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Abstract 

Alternative pre-mRNA splicing plays important roles in co-transcriptional and post-transcriptional 
regulation of gene expression functioned during many developmental processes, such as 
spermatogenesis. The studies focusing on alternative splicing on spermatogenesis supported the 
notion that the development of testis is regulated by a higher level of alternative splicing than other 
tissues. Here, we aim to review the mechanisms underlying alternative splicing, particularly the 
splicing variants functioned in the process of spermatogenesis and the male infertility. There are five 
points regarding the alternative splicing including ⅰ) a brief introduction of alternative pre-mRNA 
splicing; ⅱ) the alternative splicing events in spermatogenesis-associated genes enriched in different 
stages of spermatogenesis; ⅲ) the mechanisms of alternative splicing regulation, such as splicing 
factors and m6A demethylation; ⅳ) the splice site recognition and alternative splicing, including the 
production and degradation of abnormal transcripts caused by gene variations and 
nonsense-mediated mRNA decay, respectively; ⅴ) abnormal alternative splicing correlated with 
male infertility. Taking together, this review highlights the impacts of alternative splicing and splicing 
variants in mammal spermatogenesis and provides new insights of the potential application of the 
alternative splicing into the therapy of male infertility. 
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Introduction 
Alternative splicing is one of the most popular 

co-transcriptional and post-transcriptional regulatory 
mechanisms that result in a large number of mRNA 
and protein isoforms from a single gene, and the 
protein isoforms always show different or mutually 
antagonistic functional and structural characteristics 
[1, 2]. Recent high-throughput analyses have shown 
the abundance of alternative splicing events reaching 
> 95-100% in human genes and 63% in mouse genes 
[3, 4], and identified several modes of alternative 
transcript events, including exon-skipping (ES), 
intron-retention (IR), alternative 5’ splice site (A5SS), 
alternative 3’ splice site (A3SS), alternative first exon 
(AFE), alternative last exon (ALE) and mutually 

exclusive exon (MXE) [5]. The exon skipping events 
are accumulated in the brain and testis, suggesting a 
tissue-specific nature of alternative splicing [6, 7].  

The process of spermatogenesis occurs in the 
seminiferous tubules of testis. Asingle spermatogonia 
self-renew and form spermatogonial stem cells to 
ensure the maintenance of the stem cell pool, while 
Apaired spermatogonia usually differentiate into two B 
spermatogonia [8, 9]. B spermatogonia come into the 
process of mitosis and proliferate into primary 
spermatocytes. Subsequently, primary spermatocytes 
divide twice during meiosis and form haploid round 
spermatids. In this phase, genetic material recombines 
mutually and the cells constantly split twice [10]. 
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Finally, round spermatids go through the process of 
spermiogenesis to form spermatozoa. In this phase, 
the morphological changes have taken place in 
spermatids, including the condensation of nucleus, 
the formation of acrosome and tail, the elimination of 
residual body and the transient appearance of 
manchette [11]. The complicated physiological 
process requires specific genes to perform certain 
regulatory functions. Recently, high-throughput 
sequencing has revealed the importance of alternative 
splicing in the testis proteome diversification and 
spermatogenesis [5, 12-15]. In this review, we will 
provide the functions of alternative splicing in 
spermatogenesis, clarify the mechanisms of 
alternative splicing in spermatogenesis, and explain 
the potential correlations between alternative splicing 
and male infertility. 

Alternative splicing of key genes 
involved in spermatogenesis 

Spermatogenesis is a highly complex process 
that initiates shortly after birth and continues until old 
age [16]. The alternative splicing events are 
particularly prevalent in the testis, just less popular 
than in the brain. Spermatogenesis is an extremely 

complex and coordinated process, and the various 
genes are dynamically expressed in each type of 
spermatogenic cells. For better understanding the 
precision of gene regulation in spermatogenesis, we 
offer a series of alternative splicing events in the 
process of spermatogenesis. 

