Spexin alleviates insulin resistance and inhibits hepatic gluconeogenesis via the FoxO1/PGC-1 α pathway in high-fat-diet-induced rats and insulin-resistant cells

Liping Gu^{1*}, Xiaoying Ding^{1*}, Yufan Wang¹, Mingyu Gu¹, Jielei Zhang¹, Shuai Yan¹, Na Li¹, Zhiyi Song¹, Jiajing Yin¹, Leilei Lu²³, and Yongde Peng¹

¹ Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. ² Shanghai Intertek Medical diagnostic Testing Center Co; Ltd, Shanghai 200436, China. ³ School of Pharmaceutical Engineering& Life Science, Changzhou University, Changzhou, 213164 China. * These authors contributed equally to this study. Correspondence and requests for materials should be addressed to Yong-de Peng (E-mail: pengyongde0908@126.com)

Supplementary Figure 1. Comparison of body weight, blood parameters, and HOMA-IR in HFD-induced SD rats and control rats at 18 weeks old. (A) The changes of body weight from 0 to 18 weeks in HFD-induced rats and control group. (B) Body weight in HFD group was significantly higher than control group at 18 weeks (* P < 0.05). (C) Fasting plasma glucose in HFD group was significantly higher than control group at 18 weeks (* P < 0.05). (D) Fasting insulin level in HFD group was significantly higher than control group at 18 weeks (* P < 0.05). (E) HOMA-IR in HFD group was significantly higher than control group at 18 weeks (* P < 0.05). (E) HOMA-IR in HFD group was significantly higher than control group at 18 weeks (* P < 0.05). (F) The liver index in HFD group was significantly higher than that in control group (* P < 0.05). (G) Liver morphology observed by H&E staining in HFD group and control group. Liver cells in the HFD group showed cell enlargement, diffused hepatic steatosis, and obvious fat infiltration. In control group, the liver cells showed a compact structure, clear edge, and normal size, with a large and round cell nucleus, even cytoplasm, and no lipid droplets.

Supplementary Figure 2. HepG2 cells cultured with 10 μ g/ml insulin for 36 h could establish a stable and successful insulin resistant model of HepG2 cells. (A) Different concentrations of insulin treated HepG2 cells for 36 h, and glucose consumption in the culture of 10 μ g/ml insulin group was the smallest. (B) HepG2 cells were cultured with 10 μ g/ml insulin for 12 h, 24 h, 36 h, 48 h, and 60 h. Glucose consumption in the supernatant in 36 h group was the smallest. (C) No significant difference in cell viability was detected by CCK-8 assay after 36 h treatment of high

concentration of insulin. (D) No difference in morphology of HepG2 cells and HepG2-IR cells was observed under the optical microscope. (E) Expression of IRS-2 mRNA detected by qRT-PCR showed a significant decrease in HepG2-IR cells (* P < 0.05). (F) Expression of G-6-Pase in HepG2-IR cell culture was significantly increased detected by ELISA (* P < 0.05).

Supplementary Figure 3. CRISPR/Cas9-mediated disruption of spexin expression in HepG2 cells. (A) Compared with the blank group and the HepG2-spCas9-NC group, the cell expression of spexin mRNA in HepG2-spCas9-Spexin-gRNA group was significantly lower (* P < 0.05). (B) The protein expression of spexin in cell culture was detected by ELISA. The level of spexin expression in HepG2-spCas9-Spexin-gRNA culture was significantly lower than that in blank group and HepG2-spCas9-NC group (* P < 0.05).

Gene Name Primer	Species	Primer Sequence (5-3)
PGC-1a	Human	F:AGGCAAGCAAGCAGGTCT
		R:GTCATCAAACAGGCCATCC
	Rat	F: GGAGCTGGATGGCTTGGGACAT
		R: TTCGCAGGCTCATTGTTGTAC
FoxO1	Human	F: TGGACATGCTCAGCAGACATC
		R: TTGGGTCAGGCGGTTCA
	Rat	F: CAGCAAATCAAGTTATGGAGGA
		R: TATCATTGTGGGGAGGAGAGTC
РЕРСК	Human	F: GGTTCCCTGGGTGCATGAAA
		R: CACGTAGGGTGAATCCGTCAG
	Rat	F: GAGATCATCTCCTTCGGAAGCG
		R: TTAGTTATGCCCAGGATCAGCATG
G-6-Pase	Human	F: GACCTCAGGAATGCCTTCTACG
		R: AGTCAGTATCCAAAACCCACCAG
	Rat	F: AACGTCTGTCTGTCCCGGATCTAC
		R: ACCTCTGGAGGCTGGCATTG
GAPDH	Human	F: ATGGGGAAGGTGAAGGTCG
		R: GGGGTCATTGATGGCAACAATA
β-actin	Rat	F: ACCCACACTGTGCCCATCTATG
		R: AATGTCACGCACGATTTCCCT

Supplementary Table 1A. Primer sequences for qRT-PCR.