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Abstract 

Translational bioinformatics is becoming a driven force and a new scientific paradigm for cancer 
research in the era of big data. To promote the cross-disciplinary communication and research, we 
take cholangiocarcinoma as an example to review the present status and the future perspectives of 
the bioinformatics models applied in cancer study. We first summarize the present application of 
computational methods to the study of cholangiocarcinoma ranged from pattern recognition of 
biological data, knowledge based data annotation to systems biological level modeling and clinical 
translation. Then the future opportunities and challenges about database or knowledge base 
building, novel model developing and molecular mechanism exploring as well as the intelligent 
decision supporting system construction for the precision diagnosis, prognosis and treatment of 
cholangiocarcinoma are discussed. 
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Introduction 
Cholangiocarcinoma (CCA) is a relative rare but 

the second most common type of primary liver tumor 
[1]. It is an aggressive malignancy of the biliary 
epithelium with poor prognosis since it is often 
diagnosed with clinical symptoms presented at a late 
stage. The treatment options for this disease are very 
limited. CCA is heterogeneous and it now can be 
grouped based on their intrahepatic, perihilar, and 
distal extrahepatic locations. These subtypes are 
different in tumor biology, genetics and epigenetics or 
environmental carcinogens [2].  

The pathogenic factors for CCA genesis could be 
genetic alterations, negative lifestyles, environmental 
exposures or their interactions [3]. Many genetic 
mutations in genes like TP53, KRAS, SMAD4, 
ABCB11, ARID1A, ATP8B, BRAF, IDH1/2, MLL3 and 
PBRM1 were reported to be associated with the 
pathogenesis and progression of CCA [4-7]. The liver 
fluke infestation and nitrosamine exposure are the 
two main exposure risk factors identified associated 

with patients in northeastern Thailand where CCA is 
mostly found [8]. Risk factors for the fluke-negative 
CCA could be HBV/HCV virus infection, chronic 
biliary and liver diseases such as, primary sclerosing 
cholangitis, biliary stone disease, congenital biliary 
malformations and cirrhosis [8-11]. Diabetes was 
reported contribute to the risk of intrahepatic CCA 
(iCCA) [12]. The negative lifestyle for CCA could be 
alcohol consumption, raw freshwater fish and beef 
sausage, tobacco use, and so on [13, 14]. The CCA 
associated environmental toxins include dioxin, vinyl 
chloride and others [15, 16]. The diversity of these risk 
factors at all the above levels makes the CCA very 
heterogeneous. The mutational landscape, the cellular 
origins and the carcinogenesis of the different CCA 
subtypes are still unclear. 

For the diagnosis and treatment of CCA, it is 
very challenging to classify the subtypes of CCA, or to 
make a distinction between CCA and other diseases. 
For example, it is difficult to distinguish iCCA from 
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metastatic adenocarcinoma, especially gastric adeno-
carcinoma and pancreatic adenocarcinoma [17]. Since 
the evolutionary origins of CCA are not clearly 
identified and the heterogeneity of CCA can be 
caused by the dynamic interaction between many risk 
factors, no efficient therapeutic targets are screened at 
present [18-23]. Many open questions are thereby 
needed to be investigated for the future precision 
medicine of CCA. In the post-genome era, it becomes 
cheaper than before to sequence cancer genomes and 
to measure the alteration in gene expression. Many 
bio-techniques like deep sequencing, single cell 
sequencing, CRISPR, etc.[24-26] are developed as 
efficient tools for the deep investigation of the 
complex mechanisms of complex disease like CCA. 
The accumulation of big sequencing data and other 
clinical data provides the opportunity, but also the 
challenge, to build bioinformatics models for early 
diagnosis and personalized treatment, even 
prevention of cancers like CCA and others.  

