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Abstract 

Lung cancer is a malignancy with high morbidity and mortality worldwide. More evidences indicated that gut 
microbiome plays an important role in the carcinogenesis and progression of cancers by metabolism, 
inflammation and immune response. However, the study about the characterizations of gut microbiome in lung 
cancer is limited. In this study, the fecal samples were collected from 16 healthy individuals and 30 lung cancer 
patients who were divided into 3 groups based on different tumor biomarkers (cytokeratin 19 fragment, 
neuron specific enolase and carcinoembryonic antigen, respectively) and were analyzed using 16S rRNA gene 
amplicon sequencing. Each lung cancer group has characterized gut microbial community and presents an 
elimination, low-density, and loss of bacterial diversity microbial ecosystem compared to that of the healthy 
control. The microbiome structures in family and genera levels are more complex and significantly varied from 
each group presenting more different and special pathogen microbiome such as Enterobacteriaceae, 
Streptococcus, Prevotella, etc and fewer probiotic genera including Blautia, Coprococcus, Bifidobacterium and 
Lachnospiraceae. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and COG annotation demonstrated 
decreased abundance of some dominant metabolism-related pathways in the lung cancer. This study explores 
for the first time the features of gut microbiome in lung cancer patients and may provide new insight into the 
pathogenesis of lung cancer system, with the implication that gut microbiota may serve as a microbial marker 
and contribute to the derived metabolites, development and differentiation in lung cancer system. 
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Introduction 
Lung cancer is a leading cause of death by cancer 

worldwide, causing up to 23.1% deaths of all cancers 
in 2018 according to the WHO. The gut microbiome is 
recognized as ‘second genome’ of humans and has 
attracted considerable attention in recent decades. It is 
estimated that the gut microbiome contains more than 
100 times the genes in the human genome and 
performs key functions relevant for human health [1]. 
The microbiome participates in nutrient metabolism, 
vitamin synthesis, pathogenic growth inhibition, 
maturation and maintenance of immunological 

system, angiogenesis stimulation and fat storage 
regulation to ensure a balance or homeostasis in the 
body [2, 3]. Based on the complex functions of gut 
microbiome in altering the immune system, recently 
published studies confirmed a link of gut dysbiosis in 
some malignancies [4, 5]. For example, gut 
microbiome could trigger systemic autoimmune 
disease by skewing dual TCR expression in the host 
and modulate hepatic natural killer T (NKT) cells 
levels to indirectly control liver tumor growth by 
metabolizing bile acids in mice [6]. Moreover, the 
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impact of gut microbiome disruption by antibiotics 
potentially impair immunological response resulted 
in low-density, diversified microbial ecosystem in 
cancers, which further imply the potential 
pathogenesis of gut microbiota in cancer host and 
could determine the efficacy of immunotherapy [7]. 
For example, the gut microbiome colonization of 
vancomycin-treated mice with clostridium scindens 
or feeding secondary bile acids to vancomycin-treated 
mice resulted in a decrease in hepatic NKT cells and 
more liver metastases [8]. Patients treated with 
antibiotics for routine indications shortly before, 
during or after treatment with anti-PD-1/PD-L1 mAB 
had significantly lower progression-free survival and 
overall survival rates compared with patients who 
had not received antibiotics [9]. However, lung cancer 
relevant studies were limited thus a strong interest 
emerged in characterizing the role of gut microbiota 
in lung cancer. 

Meanwhile, the advancement in respiratory 
immune system further intensifies our interest in the 
interaction between lung cancer and gut microbiome 
[10]. In this system, the concept of gut-lung axis was 
proposed and gut microbiota was confirmed to be 
involved in the pathogenesis of common lung 
diseases such as asthma, chronic obstructive 
pulmonary disease (COPD) and respiratory infections 
asymptomatic colonization [10-12]. These published 
studies have implicated gut microbiota in influencing 
response, as well as toxicity, across a range of 
treatments via a variety of mechanism. 