GO analysis had identified 242 differently 
expressed genes enriched in spermatogenesis (GO: 
0007283) in the testes from Large White pig at the age 
of 60 days (60-d) and 180 days (180-d) by RNA-seq [5]. 
Several genes was identified with alternative splicing 
to generate different transcripts encoding numerous 
protein isoforms, such as Spata3 [17], Spata19 [18], 
Crem [19, 20], Dazl [21], Hsf1 [22], Acrbp [23], Ybx3 [24]. 
Two members of SPATA family, Spata3, Spata19 can 
generate two splicing variants by exon skipping or 
alternative 3’ splice site, respectively. Crem, a 
transcription factor regulated by cAMP controls the 
developmental progression of germ cells, and has ten 
splicing variants via several modes of alternative 
splicing. In postnatal testis developmental stages, the 
Dazl-Δ8 isoform is constantly expressed, along with 
Dazl-FL isoform. The information about 
spermatogenesis-enriched genes and their alternative 
splicing events are summarized in Table 1. 

 

Table 1. The information of genes enriched in spermatogenesis and their alternative splicing modes. 

Gene 
name 

Species Ensembl 
ID 

Chromosome 
location 

Variants 
number 

Transcript 
ID 

Modes of alternative 
splicing 

Accession 
number 

Conventional 
transcript or 
not 

References 

Spata3 Mouse ENSMUSG00000026226 1 2 ENSMUST00000052854 _ NM_027300 Yes [17] 
     ENSMUST00000152501 Exon skipping NM_027029 No  
Spata19 Mouse ENSMUSG00000031991 9 2 ENSMUST00000034473 _ NM_029299 Yes [18] 
     ENSMUST00000214287 Alternative 3’ splicing 

site 
NM_001305058 No  

Crem Rat [19] ENSMUSG00000063889 18 10 ENSMUST00000025069 _ NM_001271506 Yes [19,20] 
 Human [20]    ENSMUST00000049942 Alternative first exon NM_001311067 No  
     ENSMUST00000082141 Exon skipping NM_001271505 No  
     ENSMUST00000122958 Alternative first exon NM_001110853 No  
     ENSMUST00000124747 Alternative first exon NM_001311066 No  
     ENSMUST00000130599 Alternative first exon, 

Exon skipping 
NM_001110857 No  

     ENSMUST00000137568 Alternative first exon, 
Exon skipping 

NM_001110850 No  

     ENSMUST00000142690 Alternative last exon NM_001110851 No  
     ENSMUST00000146265 Exon skipping NM_001271503 No  
     ENSMUST00000149803 Alternative 3’ splicing 

site 
NM_001110852 No  

Dazl Mouse ENSMUSG00000010592 17 2 _ _ NM_010021 Yes [21] 
     ENSMUST00000010736 Exon skipping NM_001277863 No  
Hsf1 Mouse ENSMUSG00000022556 15 4 ENSMUST00000072838 _ NM_008296 Yes [22] 
     ENSMUST00000226872 Alternative 3’ splicing 

site 
NM_001331214 No  

     ENSMUST00000227478 Alternative 3’ splicing 
site 

NM_001331154 No  

     ENSMUST00000228371 Exon skipping NM_001331153 No  
Acrbp Mouse ENSMUSG00000072770 6 2 ENSMUST00000088294 _ NM_016845 Yes [23] 
     ENSMUST00000112414 Alternative 3’ splicing 

site 
NM_001127340 No  

Ybx3 Mouse ENSMUSG00000030189 6 2 ENSMUST00000032309 _ 
 

NM_139117 Yes 
 

[24] 

     ENSMUST00000087865 Exon skipping NM_011733 No  

Note:‘_’means that there is no information. 
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Figure 1. The critical genes and their alternative splicing transcripts in the first wave of spermatogenesis. C-kit is the marker of differentiated spermatogonial cells. 
Two transcripts, full length transcript and the exon skipped transcript were detected in mouse testis [26, 27]. Sycp3 and Dmc1 are the markers of spermatocytes. The 
A3SS transcript and retained intron transcript of Sycp3 were identified in the testes from 60-d and 180-d Large White pigs [5]. The exon skipped Dmc1-d transcript 
was expressed in both male and female germ cells [31]. Akap4 is the marker of spermatids. Two Akap4 alternative splicing variants - Akap82 and Fsc1 were different 
in their 5’ UTR [33]. 

