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Abstract 

Recent years, we have witnessed significant progresses in both basic and clinical studies regarding 
novel therapeutic strategies with genetically engineered T cells. Modification with chimeric antigen 
receptors (CARs) endows T cells with tumor specific cytotoxicity and thus induce anti-tumor 
immunity against malignancies. However, targeting solid tumors is more challenging than targeting 
B-cell malignancies with CAR-T cells because of the histopathological structure features, specific 
antigens shortage and strong immunosuppressive environment of solid tumors. Meanwhile, the 
on-target/off-tumor toxicity caused by relative expression of target on normal tissues is another 
issue that should be reckoned. Optimization of the design of CAR vectors, exploration of new 
targets, addition of safe switches and combination with other treatments bring new vitality to the 
CAR-T cell based immunotherapy against solid tumors. In this review, we focus on the major 
obstacles limiting the application of CAR-T cell therapy toward solid tumors and summarize the 
measures to refine this new cancer therapeutic modality. 
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1. Introduction 
Advances in our understanding on the 

interaction between the immune system and tumor 
cells have contributed to the rapid development of 
novel therapeutic strategies based on chimeric antigen 
receptor (CAR) or T cell receptor (TCR) modified T 
cells. CAR-T cell therapy has achieved outstanding 
progresses in clinical observations, which makes it 
even more attractive in the development of cancer 
adoptive immunotherapy. The CARs endow T cells 
with antigen-specific recognition, activation and 
proliferation in a major histocompatibility complex 
(MHC) independent manner [1], Currently, CARs 
have considerably evolved to the third generation, 
containing two co-stimulatory molecules, such as 
CD28+CD134 (OX40) or CD28+CD137 (4-1BB), which 
have usually been demonstrated with enhanced 
cytokine production and tumor lytic activity and 

reduced activation-induced cell death (AICD) than 
the second or first generation CARs [2].  

The emerging therapeutic approach of CAR-T 
cell therapy has sparked great interests, extensive 
studies in preclinical and clinical trials have revealed 
encouraging therapeutic efficacy in treating a variety 
of cancers, particularly in treating B-cell hematologic 
malignancies with CD19 CAR-T cells [3]. 
Nevertheless, targeting solid tumors is more 
challenging than targeting hematological 
malignancies because of tumor histopathological 
characteristics, shortage of specific antigens and local 
strong immunosuppressive microenvironment [4]. 
Furthermore, the on-target/off-tumor toxicity can 
pose significant risks. Thus, it is imperative to develop 
more competent and safer immunotherapy 
approaches by optimizing the design of CAR vectors, 
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exploring new targets, incorporating conditional safe 
switches and combining with other strategies. And 
much work remains to be done to improve the 
efficacy of CAR-T cell therapy for solid tumors. It may 
be achieved, at least partially, by more extensive basic 
studies investigating the spatiotemporal dynamics of 
T cell activation by CARs and unraveling the 
connection between T cell migration in solid tumors 
and the effectiveness in eradication of solid tumors 
and metastases [5]. In this review, we discuss the 
current status and major obstacles for the treatment of 
solid tumors with CAR-T cells, thus provide some 
potential measures to refine this novel therapeutic 
modality. 

2. Development and clinical application 
of CARs 
2.1 Evolving architecture of CARs 

It has been exclusively reported that CARs 
combine the exquisite antigen specificity of antibodies 
with the poly functionality and potency of cellular 
immunity. The unique structure of CAR endows T 
cells with tumor specific cytotoxicity and elevated 
anti-tumor activity in an MHC independent manner, 
through applying viral-vector technology or 
transposon-based system to transfect immune effector 
cells [6]. The classic CARs consist of an extracellular 
antigen recognition domain, a hinge domain, a 
transmembrane (TM) domain and an intracellular 
domain (Fig 1) [7]. The extracellular antigen-binding 
moiety in CARs, typically derived from a single chain 

variable fragment (scFv) that isolated from an 
antigen-specific monoclonal antibody, renders T cells 
the ability to bind antigens with retained specificity 
and affinity [8]. The hinge region mediates CAR 
flexibility, transduces essential signals, and exerts 
profound impacts on ensuring the suitable 
positioning of the binding domain during 
scFv-antigen interactions (Fig 1A) [9]. The 
transmembrane domains are derived from CD3-ζ, 
CD4, CD8, OX40, and H2-Kb [10] , and it has been 
clearly proved that the transmembrane domain can 
indeed influence the function of CAR-T cells [11]. 
Other investigators suggested that CAR-T cells with 
the CD3-ζ transmembrane domain showed more 
potent cytolytic activity, while CAR-T cells with CD28 
transmembrane domains were more persistent [12]. A 
transmembrane domain from native CD3-ζ chain 
induces enhanced T-cell activation in comparison to 
mutated CD3-ζ transmembrane [13]. The intracellular 
domain is responsible for signal delivery within 
CARs, this element has been manipulated extensively 
in an attempt to optimize functions of engineered T 
cells. T cell activation relies on the phosphorylation of 
immune receptor tyrosine based activation motifs 
(ITAMs) presented in the cytoplasmic CD3-ζ domain 
of the TCR complex [14] (Fig 1B). The signaling 
domain is critical for CAR-T cells to fulfill anti-tumor 
functions, the construct of CARs has seen several 
incarnations according to the different compositions 
of signaling domain.  