Bioinformatics is an interdisciplinary field 
matured with the initialization of human genome 
project. It plays key roles in the analysis of high 
throughput data, such as genome data for compu-
tational gene prediction and the microarray data for 
gene expression profiles. Bioinformatics is now facing 
many new challenges in the translational research. 
Translational bioinformatics was proposed and 
developed as a new field recently [27-29]. Big data 
driven knowledge discovery is the new paradigm for 
translational medicine [30]. Biological and medical 
data are characterized with diversity, dynamics, 
association, inter-connection and evolution. The 
analyzing of these data is cross-disciplinary and often 
needs domain knowledge from basic life science to 
clinical medicine. Furthermore, the informatics skills 
such as, computational programming, database 
building, statistics inference, mathematics simulation 

and complex model developing are required. The 
omics data at the genomic, epigenomic, transcript-
omic, and proteomic as well as metabolomic levels 
can only be rationally analyzed in-depth with the 
cooperation between biologists and data scientists. 
The translation from the biological findings to the 
clinical applications is still a big challenge since most 
of the biological findings are based on the study of 
cell-lines or animal models. When applied these 
findings to heterogeneous patients, it is often not 
successful [31, 32]. Comparing to the animal models, 
the molecular mechanisms for different patients are 
very different and diverse caused by their different 
genetics, lifestyles and environmental exposures. It is 
clear that the deep cooperation between bioinform-
atics, biologists and clinical doctors is necessary to 
make the progress of big-data driven precision 
medicine.   

We here take the CCA as an example and 
summarize the current applications of bioinformatics 
to the understanding of CCA in all aspects from basic 
research to clinical applications. In addition, we 
discuss the future perspectives on the application of 
bioinformatics to CCA study, such as the actionable 
risk factors identification, the systems biological level 
pattern recognition, the model based high-risk 
population screening and the biomarker discovery for 
precision classification and therapeutics of CCA.    

Present Status of Bioinformatics 
Applications in Cholanogiocarcinoma 

The general pipeline of bioinformatics 
applications in the complex disease investigation is 
scratched in Figure 1. The first step for bioinformatics 
study is to collect related data based on the concrete 
biological question. Sometimes a database or 
knowledge base building is necessary. As shown in 
Figure 1, the biological data types are diverse and 

they could be all kinds of molecular omics 
data or clinical phenotypic data. These data 
need to be cleaned, standardized for the 
storage and next step analysis. If the data 
need to be further shared in a community 
for cohort analysis, the ontologies are often 
developed for the widely sharing and 
cooperation. The data sharing and 
standardization are often complex espec-
ially data are generated from different 
research groups with different technolo-
gies. Markup languages are often 
developed for standardization and sharing 
of data to the research society. Systems 
biology markup language (SBML), 
microarray gene expression markup 
language (MAGE-ML) and carbohydrate 

 

 
Figure 1. The pipeline of bioinformatics application: from biological data to biomedical discovery 
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sequence markup language (CabosML) etc. have been 
developed and widely applied to the bioinformatics 
researches [33-36].  

After the data collection and standardization, a 
biological specific model will be the next step to 
discover the knowledge in this data. In the past two 
decades, many models were developed and applied 
to the complex disease studies. We here summarize 
these applications to different categories according to 
the principle of informatics models. 

Biological data analyses based on pattern 
recognition 

Biological data have many types, such as 
DNA/RNA and protein that are often represented 
with strings formed by four nucleotides or twenty 
amino acids, the gene expression is described with a 
series of real values and the proteomics or metabolism 
data can be presented with mass spectrometry signals. 
All these data could have specific data patterns which 
can be extracted and used by biologists to answer 
special biological questions. Table 1 lists some of the 
examples applied in CCA studies, which use the 
pattern recognition principle as the model for biology 
discovery. 

In the early stage of human genome project 
implementation, the gene finding is often based on the 
genetic patterns hidden in the genomics, and then 
when microRNAs are found as an important family 
for controlling of biological processes, the 
microRNA-mRNA complementary patterns are used 
to predict the interaction between microRNA and 
other types of RNAs. The principle can be also used 
for peptide vaccine design and neo-epitope prediction 
based on the patterns in sequence of virus proteins 
[45, 46]. Huge amount of bioinformatics analyses are 
pattern recognition in all kinds of biological data. The 
applications of this principle for modeling of CCA 
could be more in the future when the clinical scientists 
can map the idea to their biological data for specific 
questions. 