 
Many germ cell-specific transcripts are 

developmentally regulated and stage specific [25]. 
C-kit, proto-oncogene receptor tyrosine kinase, plays 
an indispensable role in the differentiation of 
spermatogonial cells [26]. A truncated form tr-kit is 
specifically expressed in spermatids and 
spermatozoa, and acts as a putative sperm factor 
required for triggering activation of mouse eggs at 
fertilization [26, 27]. Synaptonemal complex protein 3 
(Sycp3), specifically localized in spermatocytes, is 
necessary for male meiosis and spermatogenesis [28, 
29]. In our previous study, an A3SS transcript and a 
retained intron transcript of Sycp3 gene were 
identified in the testes from 60-d and 180-d Large 
White pigs [5]. Disrupted meiotic cDNA1 (Dmc1) is 
required for double-strand break repair and plays a 
pivotal role during meiotic homologous 
recombination [30]. An exon skipped transcript 
Dmc1-d is expressed in both male and female germ 
cells, which indicates a novel role in meiosis [31]. 
A-kinase anchoring protein 4 (Akap4) is transcribed 
only in the post-meiotic phase of spermatogenesis and 
Akap4 knockout mice exhibit defects in sperm 
flagellum and motility [32]. Akap82 and Fsc1 
belonging to Akap4 alternative splicing variants are 
different in 5’ UTR, and therefore encode the identical 
proteins, but Akap82 transcript is more abundantly 
expressed in spermatids than Fsc1 transcript (Figure 
1) [33]. 

Sperm-associated antigen families are the 

proteins that highly expressed in the testis and are 
essential for motile cilia and flagella [34]. Previous 
studies have indicated that alternative splicing of 
sperm-associated antigen genes play important roles 
in spermatogenesis [5, 35-40]. Three isoforms of 
human Spag11b including Spag11b-a, Spag11b-d and 
Spag11b-g were different in their 3D fold structure 
[35]. Spag11b-d isoform could interact with tryptase 
alpha/beta 1 (Tpsab1), tetraspanin 7 (Tspan7), and 
attractin (Atrn), and then played major roles in 
immunity and fertility [36]. Two Spag11 transcripts 
including Spag11c and the exon-skipped transcript 
Spag11t were detected in rat [37]. Spag11c was 
expressed in epididymis and testis, while Spag11t was 
only confined to the caput region in the epididymis 
and was absent from testis and seminal vesicle [37]. 
Spag16 is the homologous to Chlamydomonas 
reinhardtii PF20 and is associated with the axonemal 
central apparatus [38]. In human testis, the long 
Spag16 isoform was localized to the central 
microtubule of the sperm, whereas the short isoform 
was located around the nucleus of spermatogenic cells 
in the late stage of meiosis [39, 40]. RNA-sequencing 
of immature and mature porcine testes identified 
several alternative splicing events of Spag6 gene [5]. 
Overall, the alternative splicing events of 
sperm-associated antigen family are spatio-temporal 
expressed, which illustrate the crucial role in 
spermatogenesis. 
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The mechanisms of alternative splicing 
regulation 