 

 
Figure 1. Chimeric antigen receptors (CARs) architecture. (A) CARs consist of an extracellular domain, a hinge, a transmembrane domain, and an intracellular domain. 
The extracellular domain is typically a scFv fragment that isolated from an antigen-specific monoclonal antibody, with retained specificity and affinity. (B) The intracellular domain, 
derived from the phosphorylation of immunoreceptor tyrosine based activation motifs (ITAMs) presented in the cytoplasmic CD3-ζ domain of the TCR complex, transmits 
activation and co-stimulatory signals to T cells. (C) According to the number of signaling molecules, CARs are classified into the 1st generation (one), 2nd generation (two) and 
3rd generation (three) CARs. The most applied co-stimulatory signaling molecules are CD28, 4-1BB, ICOS and OX-40. 
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 The first generation CARs provided the proof 
for the concept of the targeting and activation of 
CAR-T cells, but had very modest clinical activity and 
poor persistence in vivo [15], to overcome these 
limitations, the second and third generation CARs 
have incorporated co-stimulatory molecules, 
including CD27, CD28, CD134, CD137 and ICOS [16]. 
CAR-T cells with multiple signaling receptors have 
been demonstrated with sustained proliferation, 
enhanced cytokine production, improved tumor lytic 
activity, and reduced AICD both in vitro and in vivo 
[17] (Fig 1C). Nowadays, the second-generation 
CAR-T cells have been more exclusively and 
ubiquitously applied in clinical trials than the third 
generation CAR-T cells, because the reduced 
activation threshold of the third generation CAR-T 
cells may cause on-target/off-tumor side effects to 
normal tissues. 

2.2 Therapeutic advantages of CARs 
technology 

The use of CARs confers several advantages over 
TCR transgenes. Based on the MHC independent 
antigen recognition, CARs are able to bypass the 
mechanism that employed by tumors to evade 
immune detection through down-regulating MHC-I 
molecule [18]. Theoretically, CARs are able to detect 
almost all antigens that can be recognized by 
antibodies, including protein antigens, carbohydrate 
and lipid antigens and so on, that is, CARs are more 
universally applicable for immunotherapy to treat 
diseases [19]. In addition, the intracellular signaling 
domains within CARs are more flexible so that can be 
designed to compensate the down-regulation of 
co-stimulatory molecules induced by cancer cells [20]. 
Therefore, CAR-T cells harness maximal treatment 
resources for adoptive immunotherapy over TCR-T 
cells, for which the main hurdle is that the effect is 
HLA/MHC dependent. 

2.3 Clinical trials utilizing CAR-T cells 
The promising clinical trials have generated 

remarkable responses in cancer patients, which 
provided a solid foundation for inspiring the 
application of CAR-T cell based adoptive cell 
immunotherapy in multiple oncological settings. To 
date, clinical trials utilizing the second generation 
CD19 CAR-T cells to treat hematological malignancies 
have resulted in the most encouraging clinical 
responses [21], and the CD19-CAR T cell therapy 
(CTL019) has been highly appraised and approved as 
the breakthrough therapy by the FDA. Currently, 
adoptive CAR-T cells focusing on CD20 are also being 
evaluated in clinical trials for the treatment of B-cell 
malignancies, for which other CAR-T cells targeting 
CD22, CD30 and CD33 are now at the stage of in vitro 
trials [22]. At present, CAR-T cell therapy has 
demonstrated success as a novel treatment modality 
that the commercial manufacture of gene-modified T 
cells at industrial scale for the treatment of advanced 
cancers is becoming a hotspot worldwide. Mention 
worthy, the Juno therapeutics, Novartis and Kite are 
leading Big Pharmacies in the world due to their 
pioneering contributions to the development of 
CAR-T cell therapy. Figure 2 shows a flow chart of 
adoptive immunotherapy using CAR-T cells in 
clinical treatment. 

In contrast to the remarkable clinical responses 
of CAR-T cell immunotherapy for hematologic 
malignancies, treating solid tumors with CAR-T cells 
has been limited by tumor histopathological structure 
and strong immunosuppressive environment, 
wherein the lack of ideal target is another crucial 
deficiency for the treatment of solid tumors. Currently 
the preferred therapeutic targets to treat ovarian 
cancer and neuroblastoma with CAR-T cells are FRα 
and GD2 respectively [23]. The updated statistics of 
therapeutic targets in solid tumor immunotherapy 
with CAR-T cells are showed in table 1. 

