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Abstract 

Network biology integrates different kinds of data, including physical or functional networks and 
disease gene sets, to interpret human disease. A clique (maximal complete subgraph) in a pro-
tein-protein interaction network is a topological module and possesses inherently biological sig-
nificance. A disease-related clique possibly associates with complex diseases. Fully identifying 
disease components in a clique is conductive to uncovering disease mechanisms. This paper 
proposes an approach of predicting disease proteins based on cliques in a protein-protein inter-
action network. To tolerate false positive and negative interactions in protein networks, extending 
cliques and scoring predicted disease proteins with gene ontology terms are introduced to the 
clique-based method. Precisions of predicted disease proteins are verified by disease phenotypes 
and steadily keep to more than 95%. The predicted disease proteins associated with cliques can 
partly complement mapping between genotype and phenotype, and provide clues for under-
standing the pathogenesis of serious diseases. 

Key words: predicting disease proteins, clique centrality analysis, association with complex dis-
eases, data integration, protein-protein interaction networks. 

Introduction 
Protein–protein interaction networks (PPINs) are 

fundamental to understanding of cellular organiza-
tions, biological processes, and protein functions [1]. 
PPINs have been used to explore disease mechanisms 
via associating the genotype with the phenotype built 
in the Online Mendelian Inheritance in Man (OMIM) 
database [2]. Network biology integrates data of cel-
lular networks and gene diseases to provide insightful 
models that unravel the complex relationship of hu-
man diseases [3]. Ideker and Sharan [4] indicate four 
major areas applied PPINs to diseases including 
identifying new disease genes, the study of their 
network properties, identifying disease-related sub-
networks and network-based disease classification. 
This paper deals with discovering disease-related 
proteins. This is a basic work because a large number 
of disease proteins are still unknown and what’s 

known is just like the tip of the iceberg [5].  
Topological properties of PPINs are often inves-

tigated in predicting disease genes [3, 4, 6]. A hub (a 
node with a high degree) in a network is more likely 
to be associated with essential genes and cancers [2]. 
Betweenness centrality (bottleneck) measures the rel-
ative number of shortest paths passing through a 
vertex in connecting with all pairs of nodes and can be 
used to associate with mendelian and complex disease 
genes [7]. A topological module is a particularly dense 
region in PPIN. Topological modules may be network 
patterns owning particular characters (e.g. Graphlet 
[8], motif [9] and k-core [10]) or a variety of subgraphs 
identified by network clustering algorithms [11], etc. 
These topological modules can be used to predict 
disease genes due to the fact that genes associated 
with the same or similar diseases often carry specific 
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cellular functions, cluster round common neighbor-
hoods or share same topological features with each 
other [12]. Besides topological modules, there are the 
other two categories of modules, i.e. the module of 
function and disease. A functional module clusters 
nodes prone to similar function. A disease module 
encloses several nodes corresponding to a disease [3]. 
In practical application, the three modules are often 
considered to overlap each other and are approbated 
the hypothesis stating that proteins involved in the 
same disease have a tendency to interact with each 
other as a module [13]. Graphlet [14] and k-core [15] 
approaches have successfully been used to predict 
disease genes. Clustering subgraphs also can be used 
to predict new disease proteins [16]. Approaches of 
predicting disease proteins based on topological 
properties of networks can complement each other. 
However, data errors (false positives) and defections 
(false negatives) in PPINs may distort physical struc-
ture of networks and interfere topological properties 
associated with diseases [17]. 

A clique is a fully connected subgraph and pos-
sesses advantages of topological modules. And, the 
changeless paradigm of a clique construction is 
unique and rigorous compared with clusters. Cliques 
have been used successfully to identify functional 
modules and protein complexes in PPINs [18]. A 
clique approach of associating diseases is proved to be 
feasible and effective in a small pathway [19]. How-
ever, clique centrality based on a large PPIN applied 
to disease study also have some limitations, involving 
complex computation, the stringent rule of forming 
clique and the obstruction of incomplete data. Unde-
niably, cliques in PPINs have importantly biological 
significance. The complex diseases (e.g. cancers) ex-
hibit an increase in connectivity [15], which properly 
agrees with the clique structure. Proteins in dis-
ease-related cliques are more likely to associates with 
diverse phenotypes. Perturbation of arbitrary node in 
a clique will directly destroy the function of other 
neighbors. Furthermore, disease-related cliques pro-
vide a good clue for disease pathogenesis. For in-
stance, the neighbors of disease-related cliques exhibit 
to be valuable candidates because they may be con-
nected by high-degree hubs in a network [17], or may 
represent interesting drug targets [20]. 

