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Abstract 

Hepatocellular carcinoma (HCC) is a highly heterogeneous disease, which makes the prognostic 
prediction challenging. Ferroptosis, an iron-dependent form of regulated cell death, can be induced by 
sorafenib. However, the prognostic value of ferroptosis-related genes in HCC remains to be further 
elucidated. In this study, the mRNA expression profiles and corresponding clinical data of HCC patients 
were downloaded from public databases. The least absolute shrinkage and selection operator (LASSO) 
Cox regression model was utilized to construct a multigene signature in the TCGA cohort. HCC patients 
from the ICGC cohort were used for validation. Our results showed that most of the ferroptosis-related 
genes (81.7%) were differentially expressed between HCC and adjacent normal tissues in the TCGA 
cohort. Twenty-six differentially expressed genes (DEGs) were correlated with overall survival (OS) in 
the univariate Cox regression analysis (all adjusted P< 0.05). A 10-gene signature was constructed to 
stratify patients into two risk groups. Patients in the high-risk group showed significantly reduced OS 
compared with patients in the low-risk group (P < 0.001 in the TCGA cohort and P = 0.001 in the ICGC 
cohort). The risk score was an independent predictor for OS in multivariate Cox regression analyses 
(HR> 1, P< 0.01). Receiver operating characteristic (ROC) curve analysis confirmed the signature's 
predictive capacity. Functional analysis revealed that immune-related pathways were enriched, and 
immune status were different between two risk groups. In conclusion, a novel ferroptosis-related gene 
signature can be used for prognostic prediction in HCC. Targeting ferroptosis may be a therapeutic 
alternative for HCC. 
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Introduction 
Liver cancer ranks sixth in terms of incidence 

among malignancies and is the fourth leading cause 
of tumor-related death worldwide [1]. Hepatocellular 
carcinoma (HCC), the most prevalent type of primary 
liver cancer, is correlated with several well-known 
etiologies, including chronic HBV or HCV infection, 
alcohol abuse, nonalcoholic fatty liver disease, and 
exposure to dietary toxins such as aflatoxins [2]. HCC 

is a highly heterogeneous disease that has been 
documented at interpatient, intertumoral and 
intratumoral level [3-5]. The overall survival of 
patients with HCC varies significantly across the 
world [2], with a 5-year survival rate of only 18% in 
the United States [6]. The complex etiologic factors, 
along with the high-level heterogeneity of HCC, make 
prognostic prediction challenging. Furthermore, 
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considering the limited treatment strategies for HCC, 
there is an additional need for the development of 
novel prognostic models. 

Ferroptosis is an iron-dependent form of 
regulated cell death (RCD) that is driven by the lethal 
accumulation of lipid peroxidation [7, 8]. In recent 
years, the induction of ferroptosis has emerged as a 
promising therapeutic alternative to trigger cancer cell 
death, especially for malignancies that are resistant to 
traditional treatments [9, 10]. Apart from 
ferroptosis-inducing agents, numerous genes have 
also been identified as modulators or markers of 
ferroptosis. Previous studies have reported that 
ferroptosis plays a vital role in HCC, and some genes, 
such as CISD1 [11] and the polymorphism of the TP53 
gene (S47 variant) [12], are known to regulate 
ferroptosis negatively. On the other hand, other 
ferroptosis-related genes, such as Rb [13], NRF2 [14] 
and MT1G [15], might protect HCC from 
sorafenib-induced ferroptosis. However, whether 
these ferroptosis-related genes are correlated with 
HCC patient prognosis remains largely unknown. 

In the present study, we first downloaded 
mRNA expression profiles and corresponding clinical 
data of HCC patients from public databases. Then, we 
constructed a prognostic multigene signature with 
ferroptosis-related differentially expressed genes 
(DEGs) in the TCGA cohort and validated it in the 
ICGC cohort. Finally, we further performed 
functional enrichment analysis to explore the 
underlying mechanisms. 

