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Abstract 

This review aimed to summarize the current research contents about long noncoding RNAs 
(lncRNAs) and some related lncRNAs as molecular biomarkers or therapy strategies in human 
cancer and cardiovascular diseases. Following the development of various kinds of sequencing 
technologies, lncRNAs have become one of the most unknown areas that need to be explored. 
First, the definition and classification of lncRNAs were constantly amended and supplemented 
because of their complexity and diversity. Second, several methods and strategies have been 
developed to study the characteristic of lncRNAs, including new species identifications, subcellular 
localization, gain or loss of function, molecular interaction, and bioinformatics analysis. Third, 
based on the present results from basic researches, the working mechanisms of lncRNAs were 
proved to be different forms of interactions involving DNAs, RNAs, and proteins. Fourth, lncRNA 
can play different important roles during the embryogenesis and organ differentiations. Finally, 
because of the tissue-specific expression of lncRNAs, they could be used as biomarkers or therapy 
targets and effectively applied in different kinds of diseases, such as human cancer and 
cardiovascular diseases. 
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Introduction 
The insights of the genome have changed 

overwhelmingly over the past decades. It has been a 
long time before we realize our unawareness of 
microcosm. There is no doubt that the advent of 
sensitive, high-throughput sequencing (NGS) has 
given rise to an unheard-of ability to detect novel 
transcripts [1]. Those “nonsense and dark materials of 
genome” unravel their mystery, play more important 
roles, and participate in various biological processes. 
However, those discoveries don’t mean the end, but 
seem to open a door to take us toward a more 
in-depth research on microcosm. Until now, except 
for messengers RNA (mRNA) and other functional 
RNAs, such as transfer RNA (tRNA), small nuclear 
RNA (snRNA), small nucleolar (snoRNA), and micro 
RNA (miRNA), we know very little on how lncRNAs 
function, how many different types of lncRNAs exist, 
or even whether most of them carry biological 
significance [1]. This review focused on the basic 

research of lncRNAs and their medical applications in 
human cancer and cardiovascular diseases. 

Definition and classification of lncRNAs 
The present definition of lncRNA, that is, an 

RNA molecule with a size longer than 200 nucleotides 
that is not translated into a protein, may be arbitrary 
without considering the following two issues [2]. 1). 
About the molecular size: A cutoff of 200 nucleotides 
was more based on the principle of RNA binding acid 
to silica columns during RNA purification [3]. While a 
protein coding gene (PCG) is usually defined as a 
transcript that contains an open reading frame (ORF) 
longer than 100 amino acids [4], thus a lncRNA might 
contain a longer ORF but not synthesize polypeptides. 
Besides, polypeptides shorter than 100 amino acids 
can be functional in organisms and are not outgrowth 
of canonical proteins [5]. 2) About the functions: The 
same RNA can contain both PCG and non-coding 
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functions [6]. Coding transcript can lose their ability 
to encode a protein, and noncoding transcripts can 
acquire a coding function [6]. Such above issues 
obscures a clear annotation of lncRNAs. The 
definition by Mercer et al is more moderate, who 
defined lncRNAs as RNA molecules that may 
function as either primary or spliced transcripts and 
could not be classified into known classes of small 
RNAs or structural RNAs [7]. Compared with small 
ncRNAs, such as miRNAs, which have been defined 
in more detail and comprehensively, the definition of 
lncRNA is still extensive with complex contexts. 
However, finally some difference has been made 
following an in-depth research of lncRNAs. 

LncRNAs constitute various RNA molecules. It 
is difficult to classify them because of their broad 
spectrum of molecular splicing and cellular functions 
as a result of implementing different modes of action. 
The traditional classification is based on their 
locations of transcripts from genome, including five 
broad categories: (1) sense, (2) antisense, (3) 
bidirectional, (4) intronic, and (5) intergenic [8]. 
However, as new forms of lncRNAs were continually 
being found, the traditional classification of lncRNA 

could not cover the whole field and should be 
described in more detail. Sandre et al., who viewed it 
more widely, classified lncRNAs into eight categories: 
(A) divergent (pancRNA: They originate from the 
opposite strand of the same promoter region of 
protein coding gene as the adjacent) and convergent 
(They encoded on the opposite strands and facing 
each other); (B) intronic (They transcribed from an 
intron of another gene); (C) intergenic (They located 
distant from other genes, usually >10kb); (D) 
overlapping sense (They overlapped with other genes 
on the same strand) and overlapping antisense (They 
overlapped with other genes on the opposite strand); 
(E) enhancer RNA (They expressed as uni- or 
bidirectional transcripts); (F) miRNA host gene 
(Figure 1) [9]. Compared with the former classification, 
the latter described the relationship between lncRNA 
gene and their neighborhood gene in detail. However, 
they still belong to one criterion in essence. Following 
the development of new forms of lncRNAs, the 
classification needs to be continuously improved 
taking more criteria into account, such as their 
splicing modes or their final working mechanisms. 