We propose an approach based on cliques in a 
large scale PPIN to predict disease-related proteins. 
First, we annotate each protein in a PPIN with a 
known disease dataset. Then, we mine cliques in the 
PPIN and identify the disease-related cliques via a 
statistical significance test of disease proteins. Finally, 
disease proteins are predicted based on dis-
ease-related cliques. The disadvantage of the ap-
proach of only using clique topology is easily im-

pacted by the deficient data in a PPIN. The structure 
of a clique is so stringent that false negative interac-
tions in a PPIN will easily interfere with the number 
of mined cliques. Hence, we relax the clique criterion, 
i.e., allowing a clique to have a few missed edges, to 
increase the number and size of cliques. The extended 
cliques that closely approximate to cliques are named 
as ex-cliques. Extending cliques increases the number 
and size of cliques, which directly leads to the incre-
ment of predicted disease proteins. But many false 
positive interactions may be included in ex-cliques 
and affect the accuracy of predicting disease proteins. 
So, gene ontology (GO) scoring is introduced to de-
cide the final predictions of disease proteins according 
to the fact that genes associated with the same disor-
der have significantly higher GO homogeneity than 
random expectation [2]. Scoring predicted disease 
proteins is based on three hierarchies of GO contain-
ing molecular functions (MF), biological processes 
(BP) and cellular components (CC) [21]. GO scoring 
improves the quality of predicted disease proteins.  

The performance of our approach is estimated 
under two conditions of the simulated deficiency, i.e., 
incomplete protein interaction data and missing 
known disease proteins. To simulate the first situa-
tion, we use two real PPINs. One comes from the 
Human Protein Reference Database (HPRD) [22], and 
the other is the Online Predicted Human Interaction 
Database (OPHID) [23], which is larger than HPRD 
and almost covers it. HPRD dataset can simulate a 
PPIN with data defection if the PPIN of OPHID is 
viewed as a relatively full dataset. The predicted 
numbers of disease proteins based on the two PPINs 
are 69 and 83, respectively. The predicted disease 
proteins are verified by the Genetic Association Da-
tabase (GAD) [24] with precisions of 95.65% and 
95.18%, respectively. The original number of pro-
tein-protein interactions lightly affects the prediction 
number of disease proteins but not the precision. It 
demonstrates that our approach is robust against 
noise of false negatives. To simulate the second situa-
tion, known disease proteins are hidden randomly 
with various numbers of four groups. The experiment 
of each group is repeated 1000 times (details see re-
sults). The precision expectation of each group is still 
stably above 95% and the recall expectation of hidden 
disease proteins is ~10%. Therefore, the approach of 
predicting disease-related proteins is reliable. It con-
tributes to emphasize some significant proteins on 
pathogenic mechanism of complex or serious diseas-
es.  

Materials and Methods 
Predicting disease proteins is based on a PPIN 

and known disease proteins (see Fig. 1), which mainly 
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includes the steps of mining and extending cliques, 
identifying disease-related cliques and scoring the 
predicted disease proteins with GO. We obtain two 
groups of the predicted disease proteins via selecting 
different routes in Fig. 1. The first group (G1) of the 
predicted disease proteins is generated only based on 
network topology of cliques. The second group (G2) is 
derived from the appended steps of extending cliques 
and scoring predictions with GO. The predicted dis-
ease proteins are evaluated with disease phenotypes, 
respectively. Via estimating the number and precision 
of predictions between G1 and G2, we can identify a 
suitable route to predict disease proteins.  

