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Abstract 

Cholangiocarcinoma (CCA) is an epithelial cancer and has high death and recurrence rates, current 
methods cannot satisfy the need for predicting cancer relapse effectively. So, we aimed at 
conducting a multi-mRNA signature to improve the relapse prediction of CCA. We analyzed mRNA 
expression profiling in large CCA cohorts from the Gene Expression Omnibus (GEO) database 
(GSE76297, GSE32879, GSE26566, GSE31370, and GSE45001) and The Cancer Genome Atlas 
(TCGA) database. The Least absolute shrinkage and selection operator (LASSO) regression model 
was used to establish a 7-mRNA-based signature that was significantly related to the 
recurrence-free survival (RFS) in two test series. Based on the 7-mRNA signature, the cohort 
TCGA patients could be divided into high-risk or low-risk subgroups with significantly different RFS 
[p < 0.001, hazard ratio (HR): 48.886, 95% confidence interval (CI): 6.226-3.837E+02]. 
Simultaneously, the prognostic value of the 7-mRNA signature was confirmed in clinical samples of 
Ren Ji hospital (p < 0.001, HR: 4.558, 95% CI: 1.829-11.357). Further analysis including multivariable 
and sub-group analyses revealed that the 7-mRNA signature was an independent prognostic value 
for recurrence of patients with CCA. In conclusion, our results might provide an efficient tool for 
relapse prediction and were beneficial to individualized management for CCA patients. 

Key words: cholangiocarcinoma; Gene Expression Omnibus database; least absolute shrinkage and selection 
operator model; mRNA signature; recurrence-free survival. 

Introduction 
Cholangiocarcinoma (CCA) is the second most 

common primary liver cancer worldwide [1-3]. 
During the past few decades, incidence and high 
recurrence rates for all CCA were closely correlated to 
poor outcomes [4-6]. Unfortunately, there is still no 
better way to accurately predict recurrence. Although 
TNM staging systems according to different versions 
of the American Joint Committee on Cancer (AJCC) 
had shown valuable but still insufficient for 
predicting relapse in different subtypes of CCA [5].  

An increasing amount of evidence has 
demonstrated that messenger RNA (mRNA) as 
molecular biomarkers could promote the prognostic 
evaluation and identification of potential high-risk 
CCA patients [7, 8]. For example, KRAS mutations 
were associated with deregulation of epidermal 
growth factor receptor (EGFR) and ERBB2 signaling 
network, derangement of genes participating in 
proteasomal activity could lead to poor prognosis [9]. 
However, many genes and signal pathways were also 
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present in hepatocellular carcinoma, and single gene 
as a prognostic indicator for CCA was not rigorous 
enough. So, our study aimed at finding a 
multi-mRNA model to help better predicting the 
relapse of CCA patients. 

GEO [10] and The Cancer Genome Atlas [11] are 
two main public databases that provided numerous 
array-based and sequence-based data for researchers. 
By using bioinformatic methods [12], we could obtain 
large amounts of data quickly and conveniently. 
Therefore, we identified significant genes that 
expressed differentially between CCA samples and 
normal bile duct tissue or para cancerous samples in 
five datasets from GEO and TCGA database, 
respectively. Then, we utilized the least absolute 
shrinkage and selection operator (LASSO) regression 
model [13, 14] and built a 7-mRNA-based signature 
for predicting relapse. Cox regression and the 
time-dependent ROC curve demonstrated that this 
7-mRNA-based signature had an excellent prediction 
for RFS. In addition, gene ontology (GO) enrichment 
analysis and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis were performed 
for discovering essential marker and pathways. All of 
these may provide an efficient method to judge 
recurrence rate and was beneficial to individualized 
management for CCA patients. 

Materials and methods 
Preparation of CCA datasets 

The gene expression data of CCAs were 
downloaded from Gene Expression Omnibus (GEO) 
and The Cancer Genome Atlas (TCGA) database. 
There were five appropriate CCA datasets from the 
GEO database (GSE76297, GSE32879, GSE26566, 
GSE31370, and GSE45001) met the following criteria: 
a). a total of more than 10 samples, including both 
tumor and non-tumor samples; b) annotated genes 
accounting for more than 90% of the total 
transcriptomes (n > 17000); and c) the number of 
differentially expressed genes (DEGs) more than 100. 
Details of these five datasets were listed in Table 1. In 
addition, the TCGA database provided gene 
expression profiles from RNA-seq and corresponding 
clinical information in 36 CCA patients with RFS 
status. The online analytical tool GEO2R [12] was 
used to screen out DEGs between CCA and 
non-tumor samples in the GEO database, and we 
obtained DEGs from the TCGA database by using R 
package “edgeR”. Here, genes with adjusted p-value 
< 0.01 and fold change (FC) >1.5 or <-1.5 were 
considered as DEGs.  