   
Figure 2. Schema of adoptive cellular therapy with CAR-T cells. PBLs harvested from specifically selected patients. T cells were isolated, activated and genetically 
modified to express a transgene encoding tumor-specific CARs. The genetically modified T cells are then expanded on a large scale using a cell processing center in vitro to a 
sufficient number, and thus infused back into patients, with or without chemo-radio therapeutic preconditioning. 
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Table 1. Therapeutic targets in treating solid tumors with CAR-T cells. 

Target Tumor types Number of 
cases 

Clinical 
stage 

Results Citation 

mesothelin 
 
 
FRα 

mesothelioma 4 I  partial remission [24] 
Lung Cancer 24 I  Ongoing NCT02414269 
Breast Cancer 14 I partial remission [25] 

 Ovarian Cancer 15 I Ongoing [26] 
L1-CAM Metastatic neuroblastoma 6 I One case of partial remission; five cases of 

progress 
[27] 

CAIX Metastatic renal cell carcinoma 3 I test was forced to stop because of the serious 
liver toxicity 

[28] 

GD2 Neuroblastoma 11 I 5 cases of complete remission; 2 cases of partial 
remission; 2 cases of stable; 2 cases of tumor 
necrosis 

[29] 

 19 I 6 cases of complete remission; 3 cases of sick to 
survive; 10 cases of death 

[30] 

FAP Malignant pleural mesothelioma 9 I Ongoing [31] 
Lewis Y Bone marrow lymphoma 5 I 2 cases of stable; 1 patient died (in treatment); 

one case progress 
[32] 
[33] 

EGFRvIII Brain tumor 160 I/II Ongoing NCT01454596 
HER2 Colon Cancer 1 I Death for off-target effects and cytokine storm 

syndrome 
[34] 

 HER2-positive Lung Cancer 18 I Ongoing NCT00889954 
 Malignant gliomas 18 I Ongoing NCT01109095 
CD20 Follicular lymphoma; 

Mantle cell lymphoma 
7 I 2 cases of complete remission; 1 case of partial 

remission; 4 cases of stable 
[35] 

 3 II 2 cases of complete remission; 1 case of partial 
remission 

[36] 

PSMA Prostate Cancer 18+18 I Ongoing NCT00664196NCT01140373 
kLC B-cell lymphoma, CLL, multiple 

myeloma 
18 I Ongoing NCT00881920 

CD30 Hodgkin's lymphoma,NHLs 18 I Ongoing NCT01316146 
CEA Stomach cancer et.al 14 I Ongoing [37] 
 Metastatic adenocarcinoma 48 II Ongoing NCT01723306 
 Metastatic Breast Cancer 26 I Ongoing NCT00673829 
FRα, α-folate receptor; L1-CAM, L1-cell adhesion molecule; CAIX, carboxy-anhydrase-IX; FAP, Fibroblast activation protein; HER2, human epidermal growth factor receptor 
2; CEA, carcinoembryonic antigen; PSMA, Prostate Specific Membrane Antigen; CEA, Carcino Embryonie Antigen. 

 

3. Overcome the limiting obstacles of 
CAR-T cell therapy against solid tumors 

CAR-T cells recognize cell surface antigens 
through scFv structures, which typically contain the 
variable domains of the light and heavy chains, in 
non-MHC restricted manner [38]. The membrane 
protein CD19 is widely expressed by almost all the B 
cells, and B-cell hematologic malignancies are with 
relatively uniform structure characteristics and so on 
[39]. All these properties lead to that most patients 
with B-cell malignancies exhibited inspiring curative 
effect after CD19 CAR-T cell therapy. But the 
application of CAR-T cell therapy in solid tumor 
treatment is severely limited by heterogeneity 
characteristics, shortage of tumor specific antigens 
and immunosuppressive microenvironment. Now we 
make an analysis on the limiting factors for the 
application of CAR-T cells in solid tumor treatment 
and discuss the relevant countermeasures. 

3.1 Poor infiltration of T lymphocytes into 
solid tumors 

Most hematologic malignancies are associated 
with hematopoietic stem cell regeneration 

dysfunction [40], without forming tissue structure. In 
contrast, solid tumors have special histopathological 
features, such as high concentration of blood vessel, 
wide gap of vessel wall clearance, extensive vascular 
leakage, poor integrity of issue structure, and so on. 
And these features cause selectively enhanced 
permeability and retention of lipid particles and 
macromolecular substances within solid tumors. The 
phenomenon of enhanced permeability and retention 
effect is called the EPR effect [41, 42]. The presence of 
high number of tumor-infiltrating lymphocytes (TIL) 
and extensive infiltration have been found as major 
indicators of favorable patient prognosis and positive 
therapeutic responses in treating several solid tumors 
[43], including colorectal cancer [44], lung cancer [45], 
and ovarian carcinomas [46, 47]. The EPR effect of 
solid tumor and the suppressive nature of the tumor 
microenvironment play important roles in impeding 
the infiltration into tumor tissues of effector T 
lymphocytes [48, 49]. Understanding and 
manipulating the factors contributing to the 
infiltration of T lymphocytes can be helpful to further 
improve the selective targeting of tumor tissues. 