 

 
Figure 1. The classification of lncRNAs: (A) divergent (pancRNA: They originate from the opposite strand of the same promoter region of protein coding gene as 
the adjacent) and convergent (They encoded on the opposite strands and facing each other); (B) intronic (They transcribed from an intron of another gene); (C) 
intergenic (They located distant from other genes, usually >10kb); (D) overlapping sense (They overlapped with other genes on the same strand) and overlapping 
antisense (They overlapped with other genes on the opposite strand); (E) enhancer RNA (They expressed as uni- or bidirectional transcripts); (F) miRNA host 
gene [9]. 
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Research methods and strategies of 
lncRNAs  

Unlike miRNAs, which have been extensively 
studied, the research of lncRNAs is still in its infancy. 
The following sections discuss four research strategies 
of lncRNAs with several common methods for each 
strategy (Figure 3): (1) new species identification, (2) 
subcellular localization, (3) molecular interaction, and 
(4) gain of loss of function and (5) bioinformatics 
analysis.  

New species identification 
Although some difficulties exist in terms of 

lncRNA discovery because of tissues specificity and 
low expression levels, many kinds of methods still 
exist for identifying new lncRNAs, which were well 
reviewed by Kashi et al. [10]. Each kind of technology 
was used to certain purpose. Among them, RNA-seq 
might be the most wide-spread method used not only 
for RNA expression detection but also for novel 
lncRNA discovery [10]. Sometimes, because of limited 

samples sizes for RNA-seq, single-cell transcript 
sequencing were needed, including Smart-Seq, which 
allows the detection of alternative transcripts isoforms 
and single-nucleotide polymorphisms [11]; DP-Seq, 
which allows amplification of RNA from sample sizes 
as small as 50pg [10]; and Quartz-Seq, which reduces 
the background noise [12]. Besides, some methods 
could be used to map transcripts that are in the 
process of being degraded, including PARE-Seq [13], 
GMUCT [14], and Degradome-Seq [15], by which 
decapped transcripts are adapter ligated and reverse 
transcribed [10]. 

Subcellular localization 
Fluourescence in situ hybridization (FISH) is a 

method for visualization the subcellular localization 
of a certain lncRNA. For example, MALAT1 has been 
visualized by RNA-FISH, which indicated that it is 
rich in nuclear speckles of cells in interphase and is 
concentrated in mitotic interchromain granule 
clusters [16]. RNA-FISH was used to verify that 
MIR99HG (MONC) and MIR100HG were located in 

the nucleus [17]. Furthermore, 
RNA-FISH could also be 
combined with DNA-FISH to 
validate co-localization of a 
transcript with chromatin 
sequences [10].Alternatively, 
new recent technology of 
fluorescent in situ RNA 
sequencing (FISSEQ), which 
amplify cDNA in crosslinked 
cells and tissue samples [18], 
provide higher resolution and 
can identify a higher number of 
targets than RNA-FISH [10].  

Molecular interaction  
On the basis of the working 

mechanisms of lncRNAs, 
molecular interactions occur 
among RNA, DNA, and 
proteins. The related 
technologies can also be 
classified into three categories: 
(1) RNA–protein interaction: 
RNA immunoprecipitation is 
used to analyze and purify RNAs 
associated with specific proteins 
by directing antibodies against 
the target protein [10]. 
High-throughput sequencing 
cross-linking immunoprecipi-
tation (HITS-CLIP/ CLIP-Seq) is 
another technique to analyze the 

 
Figure 3. lncRNA research strategies and methods. A. New species identification: Using methods, such as 
RNA-seq et al could discover new kinds of lncRNAs; B. Subcellular localization: FISH could help to analyze the 
location of target lncRNAs; C. Gain or loss of function: over-expression or knock down the lncRNA by 
lentivirus, shRNA or siRNA could help to learn the basic function of lncRNAs in cell; D. Molecular interaction: 
Using methods like RIP et al could analyze the interactions among RNA, DNA and protein; E. Bioinformatics 
analysis: Various kinds of databases could help to learn about the interested lncRNAs. 
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interaction between RNA and protein by cross-linking 
cell in vitro with UV light [10]. (2) RNA-DNA 
interaction: chromatin isolation by RNA purification 
(ChIRP) can analyze the relationship between RNA 
and chromatin by 20 nt-long biotinylated 
oligonucleotides which specifically recognize the 
target lncRNA [19]; RNA antisense purification (RAP) 
is another method which can be used to identify the 
genomic regions of chromatin that interact with RNAs 
using about 120nt long antisense RNA probes[20]; 
capture hybridization analysis of RNA targets 
(CHART) involves the purification of cross-linked 
protein, RNA, and DNA complexes by designing its 
probe on the region of potential open binding sites 
[10, 21]. (3) RNA and RNA interaction: rap-rna 
modification of the RAP method can provide a means 
to detect RNA-RNA interactions, even to distinguish 
the direct and indirect interaction between RNA 
transcripts by using different cross-linking methods 
[10]; Cross-linking, ligation and sequencing of hybrids 
(CLASH) is another technology for capturing direct 
RNA and RNA interaction by using UV cross-linking 
[22].  