Knowledge-based model for biological function 
annotation 

Knowledge based model is the most successful 
one applied to the complex disease study. Two 
knowledge bases are often used in the enrichment 
analysis of biological data. One is the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), which 
can be used to identify pathways important to a 
concrete biological system to understand the biology-
ical functions [47]. Another one is the gene ontology 
(GO) database, which is useful to the understanding 
of biological processes, molecular functions and 
sub-cellular localization of the studied systems [48]. 

 As the complex diseases like cancers are always 
heterogeneous, the differentially expressed genes 
(DEG) may be different at the gene level, but the DEG 
could be enriched in a common pathway or a 
biological process or a sub-cellular location [49-51]. 
The enrichment analysis is very powerful to the 
exploring of gene set level mechanisms, such as the 
pathway, module or network at the systems level.  

Connectivity Map (CMap) is another useful 
knowledge base for pharmacogenomics and drug 
design. It links together the small molecules, gene 
expression and diseases. CMap could be used to 
explore the molecular pathways of a specific drug 
functions on a disease. The connective information is 
also useful to the discovery of new molecules as 
putative drugs if it can reverse the altered gene 
expression in the complex disease to the normal state 
of expression. As listed in Table 2, this strategy was 
also applied to CCA drug discovery, and the HSP90 
inhibitor, NVP-AUY922 was predicted effective to 
CCA [52]. Ontology or XML based knowledge base 
will be very useful to the future personalized 
medicine. The knowledge base works like a dictionary 
connecting different genotypes, phenotypes, drugs or 
lifestyles and could provide a powerful tool for the 
precision mapping of diseases to specific gene 
signatures which is important to the diagnosis and 
treatment of the disease. Some of the examples 
applied knowledge base to annotation of the CCA 
data are listed in Table 2. 

Network and integrative systems biology as 
the paradigm 

Since the phenotypes, especially the clinical 
phenotypes are caused by interaction among different 
genes, lifestyles and experimental exposures. The 
network reconstruction for gene regulation [56, 57], 
protein-protein interaction (PPI), as well as the 
integration of disease specific risk factors is a systems 
biological paradigm for the investigation of complex 
disease. Based on the network analysis, we could 
screen diagnosis biomarkers, driver genes and 
mutations for complex diseases [58-61]. Table 3 and 
Table 4 list the examples of CCA mechanism studies 
with network and integrative analysis of gene 
expression data, copy number variation data and 
other biological information. 

For complex disease, information collected at 
different levels such as molecule level, organ/tissue 
level and individual patient level are all suggestive to 
the risk or genesis of disease. The information from 
different levels could be reasonably integrated for the 
improvement of prediction of the disease. Therefore, 
integrative studies are not only applied to the same 
omics level, such as genome, transcriptome, proteome 
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etc. but also could be performed at cross-levels like 
molecular level and tissue/organ level by combining 
the gene expression information with the imaging 
features from magnetic resonance imaging (MRI), 
computed tomography (CT) and positron emission 
tomography (PET)/CT [66-69]. Although this kind of 
integrative study is not yet reported for the study of 
CCA, in the future the integration of gene expression 
or proteomics data with the clinical imaging features 
will provide a better way to the diagnosis of CCA and 
to the understanding the mechanism of CCA genesis 
and progression. 

Bioinformatics for CCA biomarker and 
drug-target identification 

Precision medicine needs to have novel methods 
to take use of the multiple dimensional big data which 
is often heterogeneous and unstructured. The 
synergic factors for CCA pathogenesis are needed to 
be precisely interconnected for the biomarker and risk 
factor screening [73-75]. Nowadays, with the 
accumulation of biomedical big data, many 