Materials and Methods 
Data collection 

TCGA-LIHC cohort and ICGC (LIRI-JP) cohort 
The level 3 RNA sequencing (RNA-seq) data and 

corresponding clinical information of 371 HCC 
patients were downloaded from the TCGA website up 
to November 15, 2019 (https://portal.gdc.cancer. 
gov/repository). The gene expression profiles were 
normalized using the scale method provided in the 
"limma" R package. RNA-seq data and clinical 
information of another 231 tumor samples were 
obtained from the ICGC portal (https://dcc.icgc. 
org/projects/LIRI-JP). These samples were primarily 
derived from a Japanese population with HBV or 
HCV infection [16]. Normalized read count values 
were used. The data from TCGA and ICGC are both 
publicly available. Thus, the present study was 
exempted from the approval of local ethics 
committees. The current research follows the TCGA 
and ICGC data access policies and publication 
guidelines. 

Then, 60 ferroptosis-related genes were retrieved 

from the previous literature [8, 9, 17, 18] and are 
provided in Supplementary Table S1. 

Construction and validation of a prognostic 
ferroptosis-related gene signature 

The "limma" R package was used to identify the 
differentially expressed genes (DEGs) between tumor 
tissues and adjacent nontumorous tissues with a false 
discovery rate (FDR) < 0.05 in the TCGA cohort. 
Univariate Cox analysis of overall survival (OS) was 
performed to screen ferroptosis-related genes with 
prognostic values. P values were adjusted by 
Benjamini & Hochberg (BH) correction. An interaction 
network for the overlapping prognostic DEGs was 
generated by the STRING database (version 11.0) [19]. 
To minimize the risk of overfitting, the 
LASSO-penalized Cox regression analysis was 
applied to construct a prognostic model [20, 21]. The 
LASSO algorithm was used for variable selection and 
shrinkage with the "glmnet" R package. The 
independent variable in the regression was the 
normalized expression matrix of candidate prognostic 
DEGs, and the response variables were overall 
survival and status of patients in the TCGA cohort. 
Penalty parameter (λ) for the model was determined 
by tenfold cross-validation following the minimum 
criteria (i.e. the value of λ corresponding to the lowest 
partial likelihood deviance). The risk scores of the 
patients were calculated according to the normalized 
expression level of each gene and its corresponding 
regression coefficients. The formula was established 
as follows: score= esum (each gene’s expression × corresponding 

coefficient). The patients were stratified into high-risk and 
low-risk groups based on the median value of the risk 
score. Based on the expression of genes in the 
signature, PCA was carried out with the "prcomp" 
function of the "stats" R package. Besides, t-SNE were 
performed to explore the distribution of different 
groups using the "Rtsne" R package. For the survival 
analysis of each gene, the optimal cut-off expression 
value was determined by the "surv_cutpoint" function 
of the "survminer" R package. The "survivalROC" R 
package was used to conduct time‐dependent ROC 
curve analyses to evaluate the predictive power of the 
gene signature. 

Functional enrichment analysis 
The "clusterProfiler" R package was utilized to 

conduct Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
analyses based on the DEGs (|log2FC| ≥ 1, FDR < 
0.05) between the high-risk and low-risk groups. P 
values were adjusted with the BH method. The 
infiltrating score of 16 immune cells and the activity of 
13 immune-related pathways were calculated with 
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single-sample gene set enrichment analysis (ssGSEA) 
[22] in the "gsva" R package. The annotated gene set 
file is provided in Supplementary Table S2.  

Statistical analysis 
Student's t-test was used to compare gene 

expression between tumor tissues and adjacent 
nontumorous tissues. Differences in proportions were 
compared by the Chi-squared test. Mann-Whitney 
test with P values adjusted by the BH method was 
used to compare the ssGSEA scores of immune cells 
or pathways between the high risk and low risk 
group. The OS between different groups was 
compared by Kaplan-Meier analysis with the log-rank 
test. Univariate and multivariate Cox regression 
analyses were implemented to identify independent 
predictors of OS. All statistical analyses were 
performed with R software (Version 3.5.3) or SPSS 
(Version 23.0). If not specified above, a P value less 
than 0.05 was considered statistically significant, and 
all P values were two-tailed.  

Results  
The flow chart of this study is shown in Fig. 1. A 

total of 365 HCC patients from the TCGA-LIHC 
cohort and 231 HCC patients from the ICGC (LIRI-JP) 
cohort were finally enrolled. The detailed clinical 
characteristics of these patients are summarized in 
Table 1. 