Three gene expression profiles were utilized to 
recognize DEGs between tumor tissues and normal 

intrahepatic bile duct tissues or non-tumor tissues 
(T/N), and the other three gene expression profiles 
were used to recognize DEGs between tumor tissues 
and para-cancerous tissues (T/P). Next, overlapping 
analysis of these DEGs was conducted by website 
imageGP, DEGs within 2 series or more were 
regarded as credible DEGs in each Venn diagram. 
Finally, 194 DEGs among TvsN, TvsP and TCGA were 
identified, which including 87 up-regulated genes and 
107 down-regulated genes. 

 

Table 1. GEO datasets enrolled in the study. 

Database Source Sample Platform 
T P N 

GSE26566 https://www.ncbi.nlm.nih.gov/geo
/query/acc.cgi?acc=GSE26566 

10
6 

59 6 Illumina v2.0 

GSE32879 https://www.ncbi.nlm.nih.gov/geo
/query/acc.cgi?acc=GSE32879 

16 - 7 Affymetrix 
1.0 ST  

GSE76297 https://www.ncbi.nlm.nih.gov/geo
/query/acc.cgi?acc=GSE76297 

91 92 - Affymetrix 
HTA-2_0 

GSE45001 https://www.ncbi.nlm.nih.gov/geo
/query/acc.cgi?acc=GSE45001 

10 10 - Agilent-02800
4 

GSE31370 https://www.ncbi.nlm.nih.gov/geo
/query/acc.cgi?acc=GSE31370 

6 - 5 Illumina V4.0 

T: tumor tissues; P: para-cancerous tissues; N: normal intrahepatic bile duct tissues 
or non-tumor tissues. 

 

GO enrichment analysis and KEGG pathway 
analysis 

GFO analysis is a common genes and gene 
products annotating method, including biological 
processes (BP), cellular component (CC), molecular 
function (MF). The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database is a knowledge base for 
systematic analysis, annotation, and visualization of 
gene functions. In our study, the R package 
“clusterprofiler” was used to provide functional 
classification, and KEGG pathway, of the 87 
up-regulated and 107 down-regulated DEGs, 
respectively. We listed the top 10 of all terms in every 
category, p < 0.05 was set as the cutoff point. 

 Establishment of the LASSO regression 
model 

For these 194 candidate mRNAs, the optimal 
cutoff value of each mRNA was generated based on 
receiver operating characteristic (ROC) curve, and the 
area under the curve (AUC), sensitivities and 
specificities of these mRNAs were also obtained. 
Next, there were 127 genes with AUC ≥ 0.55 
remained. According to the cutoff value, 36 patients of 
the TCGA database were classified into high- or 
low-expression status according to each mRNA. 
Based on the expression status data of these 127 
DEGs, we constructed LASSO COX regression models 
with the R package “glmnet”. The least absolute 
shrinkage and selection operator (LASSO) is a most 
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famous method for analyzing survival data, and 
especially suitable for analyzing gene expression 
profile, which has higher dimensionality, smaller 
sample size and strongly relevant variables[15, 16]. 
The “glmnet” package returned a sequence of models 
for us, the value of the tuning parameter λ was 
negatively associated with the complexity of the 
model and the value of deviance. When the value of 
the invisible λ increased from left to right, the number 
of nonzero coefficients increased accordingly. 
Ten-time cross validations were used to determine the 
optimal values of λ and a value λ = 0.20770 with log 
(λ) = -0.68256 was chosen by 10-fold cross-validation 
via minimum criteria; a vertical line was drawn at L1 
norm=2.388, which corresponds to the optimal value 
= 0.20770. However, the results of the λ value might 
be slightly variable during different times of analysis. 
So, 10-fold cross-validation was running up to 100 
times and the cross-validated errors were averaged. 

Validation in Clinical CCA specimens 
Between January 1, 2012, and December 30, 2017, 

the human CCA tissues were obtained from the 
Department of Liver Surgery, Ren Ji Hospital, 
Shanghai Jiaotong University. Protocol and free of 
written informed consent were approved by the 
ethical review committee of Renji Hospital, School of 
Medicine, Shanghai Jiaotong University. 