Eukaryotic genes are composed of short exons 
and long introns. A majority of pre-mRNAs exist 
constitutive splicing and alternative splicing. Both 
types of splicing follow the “GT-AG” rule and are 
regulated by cis-acting splicing regulatory elements 
(SRE) and trans-acting splicing factors. The SREs 
consist of exonic splicing enhancers and silencers (ESE 
and ESS), intronic splicing enhancers and silencers 
(ISE and ISS) [41, 42]. The trans-acting factors are some 
RNA binding proteins such as the 
serine/arginine-rich (SR) proteins and heterogeneous 
nuclear ribonucleoprotein (hnRNP) family. SR 
proteins usually promote pre-mRNA splicing by 
binding ESE or ISE sequences via the N-terminal RNA 
recognition motifs (RRMs) or by interacting with 
other proteins via the C-terminal arginine-and 
serine-rich domain (RS), while hnRNP family usually 
inhibits pre-mRNA splicing by binding ESS or ISS 
sequences via their RRMs [43]. Generally, SR and 
hnRNP proteins have the opposite function in RNA 
splicing. However, the recent study in Drosophila 
indicates that SR and hnRNP proteins tend to act 
coordinately but not antagonistically [44]. 

RNA binding proteins can act as splicing 
enhancers or repressors, depending on which region 
of a skipped exon they bind to [45, 46]. Recent 
researches have revealed the critical role of RNA 
binding proteins in mammal spermatogenesis [47-50]. 
The polypyrimidine tract binding protein 2 (Ptbp2) is 
a strong regulator of alternative splicing [48, 52, 53]. In 
mammal spermatogenesis, Ptbp2 binds 3’SS of the 
cassette exons in critical genes, inhibits the exon 
skipping and then regulates alternative splicing in a 
stage-specific manner [48, 51]. Furthermore, 
numerous mis-spliced isoforms in those genes that are 
essential for Sertoli cell cytoskeleton and germ 
cell-Sertoli cell crosstalk appeared in Ptbp2-deficient 
mouse testis [48]. Dazap1 is a ubiquitous hnRNP 
protein that is expressed most abundantly in the testis 
and knock down of Dazap1 in 293T cells exhibits 
alternative splicing changes in those genes involved 
in cell cycle, DNA replication, transcriptional control 
and metabolism [49]. Another study revealed that a 
missense mutation (R263P) in the second RRM of 
RNA binding motif protein 5 (Rbm5) affected 
pre-mRNA splicing, produced aberrantly spliced 
transcripts and displayed spermatid differentiation 
arrest, azoospermia and male sterility [50]. 

N6-methyladenosine (m6A) is a kind of the most 
abundant modifications in messenger RNAs and 
plays a pivotal role in regulating alternative splicing 
and RNA degradation [54]. RNA m6A methylation is 

a dynamic and reversible modification that mediated 
by m6A “writers”, “erasers” and “readers” [55-61]. 
m6A “writers” mainly consist of methyltransferases 
like 3 and 14 (Mettl3 and Mettl14), WT1 associated 
protein (Wtap) and vir like m6A methyltransferase 
associated (Virma) [55-57]. While alpha-ketoglutarate 
dependent dioxygenase (Fto) and alkB homolog 5 
(Alkbh5) as demethylases (m6A “erasers”) can reverse 
the m6A methylation [58, 59]. And currently, m6A 
“readers” have been found including the binding 
proteins family such as heterogeneous nuclear 
ribonucleoprotein family and YTH 
N6-methyladenosine RNA binding proteins [60, 61].  

More and more researches show m6A 
modification plays a critical role in mRNA alternative 
splicing and stability in mammal spermatogenesis [59, 
62]. m6A methyltransferase Mettl3 knockout mouse 
shows the defects in spermatogonial differentiation 
and meiosis, with a lower exon inclusion level in those 
transcripts containing m6A and alternative splicing in 
several critical genes involved in spermatogenesis 
including Dazl, Sohlh1, Nasp and Cdk11b [63]. During 
late spermiogenesis, the increased production of 
transcripts with shorter 3’-UTRs allows for an efficient 
translation and a quick mRNA/protein turnover [64]. 
m6A demethylase Alkbh5 is required for the late 
meiotic and haploid phases of spermatogenesis [65]. 
In spermatocytes and round spermatids, Alkbh5 tends 
to mark the coding sequences and 3’-UTRs of longer 
mRNAs that are destined to be degraded and controls 
correct splicing of long 3’-UTR transcripts (Figure 2) 
[66, 67].  