 

Table 1. Clinical characteristics of the HCC patients used in this 
study 
 TCGA cohort LIRI-JP cohort 
No. of patients 365 231 
Age (median, range) 61(16-90) 69(31-89) 
Gender (%)   
Female 119(32.6%) 61(26.4%) 
Male 246(67.4%) 170(72.6%) 
AFP( ng/ml)   
≤200 201(55.1%) NA 
>200 75(20.5%) NA 
unknown 89(24.4%) NA 
Grade(%)   
Grade 1 55(15.1%) NA 
Grade 2 175(47.9%) NA 
Grade 3 118(32.3%) NA 
Grade 4 12(3.3%) NA 
unknown 5(1.4%) NA 
Vascular Invasion   
Yes 106(29.0%) NA 
No 205(56.2%) NA 
unknown 54(14.8%) NA 
Stage(%)   
I 170(46.6%) 36(15.6%) 
II 84(23.0%) 105(45.5%) 
III 83(22.7%) 71(30.7%) 
IV 4(1.1%) 19(8.2%) 
unknown 24(6.6%) 0(0.0%) 
Survival status   
OS days (median) 556 780 
censored(%) 126(34.5) 42(18.2) 

 

 
Figure 1. Flow chart of data collection and analysis. 
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Figure 2. Identification of the candidate ferroptosis-related genes in the TCGA cohort. a. Venn diagram to identify differentially expressed genes between tumor 
and adjacent normal tissue that were correlated with OS. b. The 26 overlapping genes were all upregulated in tumor tissue. c. Forest plots showing the results of the univariate 
Cox regression analysis between gene expression and OS. d. The PPI network downloaded from the STRING database indicated the interactions among the candidate genes. e. 
The correlation network of candidate genes. The correlation coefficients are represented by different colors. 

 
Identification of prognostic ferroptosis-related 
DEGs in the TCGA cohort 

Most of the ferroptosis-related genes (49/60, 
81.7%) were differentially expressed between tumor 
tissues and adjacent nontumorous tissues, and 27 of 
them were correlated with OS in the univariate Cox 
regression analysis (Fig. 2a). Unreasonably, HMOX1 
was upregulated in tumor samples, but its expression 
predicted an excellent prognosis in the univariate Cox 
analysis, so it was excluded from further study. A 
total of 26 prognostic ferroptosis-related DEGs were 
preserved (all FDR <0.05, Fig.2b-c). The interaction 
network among these genes indicated that GPX4, 
G6PD and NQO1 were the hub genes (Fig.2d). The 
correlation between these genes is presented in Fig. 
2e.  

Construction of a prognostic model in the 
TCGA cohort 

LASSO Cox regression analysis was applied to 
establish a prognostic model using the expression 
profile of the 26 genes mentioned above. A 10-gene 
signature was identified based on the optimal value of 

λ (Fig. S1). Survival analyses, according to the optimal 
cut-off expression value of each gene, indicated that 
high expression of these genes all correlated with a 
poor prognosis (all adjusted P<0.05, Fig. S2). The risk 
score was calculated as follows: e (0.105 * expression level of 

SLC7A11 + 0.116 * expression level of G6PD + 0.106 * expression level of CISD1 + 

0.076 * expression level of CARS + 0.077 * expression level of SLC1A5 + 0.092 * 

expression level of ACACA + 0.005 * expression level of ACSL3 + 0.006 * expression 

level of NQO1 + 0.087 * expression level of NFS1 + 0.135 * expression level of 

GPX4). The patients were stratified into a high-risk 
group (n=182) or a low-risk group (n=183) according 
to the median cut-off value (Fig. 3a). The higher risk 
group was found to be significantly associated with 
higher tumor grade, higher AFP, a higher rate of 
vascular invasion and advanced TNM stage in the 
TCGA cohort (Table 2). PCA and t-SNE analysis 
indicated the patients in different risk groups were 
distributed in two directions (Fig. 3b-c). As shown in 
Fig. 3d, patients with high risk had a higher 
probability of death earlier than those with low risk. 
Consistently, the Kaplan-Meier curve indicated that 
patients in the high-risk group had a significantly 
worse OS than their low-risk counterparts (Fig. 3e, P< 
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0.001). The predictive performance of the risk score 
for OS was evaluated by time-dependent ROC curves, 
and the area under the curve (AUC) reached 0.800 at 1 
year, 0.690 at 2 years, and 0.668 at 3 years (Fig. 3f). 

