respiration, using 
pyruvate as the oxidative substrate, polyP3 as the PPX substrate, KCN as 
an inhibitor of the respiratory chain, and Heparin as a PPX inhibitor. The 
specific activity is represented as units per milligram of mitochondrial 
protein. Data are the mean±S.E. of three independent experiments, in 
triplicate. **p < 0.01. 

 
 
The rate of mitochondrial ROS production is 

highly dependent on mitochondrial membrane po-
tential and inversely related to the availability of ADP 
used to drive ATP synthesis [57, 58]. In this context, it 
was demonstrated that mitochondrial kinases such as 
hexokinase play a key preventive antioxidant role, 
avoiding mitochondrial ROS generation[56, 59]. Thus, 
ADP-producing enzymes would maintain lower mi-
tochondrial membrane potentials and ROS levels in 
mitochondria [27]. We further confirmed the hypoth-
esis that poly P is correlated with reactive oxygen 
species generation in mitochondria by investigating 
whether poly P affects H2O2 generation in a situation 
where mitochondrial hexokinase also is active. First, it 
was observed that the addition of 2-deoxyglucose 
(2-DOG) decreased H2O2 generation by activating 
mitochondrial hexokinase. Then the addition of poly 
P3 and poly P15 restored the H2O2 levels nearly to con-
trol levels by inhibiting mitochondrial hexokinase. 
When PPX and mitochondrial hexokinase were stim-
ulated at the same time, the H2O2 generation was 
lower using poly P3; on the other hand, no significant 
effect was observed with poly P15 (Figure 4). Our 
group recently demonstrated that membrane mito-
chondrial PPX has a Km of 0.2 μM and Vmax of 2.4 
μmol/mg protein.min for poly P3, and a Km of 2.2 μM 
and Vmax of 1.1 μmol/mg protein.min for poly P15 

[18]. These kinetics parameters clarify the reason why, 
during the time of incubation (5 min) when PPX was 
stimulated by G6P, the effect on H2O2 generation was 
only observed using poly P3 as a substrate. These re-

sults reinforce the hypothesis of co-regulation be-
tween membrane mitochondrial PPX and mitochon-
drial hexokinase, and confirm the involvement of re-
active oxygen species generation in mitochondria by 
poly P. 

Based on Fig. 3 and Fig. 4, we investigated the 
hypothesis that polyphosphate (poly P3 and poly P15) 
would also affect scavenger antioxidant enzymes. 

 

 
Fig 4. Hydrogen peroxide generation in mitochondria. H2O2 
generation was measured in egg mitochondria (0.2 mg protein/ mL) on the 
9th day of development after addition of 10 mM succinate and 1 mM ATP 
with or without 10µM Poly P3, 10µM Poly P15, 10 mM 2-DOG or 2mM 
G6P. Data are the mean±S.E. of three independent experiments, in trip-
licate. *p < 0.05; **p < 0.001. 

 

Regulation of scavenger antioxidant enzymes 
by inorganic polyphosphate in mitochondria 

We determined the specific activities of scaven-
ger antioxidant enzymes in mitochondrial prepara-
tions from eggs during R. microplus embryogenesis. 
The Mn-SOD, CAT and GR activities were higher 
during embryo cellularization (3rd day of develop-
ment), at the end of embryogenesis (15th day of de-
velopment) and during embryo segmentation (7th day 
of development), respectively (Figure 5A, 5B and 5C). 
The profile was not altered after normalizing for mi-
tochondrial recovery using the specific activity of F1Fo 

APTase as a specific mitochondrial marker instead of 
mitochondrial protein (data not shown). These results 
reveal that, during embryogenesis, at least one scav-
enger antioxidant enzyme shows high levels of activ-
ity. 

 In fact, the rapid developmental kinetics ob-
served in embryogenesis probably requires a readily 
available energetic support. Our group showed an 
increase in oxygen consumption as well as rapid 
sugar mobilization and lipid reservation until the 12th 
day of development, a period that includes most cell 
proliferation and reorganization events [54]. As the 
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energy demand is high during these steps, pathways 
involved in energy transduction are increased, thus 
explaining the high oxygen consumption. However, a 
transient imbalance in energy demand may lead to an 
oxidative burst, releasing huge amounts of ROS. Our 
results are in line with these observations, as 
Mn-SOD, CAT and GR activities in the mitochondrial 
fraction were activated during cellularization and 
embryo segmentation (Figure 5), while only CAT ac-
tivity remained high after this phase of development. 
Some of these mechanisms against ROS have previ-
ously been characterized in arthropods[48, 60-64]. 
Antioxidant activity increases in the ovaries in order 
to protect the Rhodnius prolixus embryo [62]. In R. mi-
croplus, mitochondrial CAT activity was higher close 
to larval eclosion (Figure 5C) and in D. melanogaster it 
was observed that decreased CAT expression made 
the eggs fragile, so the embryos died immediately 
after eclosion [65]. 