The splice site recognition and alternative 
splicing 

The pre-mRNA splicing is originated by 
spliceosomes that bind to sequences located at the 5’ 
and 3’ ends of introns [68]. Spliceosome assembly 
comprises five types of small nuclear 
ribonucleoproteins (snRNPs). U1 snRNP binds to the 
5’ GU. U2 snRNP and splicing factor 1 (SF1) bind to 
the branch site under the assistance of the mRNA 
splicing factor U2 associated factor (U2AF) and form 
the splicing complex precursor (A complex) [69]. 
U4-U5-U6 snRNP trimer forms the splicing complex 
(B complex) through interactions between RNA-RNA 
(SR protein) and RNA-protein (hnRNP) [1]. 
Subsequently, 5’ end of the intron is cleaved from the 
upstream exon and joined to the branch site by a 2’, 
5’-phosphodiester linkage. The 3’ end of the intron is 
cleaved from the downstream exon, and the two 
exons are joined by a phosphodiester bond [41]. The 
intron is then released in lariat form and degraded 
[70] (Figure 3).  
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Figure 2. m6A modification plays a critical role in mRNA alternative splicing and stability in mammal spermatogenesis. m6A methyltransferase Mettl3 is essential for 
spermatogonial differentiation and meiosis during mouse spermatogenesis. m6A modification that mediated by Mettl3 ensures exons containing m6A sites have the 
correct exon inclusion levels [63]. m6A demethylase Alkbh5 is required for the late meiotic and spermiogenesis during spermatogenesis [65]. m6A tends to mark the 
3’-UTRs of longer mRNAs that are destined to be degraded and Alkbh5 controls correct splicing of exon and 3’-UTR which have m6A sites [66, 67]. 

 
Figure 3. The composition of the spliceosome complex and the pre-mRNA splicing process. U1 snRNP binds to the 5’ GU. U2 snRNP and SF1 bind to the branch 
site under the assistance of the mRNA splicing factor U2 associated factor (U2AF65 and U2AF35) and form the splicing complex precursor (A complex) [69]. 
U4-U5-U6 snRNP trimer forms the splicing complex (B complex) through interactions between RNA-RNA (SR proteins) that bind to ISE and RNA-proteins (hnRNP) 
that bind to ISS. The 5’ end and 3’ end of the intron are cleaved from the upstream and downstream exons by a 2’, 5’-phosphodiester linkage, and therefore exons 
are connected together. 

 
Alternative splicing always comes with the 

emergence of the improper splice site recognition, 
which is always influenced by genetic variants or 
abnormal expression of splicing factors [41]. For 
example, an exonic SNP (c.2851G>T) in sperm 
flagellar 2 (Spef2) is associated with semen deformity 
rate and post-thaw cryopreserved sperm motility in 
Holstein bulls, potentially leads to the production of 
Spef2-SV3 transcript which is only detected in testis 
and epididymis [71]. Inner centromere protein 