bioinformatics methods were developed for 
personalized and precision medicine of cancer, such 
as the precision classification and the immune 
treatment of lung cancer based on their gene 
expression profiles [76-78]. The bioinformatics models 
for CCA biomarker and drug-target identification are 
comparatively less than studies in other cancer types. 
Some of the examples are collected and listed in Table 
5. The biomarkers identified could be grouped as 
diagnostic and therapeutic of CCA. It could be used to 
the classification of CCA. The biological data used 
here for biomarker discovery include deep 
sequencing data, proteomics data, copy number 
variations and the data from The Cancer Genome 
Atlas project  (TCGA) [79] and Gene Expression 
Omnibus (GEO) [80]. Many putative biomarkers such 
as C-reactive protein (CRP), alpha-1-antitrypsin, 
circulating plasma miRNA-21, etc. were screened for 
the diagnosis of CCA. Moreover, AIFM3 was detected 
as a potential chemotherapeutic target for CCA 
treatment. 

 

Table 1. Pattern recognition in biological data 

Application Method Discovery Ref. 
miRNA- 
lncRNA interaction 

Base pairing based prediction of 
miRNA-lncRNA interaction 

LncRNA -CCAT1 inhibits miR152 and acts as an oncogene in 
intra-hepatic cholangiocarcinoma (iCCA). 

[37] 

 Base pairing based prediction of 
miRNA-lncRNA interaction 

LncRNA -PCAT1 inhibits miR122 and regulates WNT/β-catenin 
signaling pathway extra-hepatic cholangiocarcinoma (eCCA). 

[38] 

miRNA- 
mRNA interaction 

miRNA target prediction based on 
several database 

miR-26a is a potential tumor suppressor of CCA via regulating of 
KRT19 which is the key biomarkers for distinguishing CCA and 
hepatocellular carcinoma 

[39] 

 miRNA target prediction and signal 
pathways analysis 

miRNA-410 directly targets the X-linked inhibitor of apoptosis protein 
(XIAP) and acts as an anti-apoptotic regulator of CCA. 

[40] 

 miRNA target prediction Targets of miR-101 were predicted and validated as a tumor suppressor 
for CCA  

[41] 

lncRNA- 
mRNA interaction 

Base pairing based prediction of 
lncRNA- mRNA interaction and 
co-expression analysis 

CPS1 and lncRNA (CPS1-IT1) may be potential prognostic indicators for 
patients with ICC. 

[42] 

Mass spectrometry data analysis Proteomic mass spectrometry pattern 
analysis with MASCOT 

Increased EXT1 expression in plasma is found associated with CCA 
genesis 

[43] 

HBV integration into cellular 
genome of hilar CCA (HCCA) 

DNASIS MAX is used to sequence 
analysis of viral-host junction 

HBV integration is highly detected in the cancer related genes of HCCA 
and indicate that HBCV infection may be related to HCCA pathogenesis 

[44] 

 

Table 2. Knowledge based analyses of biological data 

Knowledge base Methods Discovery Ref. 
Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene Ontology 
(GO) 

Enrichment analysis of miRNA targets. Over-expression of miR-150-5p could inhibit proliferation, 
migration, and invasion capability of CCA cells and indicate 
it contributes to the CCA development and progression. 

[53] 

 Genome-MuSiC was used to mapping the 
mutations to the KEGG and NCI pathways and 
the pathways were clustered and statistically 
analyzed based on the mutation frequencies. 

Several important pathways were identified were identified 
altered in ICC 

[54] 

Connectivity map (CMap), it includes 
the relationship for drugs, genes and 
diseases. 

A candidate drug is supposed to reverse the gene 
expression signature of CCA 

The HSP90 inhibitor, NVP-AUY922, is screened as a 
putative effective CCA drug. 

[52] 

 Interleukin-6 associated genomic signature in 
Mz-ChA-1 human malignant cholangiocytes was 
derived and compounds that induced inverse 
gene changes to the signature were screened.  

Nitrendipine, nifedipine and felodipine that are structurally 
similar compounds were identified cytotoxic to Mz-ChA-1 
cells and could be the potential therapeutic use for CCA. 

[55] 
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Table 3. Network level discovery and functional investigation 

Network type Construction method Discovery Ref. 
lncRNA-miRNA co-expression 
network 

Spearman’s correlation calculation for 
miRNA targeted lncRNA pairs. 