To further investigate if scavenger antioxidant 
enzymes are regulated by poly P, the influence of 

different concentrations of poly P3 and P15 on 
Mn-SOD, CAT and GR were analyzed in mitochon-
drial fractions. All of the enzymes were stimulated by 
poly P3. Increasing concentrations of poly P3 increased 
Mn-SOD, CAT and GR activities by a factor of 10, 3 
and 3, respectively (Figure 6A, 6B and 6C). However, 
the effect was different using poly P15. Mn-SOD activ-
ity, which was the most stimulated by poly P3, was 
not affected by poly P15, CAT activity was stimulated 
only by 20 µM Poly P15 and GR was the only enzyme 
that was stimulated in the same way by both poly Ps 
(Figure 7A, 7B and 7C). These results suggest that 
regulation by poly P is dependent on the chain length, 
and SOD, CAT and GR have different sensitivities to 
this. As can be seen from Figures 1B and 1C, in the 
presence of mainly poly P3, hexokinase activity was 
inhibited and Mn-SOD, CAT and GR activities were 
increased, suggesting a compensatory mechanism of 
regulation between mitochondrial hexokinase and 
scavenger antioxidant enzymes by poly P. 

 

 
Fig 5. The activities of mitochondrial scavenger antioxidant enzymes. (A) SOD-specific activity was measured in mitochondria on different days 
after oviposition and is represented as units per milligram of mitochondrial protein. (B) CAT-specific activity was measured in mitochondria on different 
days after oviposition and is represented as units per milligram of mitochondrial protein. (C) GR-specific activity was measured in mitochondria on different 
days after oviposition and is represented as units per milligram of mitochondrial protein. All enzyme activities were normalized for mitochondrial recovery 
using the specific activity of F1Fo ATPase as a mitochondrial marker instead of mitochondrial protein; the same activity profiles were obtained in both 
instances (data not shown). 
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Fig 6. Regulation of scavenger antioxidant enzymes by poly P3. (A) Egg mitochondria on the 3rd day of embryogenesis were isolated and SOD 
activity was determined in the presence of 5, 10 and 20 µM poly P3. (B) Egg mitochondria on the 15th day of embryogenesis were isolated and CAT activity 
was determined in the presence of 5, 10 and 20 µM poly P3. (C) Egg mitochondria on the 7th day of embryogenesis were isolated and GR activity was 
determined in the presence of 5, 10 and 20 µM poly P3. Data are the mean±S.E. of three independent experiments, in triplicate. *p < 0.05; **p < 0.001. 

 
Fig 7. Regulation of scavenger antioxidant enzymes by poly P15. (A) Egg mitochondria on the 3rd day of embryogenesis were isolated and SOD 
activity was determined in the presence of 5, 10 and 20 µM poly P15. (B) Egg mitochondria on the 15th day of embryogenesis were isolated and CAT activity 
was determined in the presence of 5, 10 and 20 µM poly P15. (C) Egg mitochondria on the 7th day of embryogenesis were isolated and GR activity was 
determined in the presence of 5, 10 and 20µM poly P15. Data are the mean±S.E. of three independent experiments, in triplicate. *p < 0.05; **p < 0.001. 
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Conclusions 
The schematic diagram in figure 8 summarizes 

the major findings reported in this work. First, poly P 
inhibited mitochondrial hexokinase activity, a situa-
tion that increases ROS generation, which is inversely 
related to the availability of ADP used to drive ATP 

synthesis. In addition, in a compensatory way, poly P 
increases the activities of scavenger antioxidant en-
zymes, providing compelling evidence that poly P 
plays a role in mitochondrial ROS metabolism during 
R. microplus embryogenesis. 

 

 
Figure 8. Schematic representation of polyphosphate involvement in reactive oxygen species generation. Black arrows indicate an increase 
in enzymatic activity or ROS generation, blue arrows indicate poly P modulation of enzymes and green arrow indicates ADP recycling promoted by HK. 
Poly P represents polyphosphate, HK is mitochondrial hexokinase, ROS denotes reactive oxygen species, SOD is superoxide dismutase, CAT represents 
catalase and GR denotes glutathione reductase. 
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