The process of T cells trafficking include rolling, 
adhesion, extravasation, and chemotaxis [50], and the 
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trafficking of T cells to the tumor microenvironment is 
essential for the success of T cell based cancer 
immunotherapy. The clinical curative effect of T cell 
based immunotherapy against solid tumors has been 
more moderate than advanced melanoma or 
hematologic malignancies, overcoming hurdles of the 
migration of T cells is one of the major challenges in 
CAR-T cell immunotherapy, mismatching of 
chemokine-chemokine receptor pairs, down 
regulation of adhesion molecules, and aberrant 
vasculature may also contribute to the poor homing of 
T cells. 

Studies have found that the CD3+, CD8+ T cell as 
well as B lymphocytes infiltrations are significantly 
correlated with the existence of tumor high 
endothelial venules (HEVs). Tumor HEVs are 
specifically located in lymphocytes concentrated 
areas, high density of tumor HEVs predicts low risk of 
relapse and metastasis [43, 51]. It is also an important 
access for lymphocyte infiltration into tumor sites, 
being associated with clinical prognosis makes it an 
indicator of tumor diagnosis and therapy. 
Over-expression of endothelin B receptor (ETBR) in 
tumor blood vessels is another limiting factor of 
lymphocyte infiltrating into tumor tissues through 
impeding the adhesion of lymphocyte to vascular 
endothelium [52]. And tumor angiogenesis has been 
found down-regulating endothelial cell-adhesion 
molecules, such as intercellular adhesion molecule 1 
(ICAM-1) [53]. All the above limiting factors block the 
homing of T cells and thus impact the efficiency of 
tumor immunotherapy. Theoretically, ETBR blockade 
and ICAM-1 up-regulation could therapeutically 
promote T cells homing and enhance immunotherapy 
efficacy. ETBR inhibitor BQ-788 (a specific ETBR 
inhibitor peptide) has been revealed increasing T cell 
adhesion to human endothelium in vitro. 
Angiogenesis is a prerequisite for the outgrowth and 
metastasis of cancer cells [54], some angiogenic factors 
produced by tumor cells are responsible for the 
down-regulation of ICAM-1. For example, previous 
evidences have showed the up-regulation of ICAM-1 
expression of human umbilical vein endothelial cells 
(HUVECs) after VEGF stimulation. But in contrast, 
prolonged stimulation (which occurs during the 
development of tumor) results in the down-regulation 
of ICAM-1 expression and leukocyte adhesion [55]. In 
addition, tumor necrosis factor-α (TNF-α) also 
induces the up-regulation of ICAM-1 [56]. Some 
relevant strategies to enhance the trafficking of CAR-T 
cells into solid tumors are discussed below. 

3.1.1 Enhance CAR-T cells trafficking to tumor sites  
A potential result of the special histopathological 

structure of solid tumor may lie in the observed lack 

of sufficient T cells within tumor tissues. Similarly, the 
insufficient migration of CAR-T cells to tumor sites 
also critically limits the efficacy of CAR-T cell 
immunotherapy against solid tumors. The limiting 
impact may result from unfavorable chemokine 
gradients, which means that tumor-specific T cells 
may lack the appropriate chemokine receptors for 
chemokines secreted by tumor cells [57]. 

 Tumor-derived chemokines are also attractive 
targets for CAR-T cell immunotherapy due to their 
immune-modulatory effects: decrease the 
immunogenicity of tumors and the desensitization of 
chemokine receptors on T cells [58]. At the same time, 
tumor cells can utilize chemokines in this manner to 
provide autocrine growth signals and signals to 
enhance angiogenesis [59]. Thereby, once these tumor 
cells are eliminated, the remaining tumor cells will be 
more vulnerable. These above mechanisms envision 
the possibility to redirect T cells to predetermined 
targets through arming T cells with relevant 
chemokine receptors. Several studies have verified 
this principle through arming CAR-T cells with the 
expression of CXCR2 (CXCL1 receptor) [60], CCR4 
(CCL17 receptor), Gro-a, CCL17 [61], and CCL2. 

 Nevertheless, tumor cells adopt multiple 
inhibitory strategies, it is challenging to derive CAR-T 
cells accommodating all the immune-modulatory 
genes which are required to overcome tumor 
inhibition while increasing CAR-T cell trafficking, 
survival, and safety [62]. Some researchers resorted to 
oncolytic viruses, which selectively infect, lyse, and 
replicate in malignant cells while sparing normal cells 
to solve this complex task by arming CAR-T cells with 
oncolytic virus expressing the chemokine RANTES 
and the cytokine IL-15 [63]. 