The dysregulated network for intra-hepatic cholangiocarcinoma 
(ICC) was associated with cholesterol homeostasis, insoluble fraction 
and lipid binding activity.etc.  

[62] 

MicroRNA-gene network MicroRNA and mRNA associated 
expression and microRNA target 
prediction  

The hsa-miR-96, hsa-miR-1 and hsa-miR-25 are identified as 
potential therapeutic targets for ICC treatment 

[63] 

Gene co-expression network The regulatory network was constructed by 
mapping the differentially co-expressed 
genes to known regulation data.  

Several important transcription factors such as, FOXC1, ZIC2, 
NKX2-2 and GCGR were identified for the future target design. 

[64] 

Epithelial-mesenchymal transition 
(EMT) network in CCA 

An extensive overview and summarization 
of the EMT regulatory network in CCA. 

EMT regulatory network from the membrane receptors to the 
EMT-inducing transcription factors such as, SNAIL, TWIST and ZEB. 
The plasticity of CCA caused by the redundancies and bypasses of 
regulating EMT is discussed for the therapeutic challenges. 

[65] 

   
Table 4. Integrative analyses for the heterogeneous cholangiocarcinoma 

Integrative data Description Discovery Ref. 
Genetic alterations, gene expression 
and epigenetics  

The samples are clustered to 4 subtypes based on 
their molecular landscapes which are associated 
with etiology. 

The CCAs could be grouped to fluke-negative or positive 
clusters and new CCA driver genes/mutations and 
structural variants were discovered.  

[2] 

Copy number, DNA methylation, 
somatic mutations and RNA 
expression 

Multiple omics data from TCGA are analyzed with 
cluster ensembles method (CLUE R package). 

IDH-mutant enriched subtype has distinct molecular profiles [70] 

Transcriptional and copy number 
variation (CNV) data 

Reconstruction of CCA associated transcriptional 
regulatory network, then integrate the CNV to the 
network and selected the CVN related ICC-TRN. 

ICC patients could be clustered to two groups based on the 
gene expression of nodes in CNV-ICC-TRN. 

[71] 

Genome and transcription data Comparison of Genomic and transcriptional 
alterations from different populations  

CCA with or without liver fluke infection are compared and 
their similarity and difference are identified 

[72] 

 

Table 5. Clinical applications of the bioinformatics analyses 

Application Method Number of patients involved Discovery Ref. 
Diagnostic Biomarker Integrative analysis of data from 

TCGA and GEO database and 
identify the differentially 
expressed genes and validated 
experimentally. 

103 iCCA and 384 other 
adenocarcinoma patients 

C-reactive protein (CRP) was identified as putative 
diagnostic biomarker better than N-cadherin for 
distinguish intra-hepatic cholangiocarcinoma (iCCA) from 
CRP expression indicates a better overall survival. 

[17] 

 Comparative and quantitative 
proteomics study of the bile 
fluid of patients 

Six CCA patients and two 
non-CCA patients 

Alpha-1-antitrypsin is identified as a potential marker for 
early diagnosis of cholangiocarcinoma. 

[81] 

 Comparative deep sequencing 
miRNA expression between 
tumor and control samples 

25 ICC patients and 7 healthy 
controls  
 

Circulating plasma miRNA-21 and miRNA-221 are 
identified as potential diagnostic markers for primary 
iCCA 

[82] 

Chemotherapeutic 
Target  

A shotgun proteomic approach 
Using SDS-PAGE coupled with 
LC-MS/MS to screen 
mitochondrial proteins 
overexerted in CCA. 

25 CCA patients with 11 
non-papillary and 14 papillary 
types 

AIFM3 was found as a potential CCA chemotherapeutic 
target. 

[83] 

Prognostic nomogram Using data from ICCA patients 
to develop and evaluate the 
nomogram by concordance 
index and testing calibration.  

Information from 185 iCCA 
patients was used for 
nomogram creation 

A nomogram integrated ten clinicopathological variables 
was developed to predict prognostic overall survival (OS) 
for iCCA patients after hepatectomy. 