(Incenp) is involved in cell division and sister 
chromatid separation as the main member of 
chromosomal passenger protein complex and a 
mutation (g.19970A>G) in its intron 11 results in exon 
12 skipping and creates several novel binding sites for 
the splicing factors SRSF1, SRSF5, and SRSF6 [72]. The 
SR proteins, such as SRp38 and 9G8, are highly 
expressed in germ cells [73, 74]. The SNPs in these SR 
proteins are significantly associated with the risk of 
non-obstructive azoospermia in Chinese men, which 
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provides more evidence for the role of splicing 
activity in human spermatogenesis [75]. A SNP in 
exonuclease 1 (Exo1) intron 8 potentially results in the 
production of truncated forms-tr1-Exo1 and tr2-Exo1, 
which partly explains metaphase-specific apoptosis in 
MRL/MpJ mice [76]. Zrsr1 is a U2AF35-like splicing 
factor which recognizes the 3' splice site during 
spliceosome assembly, and the Zrsr1 mutant mice 
containing truncating mutations within its RRM 
exhibits the abundant intron retention events in genes 
associated with spermatogenesis, and germ cell 
apoptosis, azoospermia and male sterility [77]. The 
conditional deficiency of another pre-mRNA splicing 
factor breast cancer amplified sequence 2 (Bcas2) in 
male germ cells results in male infertility and aberrant 
splicing of Dazl, Ehmt2 and Hmga1 genes [78]. 

Alternative splicing coupled to nonsense- 
mediated mRNA decay (NMD) is an efficient strategy 
to regulate gene expression. The main feature of NMD 
is that the last exon generates a premature termination 
codon (PTC) producing a transcript with a 
C-terminally truncated polypeptide. NMD pathway is 
a post-transcriptional RNA surveillance mechanism 
that rapidly degrades the toxic truncated protein, 
preventing it from damaging cells [79, 80]. 
Up-frameshift mutant (UPF) and suppressor with 
morphological effect on genitalia (SMG) family are 
important factors in NMD pathway. Upf1 recognizes 
abnormal translation termination and then interacts 
with Upf2 and Upf3 [81]. Upf1 phosphorylation is 
mediated by Smg1. Protein phosphatase 2A, Pp2a 
interacts with Smg5, Smg6 and Smg7, and then 
promotes Upf1 de-phosphorylation. Smg5 and Smg6 
identify PTCs by their special domains and degrade 
mRNAs (Figure 4) [82-84]. The mRNAs that contain 
PTCs or long 3’ UTRs could be the potential substrates 
of NMD [85]. Emerging evidence provide an 
indispensable role of NMD in spermatogenesis. 
Inactivation of Upf2, a component of the chromatoid 
body, causes azoospermia and male sterility. In 
Upf2-null mouse spermatocytes and round 
spermatids, the long 3’ UTR transcripts from 
ubiquitously expressed genes are abundantly 
accumulated and trigger nonsense-mediated mRNA 
decay [86]. Tudor domain containing 6 (Tdrd6) is 
essential for Upf1-Upf2 interaction. The long 3’ 
UTR-stimulated NMD is impaired in Tdrd6-/- 
spermatids by interfering with Upf1-mRNA binding, 
thus perturbing mRNA processing [87]. 

Alternative splicing and male infertility 
Spermatogenesis is a continuous 

hormone-dependent cell proliferation and 
differentiation process. Follicle-stimulating hormone 
(FSH) and luteotropic hormone (LH) can induce the 

secretion of testosterone that is important for 
spermatogenesis [88]. In addition, FSH and LH are 
also essential for the initiation and maintenance of 
normal spermatogenesis [89]. Multiple studies have 
found that alternative splicing of hormone receptor 
genes influences male infertility [93-96]. For example, 
a homozygous G>A mutation in intron 10-exon 11 
boundary of LHR gene results in skipping of partial 
exon 11. The male patient appears delayed puberty, 
micropenis and oligospermia, and two of his sisters 
are infertile [90]. Several splicing variants in FSHR 
gene are identified in infertile patients, including the 
exon 9 skipped variant which leads to the removal of 
two highly conserved cysteine residues at positions 
275 and 276 [91, 92]. Another study reveals several 
FSHR splicing variants lack of exon 2, exon 2 and 5, 
exon 5 and 6, exon 2, 5 and 6 in mouse testis [93]. The 
exon 5 and 6 skipped transcript produces a mutant 
receptor that can’t bind to FSH and then leads to male 
infertility.  