 In addition, the difference of T cell 
administration also exerts an important impact on 
CAR-T cells expansion and effector differentiation. 
Studies have evaluated two different routes of CAR-T 
cells delivery, regional intra-pleural administration 
and conventional systemic intravenous of 
mesothelin-targeted M28z CAR-T cells, the former 
route presented robust T cells persistence and 
enhanced anti-tumor efficacy compared to the latter 
by circumventing obligate circulation and transient 
pulmonary sequestration [64]. Similarly, the 
intra-cerebral injection method of CAR-T cells has 
also been applied to treat glioblastoma with CAR-T 
cells to avoid the traffic blocking blood brain barrier 
[65]. The remarkable ability of regional delivery of 
CAR-T cells provides another approach to enhance 
functional T cell persistence and improve therapeutic 
efficacy through choosing favorable traffic route for 
CAR-T cells. 
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3.1.2 Cytokines released by engineered CAR-T cells 
promote tumor elimination 

Inflammatory cells have a significant correlation 
with the growth and metastasis of cancer cells, 
indicating an improvement measure for CAR-T cell 
therapy by modulating tumor stroma through 
engineering CAR-T cells to secrete cytokines, such as 
interleukin-12 (IL-12) [66, 67]. The mechanism is that 
once activated by the CAR vector, T cells secrete IL-12, 
which can further activate innate immune cells 
response toward tumor cells that are invisible to 
CAR-T cells and subsequent inaccessible to 
antigen-directed immunotherapy, the process of T 
cells redirected for universal cytokine-mediated 
killing is also known as TRUCKs [68]. The TRUCKs 
have been demonstrated with remarkable therapeutic 
efficacy against tumors in pre-clinical models. So 
design T cells redirected by a tumor-targeting CAR 
and additionally engineered with a CAR-inducible 
cytokine cassette upon CAR engagement of cognate 
antigen (also termed as the fourth generation CARs by 
some scientists), such as the CAR-inducible IL-12 
(iIL-12), which has been revealed with recruiting 
macrophage effect [69, 70]. This design can 
supplement the defect that CAR-T cell can’t eliminate 
inaccessible tumor lesions, in a manner associated 
with reduced systemic toxicity.  

3.1.3 Optimizing culture condition for CAR-T cells 
Cytokine and stimulation conditions are 

indispensable ingredients in the process of CAR-T 
cells manufacturing, and several reports have 
indicated the influence of cytokines and growth 
conditions on the expansion and phenotype of 
immune T cells [71-73]. Thus, determining the choice 
of cytokines and optimizing the growth conditions are 
crucial for the expansion and related anti-tumor 
activity of CAR-T cells. The cytokines of IL-7 and 
IL-15 or IL-2 are mostly used as growth factors for the 
culture of CAR-T cells [74]. Studies have shown that 
IL-7 and IL-15 are superior to IL-2 for preserving 
CAR-T cell expansion in vitro and in vivo, CAR-T cells 
fed with IL-7 and IL-15 showed more sustained 
expansion and superior survival when exposed to 
serial antigens stimulation, and thus exhibited 
enhanced persistence and antitumor activity [75, 76]. 
In conclusion, these approaches lead to better living 
conditions for CAR-T cells, and can be translated into 
clinical immunotherapy. 

3.2 Scarcity of specific antigen within solid 
tumors 

The solid tumor heterogeneity in biological 
structure is a preponderant limiting factor of CAR-T 
cell immunotherapy for solid tumors. Tumor 

heterogeneity may result from subject factors and 
individual factors. The subject factors include the 
differences in cell origin and patient ethnicity, 
diversity that caused by genetic and epigenetic 
changes [77]. While the individual factors are mainly 
caused by tumor physiological heterogeneity among 
patients, intra-tumor heterogeneity, different 
distribution of an individual tumor, the presence of 
cancer stem cells or the direction of evolution [78]. 
Tumor heterogeneity results in that the 
immunotherapy target become specific to only a 
portion of tumor cells, which worsens the prognosis 
of patient and increases the recurrence and metastasis 
of cancer. 

Therefore, the most advantageous method to 
treat solid tumors with CAR-T cells is to identify and 
project the specific cell surface antigens, but this 
optimal selection is severely hindered by the shortage 
of tumor specific antigens (TSA) under the 
circumstances of high heterogeneity. The posterior 
selection is tumor associated antigens (TAA) that 
relatively over expressed on the tumor cell surface, 
but CAR-T cells targeting TAAs may cause collateral 
damage to normal tissues. Therefore, new strategies 
improving the safety of clinical practice while 
maintaining the anti-tumor activity of CAR-T cells, 
including target tumor cell specific neoantigens that 
derived from somatic mutations of tumor cells (e.g. 
mutant EGFR variant III), target intracellular antigens 
(e.g.WT1, a peptide induced by Wilms’ tumor gene 1), 
optimize CAR system with bi-signal independent 
pathways, apply suicide gene and other safe switches.  