Previous studies have detected gut microbiome 
features in lung cancer based on the histopathological 
features, however, these associations are less well 
characterized and require further investigation. 
Moreover, the mechanisms through which dysbiosis 
affects tumorigenesis and tumor growth across cancer 
types are numerous and varied. As we all know, the 
biomarkers of cytokeratin 19 fragment (CYFRA21-1), 
neuron specific enolase (NSE) and carcinoembryonic 
antigen (CEA) have the properties of high efficiency, 
convenience, easy access, low cost and smaller 
trauma. Therefore, these tumor biomarkers play 
important roles in the clinical application for early 
diagnosis, identification of the pathological type, 
tumor staging, monitoring of recurrence or 
metastasis, determination of efficacy and prediction of 
the prognosis of lung cancer [13]. As we also know, 
CYFRA21-1 is mainly expressed in epithelial-derived 
cells thus the expression in lung squamous cell 
carcinoma (SCC) was higher than in lung 
adenocarcinoma and small cell lung carcinoma 
(SCLC). NSE has a high expression in SCLC by 
involving in energy metabolism, and is associated 
with TNM staging indicating a poor prognosis in 

SCLC [14]. CEA is a broad-spectrum tumor marker 
which is useful for predicting recurrence and survival 
rates in many adenocarcinomas [15]. In the light of the 
comprehensive mechanistic insights of biomarker, 
further preclinical studies need to solidify the 
relevance between gut microbiome dysbiosis and 
lung cancer, thus 16s sequencing analysis of the gut 
microbiome was performed to profile fecal samples in 
relation to lung cancer based on the expression of 
different biomarkers. 

Materials and Methods 
Samples 

The fecal samples for 16S rRNA sequencing was 
obtained from 30 newly diagnosed lung cancer 
patients by histopathology and computed 
tomography (CT). The lung cancer patients were 
further divided into 3 groups based on biomarkers 
including CYFRA21-1 positive patients (CYF group, 
n=10), NSE positive patients (NSE group, n=9) and 
CEA positive patients (CEA group, n=11). No patients 
received chemotherapy, radiation therapy, targeted 
therapy, immunotherapy, or surgery for lung cancer 
before samples collection. Patients who had one of the 
following conditions were excluded: congestive 
cardiac failure, respiratory failure, renal failure, 
severe liver dysfunction, consumption of probiotics or 
antibiotics within 1 month before admission. The 
clinical characteristics of all participates are listed in 
Table 1 and the parameters of age and weight were 
comparable between each group (P>0.05). The control 
group was from 16 healthy participants who did not 
use any type of antibiotics or probiotics within 1 
month before admission. For all participants, fresh 
fecal samples were collected into sterile EP tubes, and 
aliquots were frozen -80°C immediately until DNA 
extraction. Each patient has signed informed consent 
before the study. The protocol was approved by the 
ethics committee of the First Affiliated Hospital of 
Guangdong Pharmaceutical University. 

 

Table 1. Descriptive data of included subjects in the study 

Groups(n) Gender(M/F) Age Weight 
  Mean ± SD P value Mean ± SD P value 
CYFRA (n=10) 7/3 60.4 ± 12.2 F=0.510 

P>0.05 
56.45 ± 8.42 F = 0.711 

P>0.05 CEA (n=11) 6/5 56.82 ± 10.08 58.95 ± 10.42 
NSE (n=9) 8/1 62.39 ± 9.20 56.67 ± 10.43 
Control (n=16) 9/7 59.12 ± 7.76 60.44 ± 8.03 

 

DNA extraction and amplification of theV4 
Region of Bacterial 16S rRNA Genes 
sequencing 

The microbial DNA was extracted from 46 fecal 
samples by the PowerSoil DNA Stool Mini Kit 
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(MoBio) according to the manufacturer’s 
recommended protocol. In brief, the V4 variable 
regions of the bacterial 16S rRNA gene were amplified 
by polymerase chain reaction using the universal 
primers 341F (CCTACGGGNGGCWGCAG) and 806R 
(GGACTACHVGGGTWTCTAAT). The extracted 
DNA was isolated by silica purification and 
quantified using a MutiskanTM. The polymerase chain 
reaction cycle conditions were described previously: 
An initial denaturation at 95 °C for 2 minutes; 
followed by 30 cycles at 95 °C for 30 seconds, primer 
annealing at 52°C for 30 seconds, and extension at 72 
°C for 45 seconds; and a final elongation at 72 °C for 5 
minutes. PCR products were then visualized on 2% 
agarose gel. Subsequently, purified amplicons were 
pooled in equimolar amounts, and paired-end 
sequenced on Illumina HiSeq/MiniSeq for Genome 
Analysis.  