Previous studies showed that Sertoli-cell specific 
androgen receptor (AR) knockout mouse exhibited 
spermatogenic arrest and male infertile, suggesting 
the indispensable role of AR in spermatogenesis 
[94-97]. Human AR protein consists of four functional 
domains: N-terminal transactivation domain (NTD) 
encoded by exon 1; DNA-binding domain (DBD) 
encoded by exon 2 and 3; Hinge domain encoded by 
exon 4 and ligand-binding domain (LBD) encoded by 
exon 5-8 [98]. Several mutations in AR gene splice 
sites are closely associated with androgen 
insensitivity syndrome [99-102]. The c.1769-1G>A 
mutation in intron 2 splice acceptor site of AR gene 
results in an insertion of 69 nucleotides, which creates 
an insertion of 23 amino acids [99]. The insertion that 
located between the two zinc fingers of the AR DBD 
domain impairs the specific contact from AR and its 
hormone response element [100]. A c.2449+5 G>T 
mutation in intron 6 boundary splice donor site 
prevents the normal splicing of intron 6 and gives rise 
to a truncated protein that contains a PTC in retained 
intron 6. The truncated protein lacks part of 
C-terminal ligand-binding domain, and the truncated 
transcript is highly expressed in an 11-year-old girl, 
which probably explains the partial androgen 
insensitivity syndrome [101]. A synonymous 
mutation (C>T) in exon 8 is identified in a patient 
with partial androgen insensitivity syndrome [102]. 
The mutation produces an aberrant splicing variant 
that leads to partial skipping of exon 8 and a 
shortened 3’-untranslated region and the 
androgen-induced transcriptional activity is inhibited 
(Figure 5). Overall, aberrant alternative splicing of 
hormone receptor genes is closely associated with 
spermatogenesis and male infertility. 
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Summary and prospects 
We have summarized the current knowledge 

regarding genes that regulate alternative splicing in 
spermatogenesis and also investigated the 
relationships between alternative splicing and male 

infertility (Figure 6). Spermatogenesis is a strictly 
regulated process, at both the transcriptional and the 
post-transcriptional level. Understanding the 
alternative splicing in spermatogenesis will be helpful 
to improve the sperm quality and cure male 
infertility. 

 

 
Figure 4. Mechanistic model underlying nonsense-mediated mRNA decay. Upf1 interacts with Upf2, Upf3 and then undergoes Smg1-mediated phosphorylation. Pp2a 
interacts with Smg5, Smg6 and Smg7 and promotes Upf1 de-phosphorylation. Smg5 and Smg6 identify PTC; Smg7 degrade mRNA 5’cap structure and 
phosphorylated-Upf1 degrades mRNAs [81-84]. 

 

 
Figure 5. The mutations in AR gene splice sites result in aberrant splicing which are closely associated with human androgen insensitivity syndrome. Boxes represent 
exons of human AR gene. Exon 1 encodes N-terminal transactivation domain (NTD); Exon 2 and 3 encode the first and second zinc fingers of DNA-binding domain 
(DBD); Exon 4 encodes the hinge region; Exon 5-8 encode the COOH-terminal domain (CTD). Several mutations in AR gene splice sites result in aberrant splicing 
in androgen insensitivity syndrome patients. For example, the c.1769-1G>A mutation in intron 2 splice acceptor site results in an insertion of 69 nucleotides. The 
insertion between the two zinc fingers of the AR DNA binding domain (DBD domain) impairs the specific binding of AR response elements to AR [99, 100]. A 
c.2449+5G>T mutation in intron 6 boundary splice donor site gives rise to a truncated protein that lacks part of C-terminal ligand-binding domain [101]. A c2667C>T 
mutation in exon 8 produces an aberrant splicing variant that leads to partial skipping of exon 8 and a shortened 3’-untranslated region and the androgen-induced 
transcriptional activity is inhibited [102]. 