3.2.1 Engineered CARs targeting mutation phenotype 
of tumor cells 

Epidermal growth factor receptor (EGFR) is a 
member of HER2 family, which frequently 
overexpressed in cancers and negatively correlated 
with clinical efficiency of treatment [79], and this 
makes it an inspiring research target. Researchers 
have found that 40–70% of brain tumors express 
mutant EGFR variant III (EGFRvIII) with a deletion of 
exons 2-7 of EGFR, which causes a defect in the 
extracellular ligand-binding domain and constitutive 
activation in a ligand-independent manner [80, 81]. Its 
specific expression on tumor cells, significant 
correlation with invasion and angiogenesis of tumors 
and patients’ survival make EGFRvIII a novel 
promising target [82]. Arming polyclonal CTLs with 
tumor-specific TCR can avoid many obstacles in 
cellular immunotherapy, and this is called ‘‘T-body’’ 
approach [80, 83]. So the EGFRvIII targeting CAR 
system was utilized in the treatment of EGFRvIII 
expressing gliomas, and the generated T-body 
approach was able to secrete cytokines and lyse tumor 
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cells in an EGFRvIII-dependent manner. This research 
brings us a new direction for CAR-T cell therapy, that 
is, to target specific tumor cell phenotypes induced by 
mutations of tumor cells. 

3.2.2 Modify CARs to better target tumor associated 
antigens 

Recognition of the peptide/MHC class I 
complexes endues T lymphocytes specific anti-tumor 
efficacy and enhanced cytokine secretion. 
Simultaneously, incorporation of the co-stimulatory 
signals or CD8+ adhesion molecules to the CARs can 
enhance the activation of T cells [84]. Peptide WT1, 
presented in the context of HLA-A* 02:01 (RMF/A2) 
[85], is an important immunologically validated 
oncogenic target with limited expression in normal 
tissues, while overexpressed in majority of leukemia 
and a wide range of solid tumors, especially 
mesothelioma and ovarian cancer [86, 87]. Therefore, 
CAR-T cells that targeting WT1 is a good 
improvement project. The modified CAR-T cells, 
containing the antigen recognition domain derived 
from fully human TCR-like ESK1 mAb (Called WT1 
28z) have been found cytotoxic to primary AML bone 
marrow cells through targeting the intracellular 
oncoprotein WT1 [88]. Compared with targeting other 
antigens, WT1 28z CAR-T cells showed improved 
secretion of pro-inflammatory cytokines, such as 
IFN-γ, IL-2. And the therapeutic potential of TCR-like 
scFv CAR-T cells was proved able to be further 
enhanced by affinity maturation of the scFv fragment, 
such as TCR-like Q2L mAb derived scFv [89]. Hence, 
these researches indicate that improvement to the 
anti-tumor activity of CAR-T cells can be made 
through bidirectional modification of CAR-T cells to 
target intracellular antigens. 

 Mesothelin, a kind of cell surface glycoprotein 
with molecular weight of 40 kDa, is gaining much 
attention in clinical therapy of advanced solid tumors 
due to its high expression on the surface of numerous 
solid tumor cells [90]. As reported on the American 
Association for Cancer Research, a phase I study from 
Novartis and the University of Pennsylvania is 
ongoing, meso-CAR T cells were administered to 
advanced cancer patients who were no longer 
responding to multiple lines of prior therapies, the 
results indicated safety and pretty functionality in 
treated patients (table 1). 

 Mesothelin expression is also found in normal 
tissues, which raises a concern that meso-CAR T cells 
may damage healthy tissues and organs [91-93]. 
Researchers found some evidences showing that the 
meso-CAR T cells were detectable in the fluid around 
the heart of patients, but there were no related 
toxicities reported [94]. Although meso-CAR T cells 

program is still being evaluated, there is no doubt that 
mesothelin is another promising protein target and 
opens up the possibility that such an approach can 
benefit patients with various solid tumors.  

3.2.3 Tuning affinity of CARs to selectively target 
tumor cells 

In order to improve the specificity of CAR-T 
cells, separate dual CAR system was designed to 
recognize two different tumor antigens and separately 
transmit the first and second signals that are essential 
for T cell activation [95]. The co-transduced T cells 
maintain the therapeutic efficacy on the basis of the 
second generation and the third generation CARs, 
which empowers wider use of CAR-T cells and avoids 
potential safety issues.  

Theoretically, the co-transduced T cells only 
destroy tumor cells that express both antigens (double 
positive) instead of these that express either antigen 
(single positive). However, studies have confirmed 
that co-transduced T cells are cytolytic against both 
single positive and double positive tumor cells. The 
most possible explanation is that the CARs 
transmitting the first signal have too 
robust stimulatory functions on T cells, and activate T 
cells even without the second signal. Thus in 2012, 
Kloss CC and colleagues reduced the affinity of the 
CARs that are responsible for transmitting the first 
signal in the dual CAR system and reported that 
co-transduced CAR-T cells did not exhibit cytolytic 
activity against single positive tumor cells but double 
positive tumor cells [96]. This research opened the 
door of adjusting the affinity to improve CAR-T cell 
specificity and thus safety performance. 