Gain or loss of function 
Traditionally, if we want to learn about the 

function of a new molecule, we generally over-express 
or knock down the candidate target to investigate 
changes resulted by these means. LncRNAs could also 
follow the above methods. For example, using 
over-expression plasmid and siRNA (or shRNA) 
separately to up regulating and down regulating 
lncRNA, Cui et al., have verified that over-expression 
of HULC was able to accelerate lipogenesis in HepG2 
and Huh7 cells, while HULC siRNA attenuate the 
lipogenesis in HepG2.2.15 cells [23]. For another, 
using the same methods, Nie et al., have found that 
knockdown of ANRIL expression could impair cell 
proliferation and induce cell apoptosis both in vitro 
and vivo [24]. In fact, in order to gain stable function 
of a gene, technology of lentivirus has been used for 
many years. Presently, although there has always 
been a dispute, exact gene editing techonologies, such 
as CRISPR/CAS9 and NgAgo have emerged. 
Compared to the traditionally methods, they might be 
expected to realize the more accurate gene editing 
than any time in the past. 

Bioinformatics analysis  
The lncRNA databases have grown rapidly 

following with the research of lncRNAs. The database 
of lncRNAdb (http://www.lncrnadb.org/) is a 
famous long non-coding RNA research database that 
provides full comments on functional lncRNAs [25]. 

The present version is lncRNAdb 2.0 [26]. Another 
well-known ncRNA research database NONCODE 
(http://www.noncode.org) also provides full 
comments on lncRNAs, including expression and 
functions predicted by their computer software 
(ncFANs) [27]. Now the version has been updated to 
NONCODE v4 [28]. LNCipedia (http://www. 
lncipedia.org) provides the sequence and full 
comments on structures of human lncRNAs[29-30]. 
LncRNA disease (http://cmbi.bjmu.edu.cn/ 
lncrnadisease) provides full comments of reported 
disease-related lncRNAs[31]. NRED (http://jsm- 
research.imb.uq.edu.au/nred/) provides the lncRNA 
expression information of human and mouse based 
on chip data [32]. ChIPBase (http://deepbase. 
sysu.edu.cn/chipbase/) provides the map of lncRNA, 
comprehensive identification, and annotation of the 
transcription regulation [33]. It also integrated 
lncRNAs identified by high-throughput RNA-seq, 
their expression profile and even the transcription 
factor binding sites identified by ChIP-seq experiment 
[33]. fRNAdb (http://www.ncrna.org/) collects 
non-code transcripts with or without comments from 
H-invitation, NONCODE and RNAdb database and 
provides searching function of four kinds of ncRNAs, 
including miRNAs, short ncRNAs, mid-size ncRNAs 
and lncRNAs [34]. Starbase (http://starbase.sysu. 
edu.cn/mirLncRNA.php) has set up the most 
comprehensive experimental support by CLIP-Seq for 
the regulation network of miRNA and lncRNA, 
Protein (RNA-binding protein) and lncRNA (includes 
lncRNA, pseudogene, circular RNA), competing 
endogenous RNAs (ceRNA) regulatory networks and 
provides prediction tools for a lncRNA function [35]. 
In fact, the section of bioinformatics analysis should 
not be summarized as a separate section because the 
context of each of the aforementioned sections could 
be permeated with biological information. Necessary 
information can be searched before studying a new 
function of a known lncRNA, or more information can 
be supplemented after the research on a new lncRNA. 

Working mechanisms of lncRNAs 
LncRNAs play important regulatory roles and 

participate in different levels of biological processes, 
such as chromatin remodeling, histone modification, 
and DNA methylation, and also serve as transcription 
factors or enhancers. The mechanisms underlying 
their functions can be summarized as interactions 
among RNA, DNA, and proteins (Figure 2). These 
interactions can be further summed up into two 
modes: (1) based on sequence hybridization and (2) 
based on secondary or tertiary structures.  
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Figure 2. The working mechanisms of lncRNAs. The present known working mechanisms of lncRNAs might be only a part of its all functions, just like several hubbles 
among all blowing group. A. ceRNA function of lncRNA: circRNA compete binding with miRNA to prevent miRNA binding with target mRNAs; B. Enhancer on/off: 
lncRNAs transcribed from an enhancer region interact with enhancer-promoter contact to inhibit the transcription of the protein-coding gene; C. lncRNAs acting as 
scaffold linking different proteins interaction; D. lncRNAs binding with proteins to prevent their actions; E. lncRNAs recruiting proteins, such as chromatin- modifying 
complexes to specific target sites in the genome; F. lncRNAs loop formation and transcription of the associated gene; G. lncRNA transcripts evicting proteins from 
chromatin, such as pancRNA prevent DNMT from methylating DNA in their promoter region, thereby ensuring mRNA transcription; H. Stabilizing of mRNA: 
lncRNA recruiting proteins to preventing degradation. 