Data materials 
We applied our approach to two human PPINs, 

respectively. The version of HPRD was Release9 and 
the one of OPHID was 2.0. The PPIN of OPHID was a 
mixed dataset which contained the protein-protein 
interactions oriented from multiple databases. We 
picked through interactions from databases of BIND 
[25], HPRD and MINT [26] to insure the reliability of 
interactions. The self and repeat interactions in these 
two PPINs were eliminated in order to mine cliques in 
a PPIN. Proteins in a PPIN were labeled with the state 
of normal or disease (0/1). The information of disease 
proteins could be extracted from the Online Mende-
lian Inheritance in Man (OMIM) database [27], which 
contained 5,662 diseases in the file “morbidmap” and 
was last updated on February 22, 2011. Protein names 
in OPHID were translated from Swiss-Prot name to 
gene symbol name using the UniProt Knowledgebase 
[28] since the genotype-phenotype relationship in 
OMIM only contained gene symbol names. Proteins 
which did not match gene symbol names and their 
interactions were removed from the PPIN of OPHID. 
The final PPIN of HPRD contained 36,867 interactions 
of the original 39,240 ones; the PPIN of OPHID kept 
43,180 interactions from the original ~64,000 ones. The 
protein nodes in HPRD and OPHID were 9,463 and 
9,969, of which 1,840 and 1,887 were labeled as disease 
proteins via the map of OMIM, respectively. 

Mining cliques in a PPIN 
A PPIN is modeled as an undirected graph G = 

(V, E), where V is the set of all vertices (proteins) and 
E is the set of all edges (interactions) in the graph G. 
Mining cliques in a graph is well known as an 
NP-complete problem [29]. Due to the scale-free 
character of a PPIN, i.e. most proteins participate in 
only a few interactions, the current enumeration al-
gorithms of mining clique works well. This paper 
applied the method of mining clique proposed by 
Gendreau et al. [30] to obtain all cliques in a PPIN.  

Extending the minded cliques 
The mined cliques as kernels were extended by 

relaxing the density of a clique from 1 to 0.9. For a 
cluster (highly connected subgraph) S, the density, 
den(S), of S is defined as den(S)=2m/n(n-1), where m 
and n are the number of edges and nodes in S, re-
spectively. Fig. 2 showed the process of extending a 
clique based on a tree approach. For a given clique, 
the potentially extended nodes came from the neigh-
bor of clique components, which constituted a 
neighbor pool. Every node in the neighbor pool was 
appended into the clique. The density of the new 
clique was calculated. If it was more than 0.9, the node 
of neighbor pool would be appended into the candi-
date pool (Fig. 2A). The nodes of candidate pool en-
larged a clique to an extended clique. The clique was 
viewed as a root and was extended by one or more 
nodes from the candidate pool. We applied a greedy 
depth-first search, i.e., the node was selected to gen-
erate a bigger ex-clique if it was appended into the 
current clique and the new clique had the highest 
density, and then the node was removed from the 
candidate pool. Once an ex-clique was not enlarged, 
the tree investigation returned to the up level to begin 
a new search (see Fig. 2B and 2C). This process was 
repeated until the candidate pool was null. Detail 
contents of the algorithm could be seen in the sup-
plementary material.  

 

  
Figrue 1. Flowchart of predicting disease proteins. 
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Figure 2. The process of extending a clique. (A) Identification of the extended nodes space; (B) A depth-first search tree with the square and circle 
representing a clique and an extended node from the candidate pool, respectively; (C) The extended clique set. 

 

Scoring predicted disease proteins with GO 
terms 

Proteins in disease-related cliques were prone to 
having the similar GO terms. We partitioned proteins 
in a disease-related clique into two groups, i.e. normal 
set and disease set corresponding to depositing pre-
dicted disease proteins and known disease proteins, 
respectively. A protein in the normal set would be 
compared with every protein in the disease set to in-
vestigate whether a common term existed on three 
respective levels of GO. For example, in a disease 
clique, m proteins (p1, p2, … , pm) were involved in the 
disease set and a protein p0 came from the normal set. 
They were annotated with GO terms. A common term 
between protein p0 and pi (i = 1,…, m) was required at 
least on MF, BP and CC level of GO, respectively. If 
there was not a common term between p0 and a dis-
ease protein pi on a level of GO, p0 was not predicted 
as a disease protein and would be filtered out from 
predictions. The process of scoring the predicted dis-
ease protein p0 on MF of GO was calculated as follows 
(Formula 1 and 2). 

 
   

…(1) 

     …(2) 

The scores of the protein p0 based on BP of GO 
(scoreBP) and CC of GO (scoreCC) were similarly ob-
tained just like scoreMF. The final GO score of the pro-
tein p0 in the clique was as bellow. 

  …(3) 

The GO score of every predicted disease protein 
was from 0 to 3. The predicted disease proteins were 
abandoned if the GO score was smaller than 3. 