Microbiome Data Analysis 
The raw FASTQ files were first de-multiplexed, 

then qualify-filtered using Chimera_check and 
merged using FLASH with the sequences were 
processed using the BIPES protocol.10 and QIIME 1.9 
[16, 17]. Briefly, forward and reverse bacterial 16S 
rRNA reads were merged with a minimum merge 
length of 200bp, then simultaneously filtered to 
remove singletons and chimeras in UPARSE. 
Operational taxonomic units (OTUs) were defined 
basing on sequence similarity of 97%, and 
taxon-dependent analysis was assigned to individual 
OTUs through the Ribosomal Database Project (RDP) 
classifier using the Green Genes Database (HOMD) to 
explore lung cancer-associated differences in the fecal 
microbiota. The index of observed species, Chao1, 
Shannon and Simpson were used to calculate alpha 
diversity metrics. The beta diversity measurements 
including principal component analysis (PCA), 
principal co-ordinates analysis (PCoA) were analyzed 
by the unweighted UniFrac metric. The statistical 
significance was evaluated with analysis of 
similarities (ANOSIM). Pathway enrichment analysis 
was performed using Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and database by PICRUSt [18, 
19]. Finally, the linear discriminant analysis (LDA) 
effect size (LEfSe) method was used to evaluate the 
influence of each differentially-abundant taxon. 

Statistical Analyses 
Statistical tests were implemented using R (3.0.2; 

R Foundation for Statistical Computing) and Prism 
software (Graph Prism7.0 Software Inc. CA, USA). 
The data of age and weight are expressed as a mean ± 
standard deviation (SD) and the differences among 
the groups were evaluated by one-way analysis of 

variance (ANOVA). The Wilcoxon rank-sum test (for 
two groups) or Kruskal-Wallis test (for more than two 
groups) was used to analyse the diversity between 
groups comparisons. Fisher’s exact test was 
performed on categorical variables. The chi-square 
test was used for categorical variables. A value of P< 
0.05 was considered statistically significant in the 
compared groups. 

Results 
Taxonomic analysis of 16S rRNA V4 amplicon 
sequence data  

To explore the gut microbial community features 
of lung cancer patients, the microbiota relative taxon 
abundance in lung cancer groups were compared 
with healthy subjects. Total 1565 operational 
taxonomic units (OTUs) were annotated for 
subsequent analyses including 22 phyla, 116 family 
and 217 genera of gut microbes inferred from V4 
amplicon sequencing ranging from 39 to 297 with 97% 
similarity among the samples (Figure 1A). The 
predominant genera were defined as the comprising 
greater than 1% of the total gut bacteria. The bacterial 
taxonomy distribution of three lung cancer groups 
demonstrated decreased density and clustering than 
healthy control. The venn diagrams reflecting the 
difference between each group as shown in Figure 1B, 
exhibited 113, 75, 58 and 356 in CYF, NSE, CEA and 
control group, respectively. At phylum level, 
Firmicutes, Bacteroidete and Proteobacteria were the 
most common phyla identified in three lung cancer 
groups, contributing 94.09% (CYF), 91.77% (NSE), 
93.86% (CEA) of the gut bacteria, respectively. 
Firmicutes, Bacteroidete, Proteobacteria and Acidobacteria 
contributed to 99.3% of the gut bacteria in healthy 
control (Figure 2). The lung cancer groups had a 
conspicuously lower abundance in Acidobacteria and 
Firmicutes, relative higher abundance in Proteobacteria 
and Verrucomicrobia than the healthy control, 
especially in NSE group. The NSE group also showed 
a relatively low abundance of Bacteriodetes, while the 
CEA group showed more abundance of Fusobacteria 
(Figure 2). The ratio of two phyla (Firmicutes to 
Bacteroidetes) was decreased in lung cancer group 2.14 
(CYF), 1.64 (CEA) and 2.18 (NSE). 