 

Interaction based on specific sequence 
hybridization 

Some lncRNAs can mediate interactions by 
specific sequence hybridization with DNAs or other 
RNAs. For example, antisense intronic noncoding ras 
association domain family member 1 (ANRASSF1), 
which is transcribed in the antisense direction relative 
to the protein-coding mRNAs of the RAS association 
domain family member 1 (RASSF1) gene locus, could 
interact with genomic DNA, forming an RNA–DNA 
hybrid and regulating the expression of the sense 
gene at the pre-transcriptional level[36]. Phosphatase 
and tensin homolog pseudogene 1 antisense RNA 
(PTENP1-AS) may be an example of the RNA–RNA 
interaction. Because of the lack of a poly(A) tail, the 
stability and export to the cytoplasm of phosphatase 
and tensin homolog pseudogene 1 (PTENP1) is 
facilitated by interactions with PTENP1-AS, which 
has three variants: alpha, beta, and unspliced [37]. 
During this process, PTENP1-AS beta forms an 

RNA–RNA duplex with the PTENP1 transcript, 
altering its subcellular distribution and increasing its 
RNA stability [6], [37].  

If the aforementioned examples of interaction 
between lncRNA and other RNAs are a universal 
phenomenon, the discovery of competing 
endogenous RNA (ceRNA) function of lncRNAs, 
which is of great biological significance, will not be 
surprising. LncRNAs can participate in the ceRNA 
network, by which lncRNAs cross talk with other 
RNAs by sharing the same miRNAs [38]. These 
exogenously expressed transcripts contain tandem 
repeats of miRNA response elements (MRE) sites that 
allow them to specifically bind a distinct miRNA or 
combination of miRNAs [39]. Once the miRNA(s) of 
interest is decoyed, it is unavailable to bind to its 
targets, leading to effective derepression of these 
transcripts [40], [41]. Such ceRNA function of 
lncRNAs has been well studied in human cancers. 
Metastasis-associated lung adenocarcinoma transcript 
1(MALAT1) could sponge miR-145 to modulate the 
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radio-sensitivity of high-risk human papillomavirus 
(HR-HPV+) cervical cancer [42]. Liu S. et al., reported 
that MALAT1 could competitively bind with miR-124 
to up-regulate the RBG2 expression, and then 
promote HR-HPV (+) cervical cancer cell growth and 
invasion [43]. HOX transcript antisense RNA 
(HOTAIR) could cross talk with erb-b2 receptor 
tyrosine kinase 2 (HER2kny) via miR-331-3p in gastric 
cancer [44]. Li JT. et al., identified that HOTAIR could 
suppress the miR-568 to up-regulate the expression of 
S100 calcium binding protein A1 (S100A), and then 
facilitates the metastasis of breast cancer [45]. The 
B-Raf proto-oncogene, serine/threonine kinase 
(BRAF) pseudogene 1 is a newly reported lncRNA 
that functions as a ceRNA for BRAF, in part by 
sponging miR-30a, miR-182, and miR-876[46].  

Interaction based on secondary and tertiary 
structures  

LncRNAs can also form secondary and tertiary 
structures that enable more complex interactions with 
proteins. For example, cyclin-dependent kinase 
inhibitor 2B antisense RNA 1(ANRIL) was identified 
to recruit polycomb repressive complex-1 (PRC1) and 
polycomb repressive complex-2 (PRC2) to form 
heterochromatin surrounding the INK4b-ARF-INK4a 
locus, and to repress gene expression [47]. Similarly, 
imprinted maternally expressed transcript (H19) 
could interact with the protein complex 
heterogeneous nuclear ribonucleoprotein U/lysine 
acetyltransferase 2B/RNA polymerase II (hnRNP 
U/PCAF/RNAPol II), activating miR-200 family by 
increasing histone acetylation, and then altering the 
miR-200 pathway, thus contributing to 
mesenchymal-to-epithelial transition and suppression 
of tumor metastasis in hepatocellular carcinoma 
(HCC) [48]. Moreover, MALAT1 could promote cell 
proliferation, migration, and invasion via PRKA 
kinase anchor protein 9 (AKAP-9) in gastrointestinal 
cancer [49]. It also could combine with splicing factor 
proline/glutamine-rich (SFPQ) to release 
polypyrimidine tract binding protein 2 (PTBP2) from 
the SFPQ/PTBP2 complex to promote the growth and 
metastasis of colon cancer [50]. Besides, tumor protein 
p53 pathway corepressor 1 (TP53COR1/LincRNA- 
p21) recruits heterogeneous nuclear 
ribonucleoprotein K (hnRNP-K) to the promoter of 
p21, which is pivotal for the efficient binding of p53 to 
the p21 promoter to initialize the transcription of p21, 
such that lincRNA-p21 could activate the expression 
of p21 [51].  