Validating the predicted disease proteins 
In order to validate our predicted disease-related 

proteins, we compared them with the dataset of the 
Genetic Association Database (GAD), which con-
tained curated data extracted from references on can-
didate gene studies and afforded information of dis-
ease phenotypes and classifications. The quality of 
predicted disease proteins was evaluated by Precision. 
A predicted disease protein was confirmed as a true 
positive (TP) if it mapped a phenotype of a protein in 
GAD at least, otherwise it was a false positive (FP). 
Precision was the proportion of the predicted disease 
proteins hit in GAD and was defined as bellow. Fur-
thermore, we evaluated the recovery performance of 
our approach under the deficiency of known disease 
proteins. Some known disease proteins associated 
with disease-related cliques and ex-cliques were hid-
den. The proteins of the hidden set found in the pre-
dictions were true positives (TP), otherwise were false 
negatives (FN). Recall was defined as follows,  

,  and  . 

Results 
Performance on different PPINs 

Our approach was applied to the PPINs of 
HPRD and OPHID, respectively. The interactions of 
OPHID were ~6000 more than the ones of HPRD. Fig. 
3 showed the related data in each step of our ap-
proach. We obtained three predicted groups from a 
PPIN based on different steps, i.e., G1 (only using 
cliques), the candidate pool (only using ex-cliques) 
and G2 (using ex-cliques and GO scoring). The num-
bers of every predicted group from HPRD were less 
than the ones of OPHID. The more interactions gen-
erated the more cliques and ex-cliques, leading to 
predicting more disease proteins. The overlaps of 
predictions between the two PPINs had high propor-
tions to predictions derived from HPRD, i.e. 88.24% 
and 92.75%, respectively. For all predictions from the 
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two PPINs, the overlap ratio of various predicted 
groups between the two PPINs was defined as fol-
lows,  

Oi = |Gi∩Gi’| / |Gi∪Gi’| (i = 1, 2), 

where O1 represented the overlap ratio between G1 
and G1’, and O2 represented the overlap ratio between 
G2 and G2’. We found O2 (73%) > O1 (67%), which im-
plied that predicting disease protein based on the 
process of ex-cliques and GO scoring was more stable 
than only using cliques. And we noted that the num-
ber of predictions of HPRD based on ex-cliques and 
GO scoring was more than the one from OPHID only 
using cliques (|G2|>|G1’|). This also illustrated that 
the process of extending cliques could compensate the 
deficiency of a PPIN in some ways. 

Evaluating predicted diseases with GAD 
According to known disease phenotypes in 

GAD, we evaluated six groups of predicted disease 
proteins. Fig. 4 showed that precisions between the 
same kinds of predicted groups from two PPINs were 
close. The precisions of G2 are better than others, and 
the predicted numbers of the candidate pool are much 
more than the ones of G1 and G2. Predicting disease 
proteins was feasible only based on cliques if the 
PPIN was relatively complete and reliable. But using 
ex-cliques and GO scoring to predict disease proteins 

was more recommended according to the three factors 
(precision, predicted number and reliability of a 
PPIN). We applied it in predicting disease proteins 
based on the PPIN. For G2 derived from the PPIN of 
HPRD, 66 proteins of the 69 predicted disease ones 
were verified by GAD (Details could be seen in the 
supplementary material). The three remained proteins 
were found in another online disease database, Can-
cer Genome Anatomy Project (CGAP) [31], including 
genomic data for human, such as single nucleotide 
polymorphisms (SNPs). Protein KAT5 (OMIM: 
601409), GTF2I (OMIM: 601679) and SUV39H1 
(OMIM: 300254) were not hit in GAD. The state of 
KAT5 was the candidate SNPs, and GTF2I and 
SUV39H1 were the validated SNPs. Similarly, 79 
proteins of the 83 predicted disease proteins derived 
from the PPIN of OPHID were verified by GAD (see 
the supplement material). There were four uncon-
firmed proteins. Three were as same as the uncon-
firmed ones in HPRD. The new protein was KPNA1 
(OMIM: 600686), which was a candidate SNPs in 
CGAP. In the other hand, the precision of G2 was 
better than the one of G1’. This illustrated that the 
performance based on ex-cliques and GO scoring 
from a deficient PPIN was better than the one only 
using cliques from a relatively complete PPIN. 