At family level, the internal individual variation 
in taxonomic composition is higher and more 
dominant taxa are present in each group, especially in 
CYF and control group (Figure 3A). Among the total 
families identified in the gut bacterial, 49 in CYF 
group, 44 in NSE group, 40 in CEA group, and 47 in 
the control group of dominant family were detected. 
Bacteroidaceae, Enterobacteriaceae, Lachnospiraceae, 
Prevotellaceae, Ruminococcaceae and Veillonellaceae 
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represented six most relative abundant microbiome in 
all groups (Figure 4). Ruminococcus is comparable in 
these four groups, while Lachnospiraceae is significant 
decreased in each lung cancer group. Bacteroidaceae 
and Streptococcaceae are relatively more abundant in 
CEA group than others. Bacteroidaceae is significantly 

different among CEA, CYF and healthy control group. 
Enterobacteriaceae, Fusobacteriaceae and Verrucomicro-
biaceae are more abundant in NSE group than others, 
and significantly different between CYF and control 
group. Prevotellaceae and Veillonellaceae are more 
abundant in CYF group than others (Figure 3B).  

 

 
Figure 1. (A) The species tree and distribution of gut microbial community. (B) Venn diagrams shared OTUs between different groups. 

 

 
Figure 2. The taxonomic profile demonstrated the OTUs are assigned to prevalent microbiome of Firmicutes, Bacteroidetes, Acidobacteria and Proteobacteria at phylum level. 
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Figure 3. (A) Taxonomic summary of the gut microbiota of four groups at family level. (B) The comparison of relative abundant microbiome at family level between each group. 

 
The genera-level characterization is more 

complex, a number of bacterial genera were 
significantly differed between each group (Figure 4A). 
In CYF group, Prevotella (phylum Bacteroidetes), 
Enterobacteriaceae (phylum Proteobacteria), Bacteroides 
(phylum Bacteroidetes), Megasphaera (phylum 
Firmicutes), Faecalibacterium (phylum Firmicutes), 
Dialister (phylum Firmicutes), Phascolarctobacterium 

(phylum Firmicutes), Veillonella (phylum Firmicutes), 
Akkermansia (phylum Verrucomicrobia) and 
Lachnospiraceae (phylum Firmicutes) were the 10 
dominant microbiota of 112 genera (Figure 4A). 
While, in NSE group, the dominant microbiota were 
Enterobacteriaceae, Bacteroides, Ruminococcaceae 
(phylum Firmicutes), Lachnospiraceae, 
Phascolarctobacterium, Akkermansia, Prevotella, 
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Cetobacterium (phylum Fusobacteria), Veillonella and 
Dialister of 112 genera. The CEA group were 
significantly enriched for Bacteroides, 
Enterobacteriaceae, Ruminococcaceae, Lachnospiraceae, 
Veillonella, Streptococcus (phylum Firmicutes), 
Faecalibacterium, Prevotella, Megasphaera, Dialister of 
121 microbiome genera. While, Lachnospiraceae, 

Bacteroides, Ruminococcaceae, Prevotella, Blautia 
(phylum Firmicutes), Enterobacteriaceae, Bifidobacterium 
(phylum Actinobacteria), Ruminococcus (phylum 
Firmicutes), Coprococcus (phylum Firmicutes) and 
Phascolarctobacterium were 10 main dominant 
microbiota of 131 genera in healthy control group 
(Figure 4B).  