Although the interaction mechanisms were 
identified, in many cases, each interaction could not 
exist independently; they always worked together. 
Considering the aforementioned context as an 

example, the working mechanisms of lincRAN-p21 
could be summarized as a mode of 
lincRNA-p21(lncRNA)-p53(protein) promoter of 
p21(DNA) interaction.  

Functions of lncRNAs during the 
embryogenesis and organ differentiation 

lncRNA transcripts were found at all examined 
stages during the early differentiation process by a 
single-cell sequencing study [52]. Furthermore, in the 
following various differentiation periods, they might 
also act as important functions. In this section, we 
would like to discuss several lncRNAs involved in the 
embryogenesis and organ differentiation. 

Imprinted genes are monoallelically expressed 
according to the parent of origin and are critical for 
embryogenesis [53]. H19 is a well-known imprinted 
gene, which is exclusively expressed from the 
maternal allele and governs normal embryogenesis 
[54]. Maternally expressed 3 (meg3) is another 
imprinted gene, which has effects on neighboring 
genes in cis and results in perinatal lethality [55].  

X-chromosome inactivation (XCI) is also an 
interesting phenomenon during embryogenesis. Xist 
was found as an XCI gene in knockout mice two 
decades ago [56-57]. Lacking Xist could cause female 
mice die during the first half of gestation, while male 
mice were unaffected [9]. However, knockout female 
mice with a single X-chromosome (XO) lacking Xist 
could survive [9]. Thus, it can be explained by the 
failure to adjust the X-chromosome gene dosage and 
causes embryonic lethality [9].  

There are so many kinds of lncRNAs related to 
various organ differentiations that we could not cover 
them all. However, we would like to focus more about 
on lncRNAs related to cardiovascular differentiation.  

Fendrr is an example of lncRNAs demonstrated 
to play an essential role in cardiovascular 
differentiation and embryo survival [9]. Grote et al. 
have verified that loss of Fendrr lead to impaired 
differentiation of tissues derived from lateral 
mesoderm, the heart and the body wall, and 
eventually result in embryonic death [58-59]. Embryos 
lacking Fendrr lead to upregulation of some 
transcription factors which controlled lateral plate or 
cardiac mesoderm differentiation, coupled with a 
drastic reduction in PRC2 occupancy along with 
decreased H3K27 trimethylation and/or an increase 
in H3K4 trimethylation at their promoters [59].  

Braveheart (Bvht) has been verified as another 
cardiac-expressed lncRNA [60]. It epigenetically 
regulates cardiomyocyte differentiation [61]. It was 
cardiac-enriched approximately threefold than other 
tissues, but expressed similar with E14.5 embryos and 
adults; It was also not regulated late after 



Int. J. Biol. Sci. 2017, Vol. 13 
 

 
http://www.ijbs.com 

301 

hemodynamic stress [60]. In addition to its canonical 
role in regulation of MesP1, it may play 
“housekeeping” roles in adult hearts to stimulate and 
maintain cardiomyocyte fate [60]. 

Kcnq1ot1 induces transcriptional silencing by 
histone methylation of the overlapping Kcnq1/Kv7.1 
potassium channel gene and other genes at the same 
genomic locus [62-64]. It is expressed at high levels in 
embryonic hearts, but reduced 5 times in adult hearts. 
Its counterparts mRNA, Kcnq1, which encodes the 
Kv7.1 slow delayed rectifying potassium channel 
increased during the same period. Kcnq1 is vital for 
normal cardiomyocyte repolarization which ends the 
action potential and cardiomyocyte contraction. Such 
a combination of opposite changes, in accordance 
with the need for enhanced pump function during the 
transition between developing embryonic and fully 
functioning adult hearts.  

By using RNA-sequencing, Kurian et al. have 
identified 3 previously uncharacterized lncRNAs, 
TERMINATOR, ALIEN, and PUNISHER, which were 
specifically expressed in undifferentiated pluripotent 
stem cell, cardiovascular progenitors, and 
differentiated endothelial cell, respectively [65]. They 
provide a comprehensive transcriptomic roadmap 
that sheds new light on the molecular mechanisms 
underlying human embryonic development, 
mesodermal commitment, and cardiovascular 
specidication [65]. By the same method, Matkovich et 
al. identified 321 lncRNAs present in the heart and 117 
of which exhibit a cardiac-enriched pattern of 
expression [60] 

It is not difficult to understand that some 
lncRNAs are necessary regulators during 
embryogenesis and organ differentiations. No matter 
what kinds of regulation modes are, they were 
involved in different biogenesis, and would cause 
more or less impacts on embryogenesis and organ 
differentiations. Besides, because of the tissue 
specificity, their aberrant expressions might be finally 
related to different human diseases. 

Medical applications of lncRNAs in 
human diseases  

The best results of basic research are 
transforming the discoveries into diagnostic methods 
and therapeutic strategies for human diseases. 
Because of the tissue-specific characteristics of 
lncRNAs, they would be the next generation of 
biomarkers or targets for human diseases such as 
human cancer and cardiovascular diseases.  