 

 
Figure 3. Data flowchart of every performed process based on two PPINs. 
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Figure 4. The precisions and numbers of the predicted disease proteins hitting in GAD. 

 

 
Figure 5. Performance on disease proteins defection. The horizontal coordinate represents the deficient percentage of the known disease proteins. 

 
 

Performance under deficiency of known 
disease proteins  

A PPIN decided the number of cliques, and 
identifying disease-related cliques depended on 
known disease proteins. 220 disease proteins were 
involved in the disease-related cliques and ex-cliques 
based on the PPIN of HPRD. A leave-out approach 
was introduced to examine the performance of dis-
ease-related protein predictions with the defection of 
the disease data. We randomly hid k% disease pro-
teins of the 220 disease proteins and artificially turned 
them to normal state. Four groups of disease defec-
tion, i.e. 5%, 10%, 15% and 20%, were evaluated. The 
test of each group was repeated 1000 times and the 
performance was shown in Fig. 5. The precisions of 
four groups were from 95.82% to 96.03% and almost 
equaled each other. And, the less known disease pro-
teins were hidden, the smaller the precision of pre-
dictions waved. With the hidden disease proteins in-
creasing, the numbers of the predicted disease pro-
teins decreased. Interestingly, each average of the 
decreased ratio was ~10% of the predicted disease 
proteins while hiding 5% known disease ones. This 
illustrated that the deficiency of known disease pro-
teins affected predictions of disease proteins not in the 
aspect of the precision but the number. The more 
disease proteins were known, the more new disease 
proteins could be predicted. The average Recall 

showed that recovering disease proteins was not a 
superior ability. Thus, the integrity of more infor-
mation of known disease proteins contributed to the 
discovery of disease ones. 

Contribution of GO scoring 
Extending cliques in a PPIN enlarged the num-

ber and size of disease-related cliques. As a result, the 
more disease proteins were predicted. But ex-cliques 
might contain some false positive interactions. This 
decreased the strict rule of forming a clique, reducing 
precisions of predicting disease protein. The precision 
of the predicted disease proteins from the candidate 
pool dropped about 5% compared with the one based 
on cliques (see Fig. 4). GO terms were independent of 
PPIN datasets, which could reduce the interference of 
the false positive interactions in a PPIN and improve 
the precision of predictions. On the other hand, the 
common predicted disease proteins between G1 and 
G2 were almost one-third of total predictions corre-
sponding to the PPINs of HPRD and OPHID, respec-
tively (see table 1). There were many different predic-
tions based on the methods between GO similarity 
and pure network topology of cliques. This was be-
cause not only the process of extending cliques pre-
dicted news disease proteins, but also GO scoring 
filtered out many predictions of G2 contained in G1. 
This also illustrated that predictions from G1 and G2 
could compensated each other. 
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Table 1. A contrast between having GO and without GO. 

 G1 G2 G1∩G2 G1∪G2 Overlap 
HPRD 51 69 29 91 32% 
OPHID 61 79 36 104 35% 

 
 

Disease classification on predicted 
disease-related proteins 

A disease class always includes various pheno-
types, and a phenotype may associate with one or 
multiple disease classes. A predicted protein may 
correspond to various disease phenotypes which 
possibly belong to the same or multiple disease clas-
ses. The predicted disease proteins (G2 and G2’) from 
HPRD and OPHID involved 461 and 473 disease 
phenotypes, respectively. These phenotypes related to 
18 disease classes (see Fig 6). The top three disease 
classes were same as the predictions based on HPRD 

and OPHID, which were METABOLIC, CANCER and 
IMMUNE. The top ten phenotypes of the predicted 
disease proteins were showed in Fig. 7 and the top 
fifty of frequent phenotypes were listed in the sup-
plementary material. Of the top ten and fifty pheno-
types from the 66 predicted disease proteins of HPRD, 
six and 23 phenotypes belonged to cancer class, re-
spectively. These top phenotypes represented the 
common diseases which the predicted disease pro-
teins based on cliques were most likely tended to link 
with. We listed the twenties predicted disease pro-
teins of HPRD having the most numbers of pheno-
types and disease classes, respectively (see Fig. 8). 
Most of the proteins were consistent with the top 
phenotypes and disease classes, but some were not. 
This illustrated that the proteins having most pheno-
types and disease classes were not always associated 
with the top ones. 