 Recently, the validity of the above strategy, 
through adjusting the affinity of the scFv components 
of CARs to selectively target tumor cells from normal 
cells, so as to reduce the off-target effects and improve 
the safety performance, was further verified. Tuning 
the functional affinity of CAR was performed to 
selectively target tumor cells overexpressing EGFR 
from normal cells based on the disparate density of 
EGFR expression [97]. The use of affinity-tuned scFv 
to target HER2 has found that decreasing the affinity 
of the scFv could significantly increase the therapeutic 
index of CAR-T cells [98]. Thus, another direction to 
improve safety performance of CAR-T cell based 
immunotherapy against solid tumors is tuning the 
functional affinity of CARs to discriminate the 
overexpressing tumor cells from normal tissues that 
express target at physiologic levels.  

3.2.4 Applying suicide gene to enhance the safety of 
CAR-T cell therapy 

Clinical application of CAR-T cells suggested 
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that the anti-tumor efficacy is associated with some 
degree of toxicity [99], especially when targeting 
TAAs which are also expressed on normal cells. 
Therefore, strategies are needed to reverse any sign of 
toxicity effect.  

Adding the “ideal” suicide gene to the construct 
of CARs can lead to selective ablation of gene 
modified T cells, thus prevent collateral damage to 
normal tissues or organs [100]. Therefore, CAR-T cell 
application with transgenic expression of one or two 
suicide genes is advisable, at the same time, the 
selective suicide gene would ensure the safety by 
irreversible elimination of specific part cells that are 
responsible for the unwanted toxicity. Currently, two 
validated suicide genes have been successfully used 
in clinical setting, herpes-simplex-thymidine-kinase 
(HSV-TK) and inducible-caspase-9 (iCasp9) to 
enhance the safety of CAR-T cell therapy against 
hematologic malignancies [101, 102]. So applying 
suicide gene modification to CAR-T cells may greatly 
increase the safety performance and clinical 
therapeutic efficacy. 

3.3 Immunosuppressive environment within 
solid tumor 

The clinical therapeutic efficacy of CAR-T cells in 
the treatment of solid tumors keeps a marginal 
characteristics compared with hematological 
malignancies, because the efficacy is significantly 
impeded by the strong immunosuppressive 
environment of solid tumors [4, 103]. The relative 
kinetics of CAR-T cells accumulation versus the rate 
of inactivation within solid tumors will ultimately 
determine the overall anti-tumor efficacy, and the 
balance will likely to be tumor-specific. The limiting 
factors that hinder T cells efficiency within solid 
tumor microenvironment are mainly from two 
aspects: 1) intrinsic microenvironment characteristics, 
such as hypoxia and low pH, the lack of arginine or 
tryptophan, inhibitory effects of tumor-derived 
cytokines, 2) inhibitory pathways against activated T 
cells, including intrinsic inhibitory pathways 
mediated by up-regulation of inhibitory receptors 
[104], intracellular inhibitory pathways to inhibit T 
cell receptor pathways [105], and effector functions 
after T cell activation [106]. Advanced generation of 
CAR-T cell inactivation is reversible within the solid 
tumor microenvironment by multiple mechanisms. 
Studies have showed that CAR-T cells undergo rapid 
loss of functional activity limited their therapeutic 
efficacy within solid tumor microenvironment, but 
this hypo-function was reversible when the CAR-T 
cells were isolated away from the tumor [107]. 
Whether this reversible characteristics can be 
attributed to the removal of inhibitory factors that 

reside in the tumor microenvironment is being 
investigated. Therefore, it is of great interests to 
optimize the efficacy of CAR-T cell therapy by 
combining with other treatments for solid tumors. 

3.3.1 Engineer CARs to convert immunoregulatory 
signaling pathway 

As mentioned above, solid tumors employ a 
variety of countermeasures to impair the function of 
CAR-T cells. Within the tumor microenvironment, the 
activated CAR-T cells are exhausted by many 
negative signal-regulated pathways, including 
cognate ligands reacting with their up-regulated 
inhibitory receptors expressed on T cells [108] and the 
lack of ligands for T cell co-stimulatory receptors 
[109]. Tumors exploit negative control signals to 
attenuate CAR-T cell responses, such as programmed 
death ligand 1 (PD-L1), which interacts with 
programmed death 1 (PD-1) expressed on activated T 
cells, and this exhausts CAR-T cells [110].  