 

 
Figure 4. (A) LEfSe comparison of gut microbiota among CYF, NSE, CEA and Control groups. (B) Taxonomic summary of the gut microbiota of four groups at genera level.  
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Figure 5. The comparison of gut microbiota alpha diversity between each group, including species richness (represented by Chao1, observed species) and evenness (represented 
by Shannon and Simpson index). Microbial community showed that the NSE and CEA group had less diversity, richness and evenness than the control group, whereas the CYF 
group showed a similar trend without significance compared to healthy control. Starred samples (*) were used to demonstrate the significant difference between the group. 

 
Figure 6. (A) Principal coordinate analysis, Principle coordinate analysis, (B) Non-metric multi-dimensional scaling (C) and Analysis of similarities (D) illustrating the grouping 
patterns of the CYF, NSE, CEA and control groups based on the Bray-Curtis and Unweighted UniFrac Distances. Each dot represents a sample, and the corresponding group can 
be found in the legend. Distances between any pair of samples represent the dissimilarities between each sample. There was significant difference in β-diversity between the four 
groups.  

 

The alpha diversity of the gut microbiota  
To evaluate alteration in the microbiota 

community structure between each group, the 
microbial alpha diversity was measured as shown in 
Figure 5. The result indicates that alpha diversity of 
the gut microbiota in NSE (and CEA) groups was 
lower than that of healthy control in terms of Shannon 

and Simpson index (Shannon index -35.99 P=0.0369, 
-31.16 P=0.0369; Simpson index 38.1944 P =0.0272, 
33.11364 P =0.0386). The J index was also significantly 
different between NSE (or CEA) group and control 
(39.4028 P=0.0217 and 33.07955 P=0.0437, 
respectively) (Figure 2A). The richness index includes 
ACE and observed were no differences between each 
lung cancer group and healthy control group. 
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The β-diversity analysis 
The principal component analysis (PCA) and 

principal co-ordinates analysis (PCoA) based on 
unweighted uniFrac distance (Figure 6A) and 
weighted uniFrac distance (Figure 6B) indicated the 
stool microbiome of lung cancer patients clustered 
significantly separately from that of healthy controls. 
Non-metric multi-dimensional scaling (NMDS) 

analysis based on Bray-Curtis distances between 
microbial genera revealed significant differences 
between lung patients and healthy controls (Figure 
6C). The analysis of similarities (ANOSIM) indicated 
that the structure of the gut microbiota significantly 
differed between each group (ANOSIM, r = 0.288, P = 
0.001) (Figure 6D). 

 
 

 
Figure 7. (A) KEGG pathway was less abundant in lung cancer groups than healthy control. (B) COG pathway was less abundant in lung cancer groups than healthy control. 



Int. J. Biol. Sci. 2019, Vol. 15 
 

 
http://www.ijbs.com 

2389 

Functional profile of the gut microbiome 
KEGG and COG pathway comparisons were 

performed to explore potential differences in the 
functional composition of the microbiome of lung 
cancer patients versus controls. Although the 
functional composition of lung cancer patients and 
controls was highly similar, the microbiome of lung 
cancer patients showed lower abundance in pathways 
of energy metabolism and ABC-type transport than 
the healthy controls. The analysis showed the 
clustering of metabolic modules including fructose 
and mannose metabolism, galactose metabolism, 
pentose and glucuronate interconversions, starch and 
sucrose metabolism, pentose phosphate pathway and 
sporulation (Figure 7A). In addition, periplasmic 
component (COG1879), ATPase component (COG 
1129) and permease components (COG1172) of 
ABC-type transport system were significantly less 
abundant in lung cancers than healthy control, which 
promote utilization of glucose, ribose/galactoside to 
regulate the energy. Likewise, Transcriptional 
antiterminator (COG3711) orthologue was also less 
abundant lung cancers than healthy control (p<0.05) 
(Figure 7B). 

Discussion 
This is the first study of human gut microbiome 

16s RNA sequencing in lung cancer patients based on 
biomarker, which was different from the traditional 
pathological classification of cancer [4, 20]. As all 
known, NSE is expressed in SCLC, while CYFRA 21-1 
is frequently expressed in squamous lung cancer. 
CEA is a tumor marker that is useful for predicting 
recurrence in many adenocarcinomas [15]. In the light 
of the multiple functions biomarkers play in the 
diagnosis and prognosis in lung cancer, the possible 
relationship between gut microbiome and lung cancer 
needs to be explored. The results indicated that all 
lung cancer groups demonstrated an elimination, 
low-density, and loss of bacterial diversity microbial 
ecosystem compared to that of the healthy control. 