We excluded patients for the following criteria: 
combination with other tumors, perioperative 
mortality, preoperative radiotherapy and 
chemotherapy, conservative treatment and 
incomplete data. Finally, we obtained 44 patients' 
tissues and all tissues were pathologically confirmed. 
The clinicopathological features of the Ren Ji cohort 
were listed in Table S1. Tumor staging was assessed 
according to the 8th edition staging classification 
system of AJCC [17]. 

Follow up information of these CCA patients has 
received check-ups every 2-3 months during the first 2 
years and every 3-6 months until May 2018. The RFS 
was calculated from the date of tumor resection until 
the detection of tumor recurrence, death from a cause 
other than CCA, or the last follow-up visit.  

Quantitative real-time PCR (qRT-PCR) 
Total RNA was extracted and reversed using the 

RNeasy Mini Kit (Qiagen, Valencia, CA) and the 
Revert Aid First Strand cDNA Synthesis Kit (Thermo 
Scientific, Rockford, IL), respectively. The expression 
of CD36, GGCX, UBASH3B, DBN1, PTTG1, CCNA2, 
SPATS2, and 18S mRNA were determined by 
qRT-PCR using SYBR Green PCR Master Mix, and Ct 
value was enrolled for data analysis. Related primers 
sequences were listed in Table S2. All these 

experiments were conducted according to the 
manufacture instructions.  

Statistical analysis 
The statistical analysis was carried out using 

SPSS 17.0 and GraphPad Prism 6 software. The 
optimal cutoff of risk score was determined when the 
sensitivity and specificity in the ROC curve [18, 19] 
achieved optimum for predicting recurrence-free 
survival. With this risk score cutoff, the patients were 
divided into high- or low-risk groups. Recurrence-free 
survival analysis between high- and low-risk groups 
was assessed by the Kaplan-Meier analysis and 
compared using the log-rank test. Time-dependent 
ROC curves were employed to demonstrate the 
predictive accuracy of different variables. Univariable 
and multivariable Cox analyses were performed to 
investigate whether the gene signature was 
independent of other clinicopathological 
characteristics, and Pearson chi-squared test or 
Fisher’s exact test was used to examine the association 
between the clinicopathological characteristics and 
7-mRNA signature. A difference was defined as 
significant at P < 0.05. 

Results 
Identification of differentially expressed genes 
in cholangiocarcinoma from public datasets. 

Detailed information of the five eligible CCA 
datasets meets our criteria in the GEO database 
(GSE76297, GSE32879, GSE26566, GSE31370, and 
GSE45001) were shown in Table 1. After analyzing 
these CCA datasets using GEO2R, 4005, 6554, 990, 
3893, 879 and 399 DEGs were respectively recognized 
in GSE76297-T/P, GSE26566-T/P, GSE45001-T/P, 
GSE32879-T/N, GSE26566-T/N, GSE31370-T/N 
(Figure 1A-F). DEGs shared within 2 series or more 
were regarded as credible DEGs in each Venn 
diagram, and 2666 and 422 credible DEGs were 
recognized in T/P and T/N groups respectively 
(Figure 1G-H). Similarly, 2545 DEGs meet the criteria 
with p-value < 0.01 and FC >1.5 or <-1.5 were 
gathered in TCGA, including 1132 up-regulated and 
1413 down-regulated genes (Figure S1). The 
Overlapping analysis was further performed between 
GEO and TCGA database, and 194 DEGs were 
identified, which were believed to be commonly 
dysregulated in CCA (Figure 1I).  

In addition, GO and KEGG pathway enrichment 
analyses were conducted for these overlapping up- or 
down-regulated genes. As shown in Figure 2A-B, 
up-regulated genes were most enriched in organelle 
fission and cell cycle pathways by GO-BP and KEGG 
analyses, respectively. Contrarily, the organic 
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hydroxy compound metabolic process and bile 
secretion pathway were respectively greatly enriched 
in GO-BP and KEGG analyses by down-regulated 
genes (Figure 2C-D). Meanwhile, enrichment analyses 
for cellular component (CC) and molecular functions 
(MF) were also performed (Figure S2). 