Biomarkers and therapy strategies for human 
cancers (Table 1) 

lncRNAs, which isolated from tumor cells or 
circulating system, could provide readily-available, 
inexpensive and stable blood-borne diagnostics to 
more readily detect cancers and cancer subtypes[66]. 
Yang et al. analyzed eight kinds of lncRNAs in 240 
patients with HCC and reported that highly 
upregulated in liver cancer (HULC) had a significant 
association with vascular invasion and was a positive 
factor for HCC overall survival and disease-free 
survival time [67]. They also reported that H19 was 
overexpressed in patients with hepatitis B [67]. 
Furthermore, they indicated that H19 and maternally 
expressed 3 (MEG3) were both considered to be risk 
factors for high alpha fetoprotein (AFP) level [67]. 
Tang J., et al have reported that compared with the 
traditional biomarkers of HCC (AFP), three lncRNAs 
(RP11-160H22.5, XLOC_014172 and LOC149086) 
might be the potential biomarker for the 
tumorigenesis prediction and XLOC_014172 and 
LOC149086 for metastasis prediction in the future 
[68]. Zhao et al., have reported that SPRY4 intronic 
transcript 1 (SPRY4-IT1) is an independent prognostic 
factor of overall survival in patients with urothelial 
carcinoma of the bladder (UCB) [69]. The work 
of Kristina P Sørensen.et al., firstly investigated the 
prognostic potential of lncRNA profiles for patients 
with breast cancer, which can distinguish metastatic 
patients from non-metastatic patients with sensitivity 
more than 90% and specificity of 64 to 65% [70].  

 

Table 1. Working mechanisms and medical applications of lncRNAs in human cancer  

LncRNA Working mechanisms Medical applications 
ANRASSF1 form an RNA/DNA hybrid and recruits PRC2 to the RASSF1A promoter[76] Biomarker : breast cancer[77] 
ANRIL chromatin remodeling: CDKN2A/B [47], Kruppel-like factor 2 (KLF2) and p21 locus by interacting 

with PRC1 and PRC2 [24, 78] 
Biomarker : acute lymphoblastic leukemia 
(ALL) [79], ovarian cancer[80], non-small cell 
lung cancer (NSCLC)[24] 

H19 1. regulate IGF2 imprinting[81]; 
2. miR-675 precursor[82-85]; 
3. ceRNA function by sponging of let-7[86-88], miR-138[89], miR-200a [89]; 
4. chromatin remodeling by binding MBD1[90]; 
5. interact with Slug or EZH2 and  
regulate E-cadherin expression[91-92] 

Biomarker: hepatocellular (HCC)[67]  
Cancer therapy: BC-819[72], BC-821, siRNA and 
anti-miR* for lung cancer[93];  
Cancer therapy: double promoter toxin vector 
P4-DTA-P3-DTA for pancreatic cancer, ovarian 
cancer and HCC[94-95]; 
Cancer therapy: DTA-H19 for unresectable 
pancreatic cancer[66, 73] 

MALAT1 
(NEAT2) 

1. bind to unmethylated Pc2 promotes E2F1 SUMOylation, leading to activation of the growth-control 
gene program[96]; 
2. ceRNA function by sponging of miR-145[42], miR-124[43], miR-205[97]; 

Biomarker: predicting prostate cancer risk[99] 
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3. directly interact with Sp1 and LTBP3 promoter to increase expression of LTBP3 gene[98]; 
4. bind to SFPQ and releasing PTBP2 from the SFPQ/PTBP2 complex[50] 

HOTAIR 1. chromatin remodeling chromatin remodeling HOXD gene locus[100-101]; 
2. recruit and bind to PRC2[102-103] and epigenetically represses miR-34a[104]; 
3. ceRNA function by sponging of miR-331-3p[44]; 
4. associate with the immunoprecipitated Ago2 (Argonaute2) complex, and cleaved by the Ago2 
complex in the presence of miR-141[105]. 

Biomarkers: risk factors for high AFP level, 
HCC[106], breast cancer[107], colorectal cancer 
(CRC), gastric cancer (GC)[108] 
Cancer therapy strategy: Triple-negative 
breast cancer (TNBC)[109] 

LincRNA-p21 
(TP53COR1) 

interact with hnRNP K leads to gene silencing and cell apoptosis[51] NA 

PTENP1 1. ceRNA function by binding with miR-21[110], miRNA sponge of 
miR-17[111],miR-19b[111],miR-20a[111]; 
2. PTEN mRNA stability[6] 

Biomarker: GC[111-112] 
Cancer therapy: SB-BV hybrid vector for HCC 
therapy[111] 

PTENP1 asRNA 
(α,β,unspliced) 

1. the α isform suppress the expression of PTEN by localize on the PTEN promoter and interact with 
EZH2 and DNMT3a[37]; 
2. the β isform involved as a miRNA sponge mediated by PTENP1[37] 