At phylum level, the gut microbiome samples 
show lower abundance in Firmicutes and 
Actinobacteria in all lung cancer groups compared to 
that of control group. As all known, all 
butyrate-producing bacteria belongs to Firmicutes 
phylum in human bacterial communities. While, 
butyrate is one of the most crucial fatty acids and is 
associated with anti-inflammatory activities, cellular 
proliferation, inducing differentiation of regulatory T 
cells and apoptosis by activating signal pathways [1, 
21]. Actinobacteria is valeric acid-associated bacteria, 
which was also found abundant in autistic individuals 
[22]. Meanwhile, lung cancer groups also show lower 

ratio of Firmicutes to Bacteroidetes than healthy control 
group. The high ratio of Firmicutes/Bacteroidetes is 
often seen in healthy adults as exemplified in one 
large gut microbiome cohort study on 1135 Dutch 
healthy participants [23]. Reduced Firmicutes/ 
Bacteroidetes ratio has been repeatedly reported 
associated with the dysbiosis of gastrointestinal tract 
metabolism, which resulted in a low concentration of 
circulating short-chain fatty acids, and then 
influenced elements for host systemic immunity and 
systemic inflammation [22]. These evidences suggest a 
disruption of the equilibrium in gut microbiota of 
lung cancer patients and presence of different 
microbiome features from chronic respiratory disease 
such as asthma, chronic obstructive pulmonary 
disease (COPD) which exhibit relative enriched 
microbiomes with phyla. Moreover, chronic 
gastrointestinal tract (GIT) diseases, such as 
inflammatory bowel disease (IBD) or irritable bowel 
syndrome (IBS) were notified often occur together 
with chronic lung diseases [24]. As a result, gut-lung 
axis was proposed in the pathogenesis in the lung and 
gut diseases [25]. 

We also noticed that the microbiome of lung 
cancer groups demonstrates relative higher 
abundance of Proteobacteria and Verrucomicrobia than 
healthy control, especially in NSE group. NSE is 
highly expressed in SCLC by being involved in 
energy metabolism and associates with TNM staging 
indicating a poor prognosis in patients with SCLC. 
Proteobacteria is an opportunistic pathogen, 
constituting a major structural imbalance of gut 
microbiota in lung cancer patients. However, 
Verrucomicrobia phylum is occasionally observed in 
healthy and was reported to stand out for its richness 
in Chilean subjects [26]. Moreover, the NSE group 
demonstrated low abundance of Bacteroidetes, some 
genus of which is essential for the host by performing 
metabolic conversion such as degradation of proteins 
or complex sugar polymers. Interestingly, the CEA 
group has relative higher level of Fusobacteria, which 
is reported to be correlated with the development of 
several types of malignant tumor [27]. Fusobacteria is a 
potential inducer of T regulatory cells or carcinogens, 
promotes autophagy activation with poor outcomes 
in malignancies such as colon cancer. These results 
indicate a potential link between gut bacteria and 
tumor biomarker within lung cancer. We suspected 
that the tumor cells might create metabolic products 
and exhibit differential profiles which may favor the 
selective adherence of some members of the 
microflora.  