Construction of a 7-mRNA signature from the 
TCGA cohort  

For these 194 candidate DEGs, the optimal cutoff 
point was determined when the sensitivity and 
specificity of the ROC curve achieved optimum. 
According to each mRNA cutoff value, 36 patients 
were classified into high or low expression status. 
Besides, AUC ≥ 0.55 was a restrictive condition for 
filtering some mRNAs that hardly had a prognostic 
value. Ultimately, 127 mRNAs with AUC≥0.55 were 

utilized to construct the LASSO COX regression 
model. 

The “glmnet” package [13, 20] returned a 
sequence of models for us (Figure S3A), and 10-fold 
cross-validations were performed to select the best 
one. As shown in Figure 3A, a value λ = 0.20770 with 
log (λ) = -0.68256 was chosen by 10-fold 
cross-validation via minimum criteria. However, the 
results of the λ value might be slightly variable during 
different times of analysis. So, 10-fold cross-validation 
was running up to 100 times and the cross-validated 
errors were averaged. Finally, the λ with minimum 
mean cross validation error was still returned about 
0.20770. At this λ value, 7 mRNAs including CD36, 
GGCX, UBASH3B, DBN1, PTTG1, CCNA2 and 
SPATS2 with nonzero coefficients were selected 

 

 
Figure 1. Identification of differentially expressed genes in cholangiocarcinoma from public CCA datasets. (A-F) Volcano plots of DEGs in the 5 indicated datasets. 
(X-axis: log2(FC); Y-axis: -log10(FDR) for each gene. Genes with FDR < 0.01 and FC >1.5 or <-1.5 were considered as DEGs in each series. Blue: down-regulated 
genes; Grey: non-differential genes; Red: up-regulated genes). (G-H) Overlapping analyses of DEGs in TvsP (G) and TvsN (H) groups, DEGs shared within 2 datasets 
or more were regarded as credible DEGs in each Venn diagram. (I) Overlapping analysis of GEO and TCGA datasets. 
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(Figure 3B). Among them, CD36 and GGCX were 
down-regulated in CCA, and the other 5 genes were 
up-regulated. Meanwhile, person’s correlation tests 
showed that the expression of these 7 genes was 
independent of each other (Figure S3B). Based on the 
expression status of these 7 mRNAs, a risk-score 
formula for RFS was constructed as follows: Risk 
score= (-0.96873 × expression status of CD36) + 

(-0.03944 × expression status of GGCX) + (0.01064 × 
expression status of UBASH3B) + (0.04955 × 
expression status of DBN1) + (0.24927 × expression 
status of PTTG1) + (0.31598 × expression status of 
CCNA2) + (0.57201 × expression status of SPATS2). In 
the formula, low expression status was equivalent to 
0, and high expression status was equivalent to 1. 

 
 

 
Figure 2. Biological processes (BP) enrichment analysis and KEGG pathway analysis. (A-B) GO biological processes (BP) enrichment analysis and KEGG pathway 
analysis of upregulated DEGs. (C-D) GO biological processes (BP) enrichment analysis and KEGG pathway analysis of downregulated DEGs. 
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Figure 3. Construction of a 7-mRNA signature from the TCGA cohort. (A) 10-fold cross-validation for tuning parameter selection in the LASSO model. The dotted 
vertical lines are drawn at the optimal values by minimum criteria (lambda.min, left vertical dotted line) and 1-SE criteria (lambda.1se, right vertical dotted line). (B) 
LASSO model at optimal lambda value, 7 mRNAs with nonzero coefficients were selected. 

 

Evaluation of the risk score formula for relapse 
in TCGA Cohort 

Then, the risk scores for relapse were calculated 
for every patient in the TCGA Cohort. As shown in 
Figure 4A, the patients were more trended to relapse 
when the risk score increased. Patients were divided 
into high-risk (n=17) or low-risk (n=19) groups using 
the optimal risk score as the cutoff point. The 
Recurrence rate of the high-risk group was extremely 
increased throughout the study period until the 
analytical endpoint, at which 94.74% of patients in the 
high-risk group experienced CCA recurrence while 