NA 

BRAFP1 ceRNA[46] NA 
MEG3 1. interact with p53 by promoting p53 binding to GDF15 promoter[113]; 

2. dissociate the transcription factor SOX2 from the BMP4 promoter[114]; 
3. ceRNA function by sponging of miR-21[115]; 

Biomarker: risk factors for high AFP level, CRC 
[116], Tongue squamous cell carcinoma (TSCC) 
[117], GC [118] 

TERRA promoted recruitment of lysine-specific demethylase 1 (LSD1) to unprotected telomeres and 
interacting with MRE11 (double strand break repair nuclease)[119] 

NA 

PVT1 1. ceRNA function by sponging of miR-200 family[120]; 
2. interact with NOP2 to protects it from degradation[121]; 
3. associate with enhancer of zeste homolog 2 (EZH2) to repress p15 and p16[122]; 
4. recruit EZH2 to the large tumor suppressor kinase 2 (LATS2) promoter and represses LATS2 
transcription[123] 

Biomarker: HCC, GC[122, 124], pancreatic 
cancer[125], CRC[126] 

HULC 1. activate ACSL1 promoter[23] 
2. inhibit the miR-9 promoter[23]; 
3. ceRNA function by sponging of miR-372 [127]; 

Biomarkers : HCC[128] , pancreatic cancer[129] 

FER1L4 ceRNA function by sponging of miR-106-5p[130-131] Biomarkers: diagnosis of CRC[130], GC[132] 
PCA3 form PRUNE/PCA3 double-strand RNA to control PRUNE[133] Biomarker : prostate cancer[134-135] 
CCAT1 1. ceRNA function by sponging of let-7, miR-218-5p[136], miR-155[137], miR-490[138]; 

2. interact with CTCF and modulate chromatin conformation at these loop regions[139] 
NA 

ATB 1. ceRNA function by sponging of miR-200c to mediate EMT[140-141]; 
2. promote organ colonization of disseminated tumor cells by binding IL-11 mRNA, autocrine 
induction of IL-11, and trigger STAT3 signaling [141]. 

NA 

HNF1A-AS1 bind with DNMT1 to regulate cyclinD1[142] NA 
NKILA interact with NF-KB/I-KB to form a stable complex , serving as NF-KB modulators to suppress 

metastasis[143] 
NA 

PANDAR interact with NF-YA to pro-apoptotic genes[144] Biomarker : hepatocellular carcinoma[145] 
PCAT-1 1. interact with myc[146]; 

2. repress BRCA2 3’-UTR imparts a high sensitivity to PARP1[147] 
Biomarker: esophageal squamous carcinoma 
(ESCC)[148], CRC[149] 

HOST2 ceRNA function by sponging of let-7b[150] NA 
GAPLINC ceRNA function by sponging of miR-211-3p to compete with CD44[151] Biomarker: GC[151] 
ROR 1. ceRNA function by sponging of miR-145 [152-153]and miR-205[154]; 

2. suppress p53 translation through direct interaction with the heterogeneous nuclear 
ribonucleoprotein I (hnRNP I)[155] 

NA 

FAL1 interact with BMI1 and regulate a number of genes[156] NA 
TARID interact with TCF21 promoter and GADD45A to directs de-methylation of TCF21[157] NA 
UCA 1. activate STAT3 and repress miR-143 to activate mTOR to regulate HK2[158]; 

2. interact with hnRNP1 to suppress p27 protein level[159] 
NA 

TUG1 modulate HOXB7 to participating in AKT and MAPK pathways[160] NA 
RUNXOR utilize its 3’-UTR terminal fragment to directly interact with RUNX1 promoter chromosomal 

translocation[161] 
NA 

SPRY4-IT1 interact with ZNF-703[162] Biomarkers: urothelial carcinoma of the 
bladder[69], GC[163], prostate cancer[164], 
ESCC[165] 

 
 
Because of the heterogeneity of human cancer, 

the personalized medicine for human cancer has been 
proposed for many years, and the precision medicine 
has become the most important field for cancer 
research and treatment. However, the etiologies of 
human cancer are so complex that the results need to 
be transformed by different levels of clinical trials. 
Several strategies of cancer therapy have been 
developed presently.  

Treating cancer by interference of RNA 
expression has developed as a treatment modality 
because growth-promoting lncRNAs could be 
inactivated through antisense technologies [66]. 

LncRNAs could also function as mRNA or miRNA 
sponges to inhibit the growth-promoting, 
pro-tumorigenic signaling pathway so that 
synthetically-engineered lncRNAs may be employed 
through replacement therapy to inhibit tumor cells 
[71]. Dextran nanoparticles can deliver chemotherapy 
to the nucleus, which may be used to attach cytotoxic 
agents to lncRNAs [66]. The plasmid DTA-H19 was 
designed to express a diphtheria toxin subunit 
controlled by the H19 promoter [72], [73], which could 
be injected into tumor and lead to a H19-dependent 
activation of diphtheria toxin within the tumor [45]. 
Another emerging method is to increase the activity of 
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tumor suppressor by neutralizing the inhibitory 
effects of lncRNAs through antisense oligo 
nucleotides [66]. These compounds, which are 
directly taken up by cells, can be injected 
subcutaneously without any delivery vehicle [66]. 
They can cross endosomal membranes and enter the 
nucleus to inhibit PRC2 interaction with lncRNAs[46]. 
These compounds could also cross the blood brain 
barrier without a lipid carrier [66].  