The characterizations in family and genera levels 
are more complex and significantly varied from each 
group, presenting more different pathogen 
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microbiome and well-characterized structures. The 
probiotic bacteria of Bacteroides that belong to 
Bacteroidaceae family are of lower abundance in each 
lung cancer group than healthy control. The probiotic 
Bacteroides genus have been previously reported to 
enhance anti-CTLA4 immune checkpoint efficacy in 
mice and are presumed to directly contact and 
stimulate host DCs and T cells via 
pathogen-associated molecular patterns [28]. The 
genus Bifidobacterium is lacking in all lung cancer 
groups which is considered as an important 
component of the commensal microbiota and plays 
important roles in several homeostatic functions such 
as immune, neurohormone and metabolism [29, 30]. 
The pathogen Prevotella presents higher proportions 
in cancer patients especially in CYF group, while 
Streptococcus is only seen in CEA group. Prevotella 
belonging to Prevotellaceae family was reported to be 
linked to chronic inflammatory conditions, such as 
arthritis, mucosal and systemic T-cell activation in 
untreated human immunodeficiency virus infection 
[31]. Some species of Streptococcus genus can cause 
unique abscesses and are linked to colorectal cancer 
[32]. Enterobacteriaceae, as a significantly opportunistic 
pathogen, exists in the human gut without causing 
symptoms or diseases under normal conditions. 
However, a significant variation of Enterobacteriaceae 
may be caused by host immunity and environmental 
factors such as redox state and oxygen availability 
[33]. Ruminococaceae and Lachnospiraceae genera both 
belong to Firmicutes phylum and were significant 
decrease in each lung cancer group. Ruminococaceae 
has been reported to be associated with both response 
and toxicity to immune checkpoint blockade. 
Lachnospiraceae can protect host against cancer by 
producing butyric acid [34]. Dialister is detectable in 
all lung cancer groups and belongs to the 
Veillonellaceae phylum. The succinate-utilizing 
Phascolarctobacterium is lacking in CEA group, which 
is associated with lower concentrations of 
lipopolysaccharide-binding protein and C-reactive 
protein [35]. The mucus-degrading genera 
Akkermansia detected in CYF and NSE groups is the 
only identified member of Verrucomicrobia phylum, 
which is proposed as a hallmark of healthy gut status 
due to its anti-inflammatory and immunostimulant 
properties and its ability to improve gut barrier 
function, insulin sensitivity and endotoxinemia [26]. It 
has been proposed that the growth of this bacterium is 
favored by low availability of enteral nutrients such as 
in long-term fasting and malnutrition. Megasphaera is 
a genus of Firmicutes, which was only seen in CYF and 
CEA groups. Meanwhile, CYF and CEA groups both 
have a relative higher abundance of health-promoting 
bacteria of Faecalibacterium genus, acting in synergy 

with anti-PD1 in cancer treatment. Faecalibacterium is 
also known as a potent SCFA producer and the 
proportion could be altered by high-calorie diets, 
while Phascolarctobacterium is main dominant 
microbiome in NSE group. Each lung cancer group 
exhibited decreased abundance of Blautia genus 
belonging to Firmicutes phylum, which has a role of 
helping digest complex carbohydrates. The decreased 
of Blautia genus was also seen in irritable bowel 
syndrome, nonalcoholic fatty liver diseases, Crohn’s 
disease and diabetes. The level of Veillonella genus is 
higher in each lung cancer group, which is well 
known for its lactate fermenting abilities and recently 
was reported to be diagnostic marker for both SCC 
and adenocarcinoma. Coprococcus is only seen in 
control group which is beneficial butyrate-producing 
genus. These results indicate that the composition and 
development of bacterial communities varies in lung 
cancer with different biomarkers. Therefore, it is 
possible that some special microbiome may serve as a 
diagnosis, prognosis, therapeutic target or fecal 
microbiota transplantation in lung cancer therapy. 
Moreover, it is debatable now whether cancer is the 
product of variations in the microbiota, or whether 
modifications in the normal microbiome are the result 
of cancer progression. 