only 0.58% of patients in low-risk group relapsed (p < 
0.001, Figure 4B). Kaplan-Meier analysis showed that 
CCA patients with higher risk score had significantly 
worse RFS than those with lower risk score (HR = 
48.886, 95% CI: 6.229-383.657, p < 0.001, Figure 4C). In 
addition, the time-dependent ROC curves between 
the 7-mRNA signature and RFS showed that AUC at 1 
year, 3 years, 5 years, and > 5 years were 0.973, 0.976, 
0.982 and 0.983, respectively (all p < 0.001, Figure 4D). 
Besides, compared with any single mRNA or clinical 
factors, the 7-mRNA-signature had better predictive 
value for relapse (all p < 0.001, Figure 4E-F). 
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Figure 4. Evaluation of the risk score formula for relapse in the TCGA cohort. (A) Waterfall plots for distribution of risk score and relapse status of individual 
patients. (B) Recurrence rate between the high- and low-risk at the indicated time. (C) The Kaplan-Meier survival curve of recurrence-free for patients between two 
different groups. (D) Time-dependent ROC curve at 1 year, 3 years, 5 years and more than 5 years. (E) Comparison of prognostic accuracy between the signature 
and single mRNAs. (F) Comparison of prognostic accuracy between the signature and clinical characteristics. P-values were calculated using the log-rank test. HR, 
hazard ratio; AUC, area under ROC curve; RFS, recurrence-free survival. ****, p <0.001. 

 
In addition, univariable Cox analysis showed 

that only 7-mRNA signature were positively 
associated with CCA recurrence in TCGA cohort (p < 
0.001, HR = 48.886, 95% CI = 6.229-383.657, Table S3). 

However, clinical association analyses showed that 
increased risk score was not related to clinical factors 
obviously, probably due to the small sample numbers 
(Table S4). 
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Validation of the 7-mRNA signature for 
recurrence-free survival prediction in Ren Ji 
Cohort 

To further verify whether this 7-mRNA classifier 
had a similar predictive ability in different CCA 
populations, we applied it to an independent cohort. 
From January 2012 to December 2017, forty-four CCA 
patients with complete clinicopathological 
information and prognostic outcomes were enrolled 
in our study at Ren Ji Hospital. We measured the 
expression levels of the 7 mRNAs in 44 CCA tumor 
samples by qRT-PCR assays (Figure S4). Then, the risk 
scores were calculated for every patient according to 
the expression status of these 7 mRNAs.  

According to the optimal cutoff risk score 
determined by the ROC curve, patients were further 
divided into high- (n = 31) or low-risk (n = 13) groups. 
As shown in Figure 5A-B, patients with higher risk 
scores were more prone to recurrence after CCA 
resection. Survival analysis showed that patients in 
the high-risk group had obviously shorter RFS time 
than those in the low-risk group (p < 0.001, HR = 
4.558, 95% CI 1.829-11.357, Figure 5C). The AUCs of 
the time-dependent ROC curves between the 
7-mRNA signature and RFS were 1.000 for 1 year, 
0.958 for 3 years, 0.977 for 5 years and 0.979 for >5 
years (p = 0.09 at 1 year, others p < 0.01, Figure 5D). 
Moreover, the AUC of the 7-mRNA risk score model 
was significantly greater than any single mRNA or 
clinical factor (all p<0.001, Figure 5E-F). 

Univariable Cox analyses of the Ren Ji cohort 
showed that CA19-9 levels, lymph node metastasis, 
and the 7-mRNA signature were significant factors 
that correlated with RFS of CCA (Table S5). Among 
these, the 7-mRNA signature was the most effective 
one to predict relapse of CCA in the Ren Ji cohort (p = 
0.001, HR = 4.558, 95% CI 1.829-11.357, Table S5). 
Furthermore, the multivariable Cox analysis showed 
that the 7-mRNA signature remained a powerful and 
independent factor for RFS after adjusting for other 
clinicopathological characteristics (p = 0.008, HR = 
3.912, 95% CI = 1.417-10.799, Table S5). In addition, 
the 7-mRNA signature was found to be positively 
associated with the tumor size (p = 0.034) of CCA 
(Table S6). 

Stratification analysis of the 7-mRNA-based 
classifier in TCGA Cohort and Ren Ji Cohort 

To investigate the applicable CCA population of 
this 7-mRNA-based classifier, the 7-mRNA-signature 
based survival analyses were further performed in 
subgroups of patients with different clinical variables 
in the TCGA cohort and Ren Ji cohort (Figure 6-7, 
Figure S5-6).  

For the TCGA cohort, upon stratified by 
individual clinicopathological features including 
gender, age, CA19-9 levels, tumor size, pathologic 
stage, and AJCC stage, the signature was still a 
clinically and statistically significant applicable model 
in predicting recurrence of CCA patients (Figure 6). 
However, because of the small sample size, for 
patients with positive of lymph node metastasis, 
distant metastasis, perineural invasion, residual 
tumor or vascular tumor, the 7-mRNA signature was 
a little powerless for relapse prediction (Figure S5). 