[84] 

Biomarkers to 
distinguish CCA from 
benign biliary tract 
diseases(BBTDs) 

Comparative proteomic with 
SDS-PAGE and LC-MS/MS 

19 CCA and 17 BBTDs patients FAM19A5, MAGED4B, KIAA0321, RBAK, and UPF3B are 
screened as putative biomarkers to differentiate BBTDs 
and CCA. 

[85] 

Identification of 
biomarker for diagnosis 
of eCCA 

Mass spectrometry 165 extrahepatic 
cholangiocarcinoma and 21 
non-cancerous patients 

S100P, CEAM5, MUC5A, OLFM4, OAT, CAD17, FABPL, 
AOFA, K1C20 and CPSM were identified associated with 
eCCA could be acted as biomarker for diagnosis of eCCA. 

[86] 

Classification of iCCA Copy number alterations and 
classification 

53 iCCA patients iCCA can be grouped and targeted based on their copy 
number alterations areas such as 1p, 3p, 7p, etc. 

[87] 

 
Limitation of the existed bioinformatics 
applications 

Although many bioinformatics techniques and 
models have been applied to the study of CCA, 
precise models for deep analyses of trans-omics data 

of cholangiocarcinoma are still lacking for the 
investigation of the CCA heterogeneity, the 
interaction between the tumor cells and their 
microenvironment, the pharmacological effects, etc. 
The paired genotype and phenotype data, the time 
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series and dynamic data for the CCA developing will 
be needed to study these questions with translational 
bioinformatics models.  

For the application of the findings of basic 
biological research to clinical diagnosis or treatment, 
further validation is needed since these findings based 
on the screening in small number of patients. When 
applied the findings to big population, we need to 
consider the genetic and phenotypic similarities 
between the patients. Big data and personalized 
information will be essential to build the personalized 
models. 

The Future Perspectives on Precision 
Medicine of Cholangiocarcinoma  

With the big data driven modeling and systems 
level thinking paradigm popularized, more and more 
bioinformatics applications will be developed and 
implemented to the cancer diagnosis and treatment. 
The cross-disciplinary communication and 
cooperation is still a barrier for the precision medicine 
development. The challenges and opportunities 
coexisted in the future for the application of 
bioinformatics to cholangiocarcinoma study. We 
propose to develop CCA specific databases, 
knowledge bases and systems medicine model 
considering the dynamic changes of the cancer 
evolution, the big data based monitoring the CCA 
genesis for the healthcare will become the reality. 

Database building is the basic for the 
translational research 

Bioinformatics is a discipline using database as 
the basic tool for annotation, analysis and modeling of 
biological systems. For the CCA studies, we are 
lacking of CCA specific databases for the gene 
alterations, for the genotype-phenotype relationship 
at genomic, imaging or clinical symptom level. For the 
clinical data collection, we also need to consider the 
ethical and privacy issues, the personalized 
information need to be de-identified and preserved. 
As presented in Figure 2, we need to first consider the 
privacy issue when we build a database including 
patients’ clinical information. In this aspect, many 
efficient cryptographic models have been developed 
and proposed for the privacy preserving [88-90]. With 

the specific database built, data scientists and clinical 
researchers could cooperate together to mining the 
association between the risk factors and the sub-types 
of the studied diseases, to make precision 
classification and to explore the complex mechanisms 
for the special clinical phenotype and at last to screen 
actionable biomarkers, risk factors for the diagnosis 
and prevention of disease. 

 

Knowledge based informatics models are the 
essential 

Knowledge base is an advanced database, it 
stores the expert annotated information often with 
structural relationship and standardized terminology. 
It promotes the knowledge sharing and precise 
application. Since the complex disease like CCA often 
related to many factors like genetics, lifestyle and 
environmental factors (see Figure 3A), these factors 
may be associated with each other. So a knowledge 
base which can describe their relationship precisely 
will be very useful for the understanding of their 
interaction, then to identify the driver changes or 
events from these complex data. 