Int. J. Biol. Sci. 2020, Vol. 16 
 

 
http://www.ijbs.com 

45 

 
Figure 6. Pre-mRNA splicing in mammal spermatogenesis and male infertility. In normal condition, pre-mRNA undergoes constitutive splicing, removes introns and 
joins adjacent exons. m6A modification maintains correct exon inclusion levels and plays a critical role in mammal spermatogenesis [62-67]. Alternative splicing often 
comes into being along with the emergence of the abnormal splice site recognition. On the one hand, alternative splicing generates abnormal transcripts with a 
premature termination codon (PTC), which are degraded by nonsense-mediated mRNA decay (NMD) [65, 86, 87]. On the other hand, the mutations in splice sites 
result in the production of exon-skipped transcripts which are closely associated with male infertility [75, 76, 99-102]. 

 
 It’s well known that germ cells differentiate into 

spermatozoa, and transmit genetic and epigenetic 
information across generations [103]. This review 
provides a large amount of information about 
alternative splicing events in germ cells of the genes 
critical for spermatogenesis. However, testis is a 
highly complex tissue which contains Leydig cells, 
Sertoli cells, germ cells and peritubular myoid cells. 
These cells cooperate with each other and ensure 
normal spermatogenesis. The Sertoli cells are essential 
for creating a microenvironment that enables to 
produce the functional spermatozoa. The 
communication between Sertoli-Sertoli cell and 
Sertoli-germ cell constitutes ectoplasmic 
specialization and blood-testis barrier (BTB) which 
protect germ cells from immunological attack and 
provide nutrients for germ cells [104]. In addition, 
Leydig cells that between seminiferous tubules 
produce growth factors and secrete testosterone. A 
previous study has shown that LHR plays a key role 
in testosterone production and eight splicing variants 
of LHR gene are detected in bovine Leydig cells [105]. 
The androgenic stimulation of peritubular myoid cells 
around seminiferous tubules is also essential for 
normal germ cell development [106]. However, the 
functions of alternative splicing patterns of critical 
genes in Sertoli cells, Leydig cells and peritubular 
myoid cells are worth being explored. 

Recently, there have been many researches on 
non-coding RNAs in spermatogenesis. Circular RNAs 

(circRNAs), unlike miRNAs and long non-coding 
RNAs (lncRNAs), are a novel type of non-coding 
RNAs originated from introns, intergenic regions, 
untranslated regions and exhibit distinct patterns of 
alternative back-splicing and alternative splicing [107, 
108]. The roles of circRNAs in self-renewal and 
differentiation of spermatogonial stem cells and 
sperm motility are gradually being studied [109-112]. 
However, the relationships between alternative 
splicing that involved by circRNAs and 
spermatogenesis was seldom reported and needed 
further study. 

 High-throughput sequencing of short cDNA 
fragments (RNA-seq) generates tens of thousands 
alternative splicing events in numerous tissues. 
Meanwhile, the identification of important alternative 
splicing transcripts has become an urgent issue. There 
are two commonly used methods to estimate 
alternative splicing events at present. One is percent 
spliced in (PSI), proposed by Wang et al [113]. ΔPSI is 
used to detect differential alternative splicing events 
in two samples of RNA-seq data. When ΔPSI ≥ 10%, 
the changes of splicing events in different samples are 
considered important [114]. The other popular 
method to recognize alternative splicing is alternative 
splicing detector (ASD), which detects differential 
alternative splicing exons in different samples of 
RNA-seq data [115]. This software considers the 
altered junction reads and altered coverage of 
AS-exons while calculating a P value. When P < 0.05, 
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the AS event is statistically significant. Currently, both 
methods have been widely applied in numerous 
tissues [116-118], but scarcely in the testis. Therefore, 
the important alternative splicing events in the 
development of spermatogenesis deserve further 
excavation and investigation. In general, this study 
reviews some progresses in alternative splicing of 
spermatogenesis and also provides new ideas in the 
therapy of male infertility. 
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