 
 

 
Figure 6. Disease classifications of predicted disease proteins. 

 

 
Figure 7. Top 10 phenotypes of predicted disease proteins. 
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Figure 8. Top 20 predicted disease proteins of phenotypes and disease classes, and their intersections with the top n phenotypes and classes. 

  

Phenotypes similarity of predicted disease 
proteins based on cliques 

We evaluated the phenotype associations with 
disease-related ex-cliques and interactions for the 66 
predicted disease proteins from G2 based on the PPIN 
of HPRD (see Fig. 9). The maximal number of having 
common phenotypes was 24 between the proteins 
NBN and RAD51. The detail contents of phenotype 
between protein pairs could be seen from the sup-
plement materials. There were 1067 pairs (about 
~50%) having common phenotypes between 66 pro-
teins (see Fig. 9A). According to the distribution of the 
common phenotypes between protein pairs, we ob-
tained their similarity degree (p-value) with a signifi-
cance test for each pair (see Fig 9B). The Fig. 9C and 
9D showed that most of pairs were not from a dis-
ease-related ex-clique or an interaction, respectively. 
Overall, the pairs between predicted disease proteins 
derived from the different disease-related ex-cliques 
and interactions might have a common phenotype. 
On the other hand, a pair from a disease-related 
ex-clique or an interaction was prone to having a 
common phenotype, but not necessary. 

Assistance to studying complex disease with 
predicted disease proteins in cliques 

Appending the predicted disease proteins into 
the PPIN resulted in all of components of a dis-

ease-related clique to be disease proteins. According 
to relationships between genotype and phenotype, 
subgraphs of protein interaction were converted to 
the corresponding subgraphs of phenotype similarity 
and disease classification, respectively. The pheno-
type similarity between protein pairs in a dis-
ease-related clique C could be measured by the 
common phenotype density of a clique which was 
defined as CP(C)=2m/n(n-1), where m was the number 
of protein pairs in C having a or more common phe-
notype(s) and n was the number of nodes in C, re-
spectively. There were 228 disease ex-cliques (in-
cluding cliques) in the PPIN of HPRD whose all 
components possessed phenotypes. The mean value 
of CP(C) of them was 0.8469 and the standard devia-
tion of CP(C) was 0.1625. This also indicated that most 
protein pairs between disease-related cliques had 
common phenotypes. Integration of three kinds of 
networks provided a wide insight in investigating 
human diseases. The predicted disease proteins had a 
pushing effect on this process. Fig. 10 showed the 
relationships of interaction, phenotype and disease 
classes between proteins in the clique using three 
examples to make us understand related diseases di-
rectly.  

First, Fig. 10A showed an ex-clique of 12 nodes, 
including five disease proteins (yellow nodes). Based 
on the knowledge of GAD and GO terms, four pre-
dicted disease proteins (excluding PTK2) involved the 
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phenotype of “Tobacco Use Disorder” and partici-
pated in the biological process of “epidermal growth 
factor receptor signaling pathway”; PTK2, PTK2B and 
PIK3R1 belonged to “HIV”; PTK2B, SHC1 and 
PIK3R1 were related with “longevity”; and PTK2B, 
GRB2 and PIK3R1 were associated with “Type 2 Di-
abetes”. GRB2, SHC1 and PIK3R1 participated in the 
biological process of “leukocyte migration” and “in-
sulin receptor signaling pathway”. Especially, there 
were 21 common phenotypes between EGFR and 
ERBB2. All of proteins in the clique were associated 
with cancer. Multiple proteins annotated with GO 
terms in the ex-cliques were various growth factors or 
cell proliferation. 

Second, in Fig. 10B, the predicted disease pro-
teins, SMAD3, SMAD2 and SMAD4, were annotated 
by GAD and involved in diverse disease, such as 
hepatopulmonary syndrome, bone and colorectal 
cancer. SMAD3 and SP1 were associated with head 
and neck neoplasms. The proteins in the clique of size 
10 denoted various diseases, i.e. breast cancer, Alz-
heimer’s disease, epithelial ovarian cancer and pan-
creatic neoplasms, etc. The proteins in the clique were 
classified into cancer. Most of them (excluding EP300 
and SP1) belonged to immune class. All of the four 
predicted disease proteins had the GO annotation on 
the biological process of “positive regulation of tran-
scription from RNA polymerase II promoter”. 