Ontology is successful in the annotation of gene 
products’ function in the last several decades, in the 
future the clinical phenotypes for the CCA needs to be 
developed to standardize the CCA associated clinical 
symptom and phenotypes, then applied to the 
mapping of genotype-phenotype relationship for 
CCA study and bioinformatics model developing (see 
Figure 3B). 

At present, we cannot diagnose and treat the 
CCA precisely since we do not have the precise 
relationship between the clinical symptoms and the 
genes, the lifestyles or the environmental factors. 
Without the knowledge, we cannot build the 
precision models, and we even cannot identify the 
risk factors and the pathogens at the systems level. 
The building of knowledge base for CCA can help us 
to connect the reported factors and to build the 
systems biological model for the investigation of 
heterogeneity of CCA and to identify the key players 
or the drivers in different steps of the CCA evolution 
[91]. 

 

 
Figure 2. Data-driven discovery for cholangiocarcinoma study 
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Exploring the regulatory mechanism of CCA 
genesis and progress 

The discovery of the specific molecular 
mechanism for CCA genesis and progress is the basic 
for the identification of efficient therapeutic targets or 
diagnostic biomarkers. It is reported that the long 
term inflammation is one of the causing factors for 
CCA [92], the autocrine and paracrine mechanisms 
will promote the chemo-resistance in CCA [93]. 
However, CCA is very heterogeneous and the 
effective druggable targets or biomarkers still 
missing, the modeling at network or systems level is 
required to understand the controllability of the CCA 
systems.  

With the rapid developing of diverse omics 
techniques, it is easy to collect the trans-omics data 
such as the mutation/CNV/gene fusion profiles, to 
detect the methylation and the transcription 
landscapes, even the different clinical and 
physiological phenotyping data. The integration of 
the information can facilitate the building of systems 
biological model for exploring the molecular 
mechanism of CCA genesis and progress. 
Understanding the evolutionary mechanisms 
is the necessary to precision medicine of 
cholangiocarcinoma 

Cancer is also an evolutionary disease [94-97], 
the over-diagnosis and over-treatment is often 
happened since we cannot efficiently predict the 
tendency of the cancer evolution. The accumulation of 
gene alternations is an evolutionary way to destruct 
the biological system step by step. To consider the 
cancer as a chronic disease and try to change the 
negative styles or prevent to exposure to the harmful 
environments may be an alternative way to decrease 
the mortality of CCA. It could be expected that in the 
future, with more data and knowledge available for 
the modeling of CCA, the prevention of CCA could 
become possible. 

 Figure 4 displays the progress of CCA, from its 
cellular origins and then accumulate the gene 
alterations like mutations, gene abnormal expression, 
etc. The heterogeneity of CCA is increased and the 
complex of the CCA is also changed to the stage 
difficult to be controlled and managed. Therefore, it is 
always needed to develop a way to screen CCA as 
early as possible, but it is not easy to collect the data or 
information in the early stage of CCA, since no clear 
signs or symptoms presented in the early stage of 
CCA. The only way is to find an evolutionary rule or 
model to infer the early changes at the molecule level. 
Then we could have a way to predict and act early for 
the prevention of the progress of CCA. 

 

 
Figure 3. Knowledge guided model for personalized medicine of 
cholangiocarcinoma 

 

 
Figure 4. Evolutionary study of cholangiocarcinoma and preventative medicine 

 

Conclusions 
Precision medicine of CCA needs not only the 

data, we also need precise information or systems 
level models. Bioinformatics is the key discipline for 
translational study of cancers like CCA. At present, 
the models applied to translational CCA study are 
simple and not so precise or CCA specific, since we 
are lacking of the CCA specific databases, knowledge 
bases and therefore no in-depth applications of 
bioinformatics in CCA study. To construct the CCA 
specific database and knowledge base will be the 
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basic for the model developing in CCA study. This 
offers us great opportunities and challenges in the 
next step bioinformatics-guided precision medicine 
for CCA biomarker and risk factor discovery. 
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pedia of Genes and Genomes, GO: Gene ontology. 
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