 So developing a new engineering strategy to 
equip CAR-T cells with the capacity to convert tumor 
negative signal-regulated pathways into regulating 
pathways will be helpful, such as constructing a new 
chimera to convert cognate ligand into a ligand for T 
cell co-stimulation receptor by exchanging its 
transmembrane and cytoplasmic tail with that of 
CD28 or 4-1BB. The validated PD1: CD28 chimera was 
shown to efficiently convert PD-L1 into a 
co-stimulation ligand of primary human CD8+ CTL, 
resulting in enhanced cytokine secretion, increased 
proliferative capacity and augmented anti-tumor 
activity [111]. It is reasonable to speculate that genetic 
modification of CAR-T cells to express the above new 
type of chimera may greatly enhance the anti-tumor 
functions and also provide a platform to improve the 
clinical efficacy of CAR-T cell therapy under the 
immunosuppressive environment of solid tumors. 

3.3.2 Engineer CARs to target stroma cells 
With the exploration of solid tumor 

immunology, the tumor-associated stroma, occupying 
up to 90% of the tumor volume, has gained increasing 
attention for its role in initiating and sustaining tumor 
growth [112]. Cancer associated fibroblasts (CAFs), 
the principle ingredient of the tumor-associated 
stroma, play a preponderant influence in the 
formation of a highly protumorigenic and 
immunosuppressive microenvironment that mediates 
therapeutic resistance [113]. Additionally, 
immunotherapies with CAR-T cells targeting tumor- 
associated antigens (TAAs) often fail to eradicate 
CAFs, which support tumor progression directly 
through paracrine secretion of cytokines and growth 
factors. 
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Therefore, CAR-T cells targeting TAAs combine 
with CAR-T cells targeting CAFs may augment the 
anti-tumor function. The treatment by co-targeting 
CAFs in addition to cancer cells has been validated 
with significantly enhanced anti-tumor effects against 
solid tumors when compared with the treatment 
targeting CAFs or tumor cells alone. An 
immunotherapeutic target expressed on CAFs within 
a majority of solid tumors is necessary, fibroblast 
activation protein-α (FAP), a type 2 dipeptidyl 
peptidase, is a marker of a major subset of stromal 
cells in virtually carcinomas [114], making it an 
attractive therapeutic target. Studies have showed 
that genetically modified T cells with the expression 
of FAP-specific CAR can effectively recognize and kill 
FAP-positive tumor cells [115]. When combined with 
CAR-T cells targeting TAAs, FAP-specific CAR-T cells 
presented ever more attractive anti-tumor effects 
[116]. This novel combination provides another 
direction for solid tumor immunotherapy.  

3.3.3 Combine with immune checkpoint inhibitors or 
cytokine expressing oncolytic virus 

The field of cancer immunotherapy has 
considerably expanded with several new treatment 
options: immune checkpoint inhibitors, cancer 
vaccines, and adoptive T-cell immunotherapies. 
However, many drawbacks are still exist in efficacy, 
such as, immune checkpoint inhibitors are efficacious 
for just few patients with high mutation loaded 
melanoma and lung cancer, the efficacy in treating 
solid tumors with CAR-T cells is limited due to the 
unfavorable microenvironment [117, 118]. Thus, 
combination therapy of CAR-T cells with immune 
checkpoint inhibitors may be a solution. Recently, 
CAR-T cell therapy was combined with immune 
checkpoint inhibitors, which can create more 
favorable microenvironment by reducing its 
immunosuppressive effect to improve the efficacy of 
CAR-T cell therapy, and many clinical trials of 
combination therapy of CAR-T cells with checkpoint 
inhibitors are ongoing [19]. In addition to immune 
checkpoint inhibitors, CAR-T cell therapy has also 
been combined with oncolytic virus expressing the 
chemokine RANTES and the cytokine IL-15, and 
showed enhanced function of CAR-T cells by 
improving CAR-T cell trafficking and recruiting 
innate immune cells [119]. In conclusion, combination 
therapy of CAR-T cells with other treatments holds 
great potential for treating solid tumors. 

4. Conclusions 
CAR-T cell based immunotherapy has made a 

great success in treating B cell malignancies, but 
targeting solid tumors remains a tough task mainly 

due to the scarcity of TSAs and suppressive 
environment of solid tumors. However, researchers 
have been trying to improve the efficacy of CAR-T cell 
therapy against various solid tumors from many 
aspects including: 1) arming with cytokine or 
chemokine to enhance the infiltration of T cells and 
recruit other immune effectors; 2) optimizing the 
culture conditions to derive more potent CAR-T cells; 
3) modifying the targeting system by changing the 
antigen recognition domain toward intracellular 
antigens or neo-antigens even bi-directional; 4) 
reducing the on-target/off tumor effect by applying 
dual targeting system, tuning the affinity of scFv 
fragments and applying safe switches; 5) combining 
with other treatments to eliminate tumor cells more 
thoroughly. Many clinical trials of CAR-T cell therapy 
targeting different antigens for treating solid tumors 
are ongoing. Nevertheless, mechanical studies on how 
CARs activate T cells, comparison between CAR and 
TCR, and optimization on each element in CARs are 
still needed to better apply CAR-T cell based 
immunotherapy in treating solid tumors. 
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