 

 
Figure 9. Phenotype similarities of predicted disease proteins. (A) The distribution of the common phenotypes between predicted disease proteins. The 
inset highlights the lower left corner of the histogram to show the numbers of common phenotypes between 12 and 24. (B) The horizontal and vertical 
coordinates represent the 66 predicted disease proteins based on the PPIN of HPRD. The heat map shows the significance between two predicted disease 
proteins, and values were calculated with 1-p. (C) The mark in a common disease-related clique between two proteins. (D) The mark in an interaction 
between two proteins. 
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Figure 10. The network of protein interaction, phenotype and disease class based on disease-related cliques. The red node represents known disease 
proteins, and the yellow nodes are predicted disease proteins. The blue dot line denotes non-interaction relationship between nodes in the “Interaction” 
subgraphs. The disease proteins are connected by same phenotypes and disease classes in the “Phenotype” and “Disease class” subgraphs, respectively. 
Gray lines of varying thickness indicate the degree of disease phenotypic and the class similarity between disease genes, respectively. 

 
Third, Fig. 10C showed a clique of five nodes 

containing one predicted disease protein, CASP3. The 
five proteins in the clique were annotated with GO 
and they all participated in the biological process of 
“apoptosis”. CASP3, CDH1, CTNNB1 and CASP8 
were explained by GAD, including multiple diseases, 
such as bladder cancer, lung cancer, colorectal cancer 
and chronic obstructive pulmonary disease. In the 
clique, PSEN1 played a role of regulation with other 
proteins in the clique. CASP3 and CASP8 had 21 
common phenotypes about various cancers and the 
common biological process of “response to tumor 
necrosis factor”. The five proteins in the clique be-

longed to metabolic and developmental classifica-
tions. 

Discussion 
Predicting disease proteins only using the net-

work topology of cliques is feasible in a large PPIN. 
But a PPIN may include various false positive and 
negative interactions and will affect disease protein 
predictions. This paper proposes a clique method 
combined clique extending and GO scoring which has 
the advantage of being more robust against the defi-
ciency of network data. The precision and number of 
the predicted disease proteins are better than only 
using clique topology. However, extending clique and 
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GO scoring also have to face with certain problems to 
be solved. For instance, how do we identify the den-
sity of extended cliques? We present the relaxation 
threshold 0.9, which is applied based on two reasons, 
i.e. computational complexity and clique approxima-
tion. Generally, the density of tightly connected clus-
ters (modules) derived from PPINs is required to be 
more than 0.7. If we set the density of extended 
cliques to 0.7, the number of the extended cliques will 
increase dramatically and the computational time is 
oppressive. The quality of the extended cliques is 
lower than that of clustering subgraphs in PPINs. This 
is because the density of the kernel of the extended 
cliques is high and the density of peripheral sub-
graphs containing extended nodes is low. Under the 
situation of the same subgraph density, the edge dis-
tribution of the subgraphs identified with clustering 
methods is more symmetric than the one of ex-cliques. 
To keep the stringent rule of clique, we propose a 
tradeoff density of ex-cliques to be 0.9 corresponding 
to a good result of extending cliques. Another inter-
ference comes from the absent knowledge of GO. GO 
scoring may filter some predictions of true disease 
proteins due to the incompleteness of GO annotations.  

Predicted disease proteins based on cliques are 
always associated with multiple diseases. It is prone 
to having common phenotypes between them; espe-
cially they are from a clique. Active phenotypes of 
disease proteins may be decided by their neighbors in 
a clique. The predicted disease proteins enrich dis-
ease-related cliques, and we can get more important 
clues in studying complex diseases from them. 
However, the information is diverse and tangled. The 
components of the cliques are associated with multi-
ple diseases, between which logical relationships 
probably exists. For instance, in Fig. 10A, there are 
multiple proteins having the disease phenotypes 
“Tobacco Use Disorder”, “Type 2 Diabetes” and 
“Pancreatic Neoplasms”. Maybe a leader phenotype 
induces the others, or the one is guided by the com-
bination of two other phenotypes. Regretfully, a PPIN 
is an undirected graph and it is unknown who the 
origin is and who the result is. This may be solved via 
integrating interaction networks with other corre-
sponding cellular networks, such as metabolic and 
gene regulatory networks.  
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