Similarly, this 7-mRNA signature was a practical 
predictor that was independent of some 
clinicopathological characteristics like age, tumor 
thrombus and AJCC stage in the Renji cohort (Figure 
7). For patients in subgroups of male, CA19-9 ≤ 
37ng/ml, tumor size ≤ 5cm, mono-modular, negative 
of lymph node metastasis or distant metastasis, the 
7-mRNA signature maintained its predictive value for 
recurrence-free survival (Figure S6B, S6C, S6E, S6G, 
S6I, and S6K). Unfortunately, the 7-mRNA signature 
lost the prognostic role for patients of female, CA19-9 
> 37ng/ml, tumor size > 5cm, multi-modular, positive 
of lymph node metastasis or positive of distant 
metastasis, which might be due to the small sample 
number of these subgroups (Figure S6A, S6D, S6F, 
S6H, S6J and S6L). 

Discussion 
Cholangiocarcinoma is a fatal malignancy, 

which arising from varying locations within the 
biliary tree. Although surgical resection with curative 
intent is performed, the prognosis of patients with 
CCA remains poor owing to a high incidence of 
recurrence. Therefore, predicting recurrence is an 
arduous and urgent task [20].  

At present, tumor biomarkers have been used to 
predict relapse in patients with CCA. Firstly, 
Carbohydrate antigen 19-9 (CA19-9) is a traditional 
serum biomarker used for CCA prognosis prediction. 
Some studies found that preoperative CA19-9 level 
higher than 100U/ml were associated with a lower 
recurrence-free survival after operation. However, 
these tumor markers are not specific to CCA, and its 
elevation can be related to other diseases, such as bile 
duct obstruction or acute cholangitis [21]. Another 
study pointed out that preoperative serum CA19-9 
level higher than 135U/ml was a predictor for a lower 
survival rate [22]. Other serum markers, such as 
carcinoembryonic antigen (CEA), have proved to be 
overlapped with other diseases and showed low 
sensitivity and specificity. It has been reported in 
many studies that serum Cytokeratin 19 fragment 
21-1 (CYFRA21-1) and CA-242 have higher 
specificities than CA19-9 for intrahepatic 
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cholangiocarcinoma, but they haven’t been used in 
clinical routine examination [23]. Some clinical 
features, such as tumor size and lymph node 

metastases, remain controversial in relapse prediction 
[24-26]. 

 
 
 

 
Figure 5. Validation of the 7-mRNA signature for relapse prediction in the Ren Ji cohort. (A) Waterfall plots for distribution of risk score and relapse status of 
individual patients. (B) Recurrence rate between the high- and low-risk at the indicated time. (C) The Kaplan-Meier survival curve of recurrence-free for patients 
between two different groups. (D) Time-dependent ROC curve at 1 year, 3 years, 5 years and more than 5 years. (E) Comparison of prognostic accuracy between 
the signature and single mRNAs. (F) Comparison of prognostic accuracy between the signature and clinical characteristics. P-values were calculated using the log-rank 
test. HR, hazard ratio; AUC, area under ROC curve; RFS, recurrence-free survival. ****, p <0.001. 
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Figure 6. Kaplan-Meier survival analyses of the TCGA cohort, according to the 7-mRNA-based classifier stratified by clinicopathological characteristics. (A, B) 
Gender, (C, D) Age, (E, F) CA 199 levels, (G, H) Tumor size, (I, J) Pathologic stage, and (K, L) AJCC stage. 

 
Currently, different versions of the AJCC or 

TNM staging system, along with the prognostic 
scoring systems have been widely used to evaluate 
the prognosis of CCA patients. However, these 
systems had some limitations in different subtypes of 
CCA [5], which might due to the ignorance of the 
different genetic and epigenetic backgrounds in 
tumor subtypes. In summary, postoperative 
prediction of CCA remains a problem, so, we 
conducted a multi-mRNA signature to accurately 
predict RFS for CCA patients. 