Validation of the 10-gene signature in the 
ICGC cohort 

Survival analyses of ten genes in the signature 
confirmed that these genes correlated with poor OS in 
the ICGC cohort except for CARS (all adjusted P< 
0.05, Fig. S3). To test the robustness of the model 
constructed from the TCGA cohort, the patients from 
the ICGC cohort were also categorized into high- or 
low-risk groups by the median value calculated with 

the same formula as that from the TCGA cohort. The 
high risk group was also correlated with advanced 
TNM stage in the ICGC cohort (Table 2). Similar to the 
results obtained from the TCGA cohort, PCA and 
t-SNE analysis confirmed that patients in two 
subgroups were distributed in discrete directions (Fig. 
4b-c). Likewise, patients in the high-risk group were 
more likely to encounter death earlier (Fig. 4d) and 
had a reduced survival time compared with those in 
the low-risk group (Fig. 4e, P= 0.001). Besides, the 
AUC of the 10-gene signature was 0.680 at 1 year, 
0.690 at 2 years, and 0.718 at 3 years (Fig. 4f). 

 

 
Figure 3. Prognostic analysis of the 10-gene signature model in the TCGA cohort. a. The distribution and median value of the risk scores in the TCGA cohort. b. 
PCA plot of the TCGA cohort. c. t-SNE analysis of the TCGA cohort. d. The distributions of OS status, OS and risk score in the TCGA cohort. e. Kaplan-Meier curves for the 
OS of patients in the high-risk group and low-risk group in the TCGA cohort. f. AUC of time-dependent ROC curves verified the prognostic performance of the risk score in 
the TCGA cohort. 
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Figure 4. Validation of the 10-gene signature in the ICGC cohort. a. The distribution and median value of the risk scores in the ICGC cohort. b. PCA plot of the ICGC 
cohort. c. t-SNE analysis of the ICGC cohort. d. The distributions of OS status, OS and risk score. e. Kaplan-Meier curves for the OS of patients in the high-risk group and 
low-risk group. f. AUC of time-dependent ROC curves in the ICGC cohort. 

 

Table 2. Baseline characteristics of the patients in different risk groups 
Characteristics TCGA-LIHC cohort  ICGC-LIRP-JI cohort 

High risk Low risk P value  High risk Low risk P value 
Gender(%)   0.882    0.315 
Female 60 (33.0) 59 (32.2)   27 (23.5) 34 (29.3)  
Male 122 (67.0) 124 (67.8)   88 (76.5) 82 (70.7)  
Age (%)   0.789    0.975 
< 60y 81 (44.5) 84 (45.9)   22 (19.1) 22 (19.0)  
≥60y 101 (55.5) 99 (54.1)   93 (80.9) 94 (81.0)  
Tumor grade(%)  <0.001    - 
G1+G2 94 (51.6) 136 (74.3)   - -  
G3+G4 85 (46.7) 45 (24.6)   - -  
unknown 3 (1.6) 2 (1.1)   - -  
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Characteristics TCGA-LIHC cohort  ICGC-LIRP-JI cohort 
High risk Low risk P value  High risk Low risk P value 

AFP (%)   0.003     
≤200ng/ml 84 (46.2) 117 (63.9)   - -  
>200ng/ml 46 (25.3) 29 (15.8)   - -  
unknown 52 (28.6) 37 (20.2)   - -  
Vascular invasion(%)  0.004     
No 87 (47.8) 118 (64.5)   - -  
Yes 60 (33.0) 46 (25.1)   - -  
unknown 35 (19.2) 19 (10.4)   - -  
TNM stage(%)   0.003    0.001 
Ⅰ+Ⅱ 116 (63.7) 138 (75.4)   58 (50.4) 83 (71.6)  
Ⅲ+Ⅳ 57 (31.3) 30 (16.4)   57 (49.6) 33 (28.4)  
unknown 9 (4.9) 15 (8.2)   - -  

 
 

 
Figure 5. Results of the univariate and multivariate Cox regression analyses regarding OS in the TCGA derivation cohort (a) and the ICGC validation 
cohort (b). 