The KEGG and COG pathway analysis indicated 
that the dysbiosis of gut bacteria in lung cancer is 
strongly associated with dysregulation of basic 
metabolic processes such as energy metabolism, 
transport and sporulation [18]. It shows that 
carbohydrate transport and metabolism has less 
abundant functional group in gut microbiome of lung 
cancer groups. Energy metabolism in the cancer 
system has been suggested to be an important factor 
contributing to the pathogenesis of cancer, while the 
gut microbiota is vital for the development of the 
immune system and homeostasis. These bacteria may 
shed different microbial bioactive molecules and 
affect the host including fructose and mannose 
metabolism, galactose metabolism, pentose and 
glucuronate interconversions, starch and sucrose 
metabolism, pentose phosphate pathway and 
sporulation. Firmicutes plays an important role in this 
process, which could transform the undigested 
carbohydrates and proteins into acetic acid, and then 
produce energy for organism. Moreover, the 
decreased abundance in the ABC-type transport 
system signaling pathways further suggest potential 
energic and metabolic alteration of these gut 
microbiota in lung cancer. Therefore, there are 
complex interactions between gut microbiota and the 
host, and as yet, our knowledge about these 
comprehensive interactions is limited. This 
observation is compatible with the hypothesis that 
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lung cancer is fundamentally a metabolic disease, and 
patients with lung cancer often display a coexisting 
metabolic disorder phenotype in conjunction with the 
pathology. It is reported that microbiota-produced 
butyrate could provide energy to colonocytes and 
then prevent autophagy in the gut. In addition, 
physiological homeostasis may be disrupted by the 
microbiota, resulting in disruption of host 
metabolism, immune dysregulation, neurological and 
cognitive dysfunction and others. Therefore, we 
speculated that gut microbiota affects the host via the 
immune system or metabolites, which provides an 
improved understanding of perturbations of the 
microbiome–metabolome interface in lung cancer and 
may identify some potential diagnostic and 
therapeutic targets. However, it is not necessarily that 
the functions of the microbiota are solely dependent 
on any one of these interactions, and alterations in 
these relationships may affect lung cancer system and 
cause subtype. This process was hypothesized to be 
induced by the production of carcinogenic metabolic 
products or by the production of toxins via impairing 
immune responses as well as modulating the 
inflammatory response of the host.  

Emerging evidence indicates interventions in 
microbiome could improve anti-cancer therapy 
efficacy as well as to ameliorate chemotherapy-related 
toxicity, as gut microbiome performs a number of 
vital functions in vitamin production, dietary 
compound metabolization, protection against gut 
pathogen expansion and systemic infiltration [36]. 
Therefore, some probiotics are prescribed to fight 
dysbiosis in cancer patients subjected to 
chemotherapy and radiotherapy. As all known 
biomarkers not only have prognostic values, but also 
can help guild treatment decisions. Over the last 
decade, tissue and/or blood biomarkers have become 
a helpful guider in the treatment decisions of patients 
with advanced NSCLC, because increasing evidence 
shows that lung cancer patients with targeted 
therapies have superior clinical outcomes compared 
to those with traditional chemotherapy [37]. The 
association of gut microbiome and biomarkers in lung 
cancer present in this study may provide new 
inspiration for the study of possible roles of 
biomarkers played in lung cancer system and its 
influence on chemotherapy. Therefore, a more 
rigorous randomized controlled trial should be 
designed to elaborate on this important topic. 

In summary, this is the first study that 
comparatively evaluated gut microbiota features in 
lung cancer based on different tumor biomarkers, 
providing new insight into the association between 
dysbiosis gut microbiota and lung cancer and possible 
links to biomarkers. The composition of the 

microbiota varied in each group, which demonstrated 
low density microbiome features in lung cancer. 
Meanwhile, both the COG and KEGG pathways 
analyses indicated decreased abundance of some 
dominant metabolism-related pathways in lung 
cancer. These evidences indicated dysbiosis of gut 
bacteria in lung cancer is associated with 
dysregulation of basic metabolic and immunologic 
functions contributing to the development and 
differentiation of the lung cancer system. However, 
we cannot rule out that the altered bacteria diversity 
may be a passive by-product of tumor progression. 
Meanwhile, the method of 16S rRNA gene sequencing 
has known limitations in determining the microbiota 
components, such as the potential for skewing the 
results owing to amplification bias and inability to 
identify most microbes at the species level. Therefore, 
large-scaled studies and metabolic analyses need to 
further validate microbial biomarkers for different 
type histopathological lung cancer patients. 
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