In this study, we firstly selected datasets from 
GEO and TCGA. Then, we performed overlapping 
analysis with a strategic and stepwise method and 

finally obtain 194 DEGs in accordance with uniform 
standards (p < 0.01 and FC >1.5 or <-1.5). After 
screening, 127 DEGs with AUC ≥ 0.55 were utilized to 
construct the LASSO COX regression model. Ten-fold 
cross-validation was used to select the best one with 
the minimum mean cross validation error from a 
series of models. Finally, we established a 
7-mRNA-based signature risk score model for CCA 
patients. Cox univariable and multivariate analysis 
verified that 7-mRNA-signature was a powerful and 
independent prognostic factor for CCA patients. The 
time-dependent ROC curve demonstrated that this 
model was superior to other prognostic factors, such 
as CA19-9 levels and the AJCC staging system.  
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Figure 7. Kaplan-Meier survival analyses of the Ren Ji cohort, according to the 7-mRNA-based classifier stratified by clinicopathological characteristics. (A, B) Age, 
(C, D) Tumor thrombus, and (E, F) AJCC stage. 

 
Meanwhile, we used two datasets to validate 

prognostic value of 7-mRNA-signature in relapse. The 
results proved that patients in the high-risk group 
tended to recurrence compared with the low-risk 
group. 

Most genes included in the 7-mRNA signature 
have been experimentally researched in many studies. 
Uray et al. found that higher expression of CD36 
could mediate TSP-1-stimulated apoptosis and 
promoted cellular adhesion in breast cancer cells, 
which might inhibit tumor migration and invasion in 
cholangiocarcinoma [27]. However, CD36 was a 
controversial indicator in pancreatic cancer, low 
expression of CD36 predicted lower TNM staging and 
CA19-9 levels, but larger tumor size and poor survival 
prognosis [28]. Ueda et al. reported that exon 2 
deletion splice variant of GGCX could result in 
des-γ-carboxy prothrombin (DCP) production in HCC 
cell lines [29], so, we guessed that GGCX metabolite 
DCP could play the same role in cholangiocarcinoma. 
Lee et al. found that phosphatase activity of 
UBASH3B could improve EGFR protein abundance, 
invasion, and metastasis in TNBC [30], and EGFR also 

played an important role in the progression of 
cholangiocarcinoma [1]. Iyama et al. reported that 
overexpression of DBN1 was associated with poor 
outcome of lung adenocarcinoma [31]. Meanwhile, 
DBN1 was reported to be involved in actin 
cytoskeleton reorganization, which had a vital role 
during cancer metastasis [32]. Ren et al. verified that 
pituitary tumor transforming gene-1 (PTTG1) was an 
independent prognostic factor and acted as an 
oncogene in colorectal cancer [33]. Furthermore, 
PTTG1 was known as a transcription factor, which 
exerts transcriptional activity either by directly 
binding to DNA or by interacting with proteins, 
including p53 [34], and p53 was consistently an 
important cancer suppressor gene in 
cholangiocarcinoma [35]. Li et al. found that cyclin A2 
(CCNA2) promoted the EMT progression combined 
with MET/AKT/GSK-3b via the ROCK/AKT/ 
β-catenin pathway in bladder cancer [36], and 
aberrant activation of Wnt/β-catenin signaling was 
observed in the majority of CCA [37]. In colorectal 
cancer, knockdown of CCNA2 inhibited cancer 
growth by impairing cell cycle [38]. Up-regulation of 
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SPATS2 expression activated the STAT3 pathway and 
resulted in poor prognosis [39], and STAT3 had been 
implicated in carcinogenesis [40]. Besides, Takamochi 
et al. found that SPATS2 could help to differentiate 
squamous cell carcinoma from adenocarcinoma of the 
lung [41]. Unfortunately, the association of these 7 
genes and cholangiocarcinoma recurrence has not 
been reported until now. However, CD36, GGCX, 
UBASH3B, DBN1, PTTG1, CCNA2, and SPATS2 are 
found in other tumors to regulate tumor progression, 
which may also regulate cholangiocarcinoma 
progression and affect the recurrence of CCA. 
Therefore, the potential mechanisms of these 7 genes 
with CCA recurrence need to be studied furthermore. 

However, there were still some limitations to our 
study. Firstly, we used a relatively small sample size 
of CCAs. Secondly, besides mRNA, the predictive 
value of microRNA, lncRNA, and CpG in tumor 
prognosis had been validated. Multi-dimensional 
data analysis integrated with mRNA, microRNA, 
lncRNA, CpG might further increase the predictive 
efficiency [42-44]. Finally, cell functions and molecule 
mechanisms for the 7 mRNAs had not been explored 
in our study. 
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