Biomarkers and therapy strategies in human 
cardiovascular diseases (Table 2) 

Although lncRNA in cardiovascular have not 
been researched as extensively and thoroughly as in 
human cancer, some research has indicated that 
lncRNA could be biomarkers for cardiovascular 
diseases. Kumarswamy et al., have validated 
mitochondrial lncRNA uc022bqs.1 (LIPCAR) as a 
novel biomarker of cardiac remodeling that predicts 
future death in patients with heart failure [74]. 
Myocardial infarction (MI) is another kind of 
important cardiovascular disease. Vausort et al., have 
verified about five kinds of lncRNAs as biomarkers 
for predicting the outcome of MI in about 414 
patients, including hypoxia inducible factor 1A 
antisense RNA 2 (HIA1A-AS2), cyclin-dependent 
kinase inhibitor 2B antisense RNA 1 (ANRIL), 
potassium voltage-gated channel, KQT-like 
subfamily, member 1 opposite strand/antisense 
transcript 1 (KCNQ1OT1), myocardial 
infarction-associated transcript (MIAT), and 
MALAT1) [75]. Their results are summarized as 
follows: (1) HIA1A-AS2, CNQ1OT1 and MALAT1 
were higher in patients with MI than in healthy 
volunteers (P<0.01), while levels of ANRIL were 
lower in patients with MI (P=0.003); (2) compared 
with patients with non-ST-segment-elevation MI, 
patients with ST-segment-elevation MI had lower 
levels of ANRIL (P<0.001), KCNQ1OT1 (P<0.001), 

MIAT (P<0.001), and MALAT1 (P=0.005) ; (3) levels of 
ANRIL were related to age, diabetes mellitus, and 
hypertension; (4) HIA1A-AS2 elevated in patients 
presenting within 3 h of chest pain onset than in 
patients presenting later; (5) ANRIL, KCNQ1OT1, 
MIAT, and MALAT1 were significant univariable 
predictors of left ventricular dysfunction as assessed 
by an ejection fraction ≤40% at 4-month follow-up; 
and (6) ANRIL and KCNQ1OT1 improved the 
prediction of left ventricular dysfunction by a model, 
including demographic features, clinical parameters, 
and cardiac biomarkers based on the multivariable 
and reclassification analyses [75].  

Conclusions 
In summary, we have separately discussed 

several items of lncRNAs, including their definition 
and classification, their related research methods and 
strategies, their possible working mechanisms, their 
function during embryogenesis and organ 
differentiation, their significance in human cancer and 
cardiovascular diseases.  

However, each section might have their 
limitations due to our unawareness of them. We could 
not make an exact definition for lncRNAs. And 
following with the discovery of new lncRNAs, we 
might be confronting with the difficulties from 
classifications. The present research methods could 
realize the interaction among RNA, DNA and protein, 
and provide important bioinformatics clues on basic 
research, we still need further techniques to reach a 
whole comprehension on lncRNA network 
mechanisms. We need not only learn about the real 
mechanisms of lncRNAs during embryogenesis and 
development, but also the novel changes in various 
kinds of diseases, and finally realize the destination of 
promoting human health by our knowledge. 

 

Table 2. Working mechanisms and medical applications of lncRNAs in human cardiovascular diseases 

LncRNA Working mechanisms in cardiovascular diseases Medical application 
LIPCAR NA Biomarkers: cardiac remodeling predicts future death in 

patients with heart failure[74] 
ANRIL NA Biomarkers: significant univariable predictors of left 

ventricular dysfunction[75] 
KCNQ1OT1 NA Biomarkers: significant univariable predictors of left 

ventricular dysfunction[75] 
MALAT1 NA Biomarkers: significant univariable predictors of left 

ventricular dysfunction[75] 
MIAT ceRNA: function by sponging of miR-150-5p[166] Biomarkers: significant univariable predictors of left 

ventricular dysfunction[75] 
MHRT Sequesters Brg1 from its genomic DNA targets to prevent chromatin remodeling [167] Biomarkers : myocardial infarction (MI)[168] 
UCA1 NA Biomarkers: Acute myocardial infarction (AMI) [169] 
LincRNA-p21 Binding with MDM2 and release MDM2 repression of p53 [170] NA 
RNCR3 
 

acts as a ceRNA, and forms a feedback loop with Kruppel-like factor 2 and miR-185-5p to 
regulate cell function, atheroprotective role in atherosclerosis[171] 

NA 

ROR  promotes cardiac hypertrophy via interacting with miR-133[172] NA 
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