 
Independent prognostic value of the 10-gene 
signature 

Univariate and multivariate Cox regression 
analyses were carried out among the available 
variables to determine whether the risk score was an 
independent prognostic predictor for OS. In 
univariate Cox regression analyses, the risk score was 
significantly associated with OS in both the TCGA 

and the ICGC cohort (HR= 2.018, 95% CI = 
1.409-2.891, P< 0.001; HR= 2.913, 95% CI = 1.489-5.699, 
P= 0.006, respectively) (Fig. 5a, b). After correction for 
other confounding factors, the risk score still proved 
to be an independent predictor for OS in the 
multivariate Cox regression analysis (TCGA cohort: 
HR =1.953, 95% CI = 1.356-2.812, P<0.001; ICGC 
cohort: HR=2.695, 95% CI = 1.357-5.351, P = 0.005; Fig. 
5a, b). 
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Functional analyses in the TCGA and the 
ICGC cohort 

To elucidate the biological functions and 
pathways that were associated with the risk score, the 
DEGs between the high-risk and low-risk groups 
were used to perform GO enrichment and KEGG 
pathway analyses. As expected, DEGs were enriched 
in several iron-related molecular functions, such as 
ion channel activity and ion gated channel activity in 
both the TCGA and ICGC cohort (P. adjust < 0.05, Fig. 
6a, c). Interestingly, the DEGs from the TCGA cohort 
were also obviously enriched in many immune- 

related biological processes (P. adjust < 0.05, Fig. 6a). 
Six immune-related biological processes or molecular 
functions were validated by the ICGC cohort, 
including chemokine-mediated signaling pathway, 
positive regulation of cytokine secretion, regulation of 
granulocyte macrophage colony-stimulating factor 
production, granulocyte macrophage colony- 
stimulating factor production, cytokine activity, and 
cytokine receptor binding (P. adjust < 0.05, Fig. 6c). 
KEGG pathway analyses also indicated that the 
cytokine-cytokine receptor interaction pathway was 
enriched in both cohorts (P. adjust < 0.05, Fig. 6b, d). 

 

 
Figure 6.Representative results of GO (a, c) and KEGG analyses (b, d) . The most significant or shared GO enrichment and KEGG pathways in the TCGA cohort (a, 
b) and ICGC cohort (c, d) are displayed. The pink rectangles indicate the immune-related pathways that are overlapped between the two cohorts. 
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Figure 7. Comparison of the ssGSEA scores between different risk groups in the TCGA cohort (a, b) and ICGC cohort (c, d). The scores of 16 immune cells 
(a, c) and 13 immune-related functions (b, d) are displayed in boxplots. CCR, cytokine-cytokine receptor. Adjusted P values were showed as: ns, not significant; *, P< 0.05; **, 
P< 0.01; ***, P< 0.001. 

 
 To further explore the correlation between the 

risk score and immune status, we quantified the 
enrichment scores of diverse immune cell 
subpopulations, related functions or pathways with 
ssGSEA. Interestingly, contents of the antigen 
presentation process, including the score of aDCs, 
iDCs, APC co-stimulation, HLA and MHC class I, 
were significantly different between the low risk and 
high risk group in the TCGA cohort (all adjusted P< 
0.05, Fig. 7a-b). The cytokine-cytokine receptor 
interaction that was enriched in the KEGG analyses 

had a higher score in the high risk group of the TCGA 
cohort (adjusted P< 0.05, Fig. 7b). Moreover, the score 
of type II IFN response, type I IFN response, and NK 
cells were lower in the high risk group, while the 
activity of checkpoint molecules, the scores of 
macrophages or Treg cells were just the opposite 
(adjusted P< 0.05, Fig. 7a-b). Comparisons in the 
ICGC cohort confirmed the differences of HLA, MHC 
class I, type II IFN response, checkpoint molecules, 
macrophages and Treg cells between two risk groups 
(adjusted P< 0.05, Fig. 7c-d). In particular, the scores 
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of macrophages were the most statistically different 
between the two risk groups in both the TCGA and 
the ICGC cohort, which was consistent with the 
findings in the GO analysis. 

Discussion 
In the current study, we systematically 

investigated the expression of 60 ferroptosis-related 
genes in HCC tumor tissues and their associations 
with OS. A novel prognostic model integrating 10 
ferroptosis-related genes was firstly constructed and 
validated in an external cohort. Functional analyses 
revealed that immune-related pathways were 
enriched. 

Although a few previous studies [13-15] have 
indicated that several genes might regulate 
drug-induced ferroptosis in HCC, their correlation 
with HCC patients' OS remains largely unknown. To 
our surprise, most of the ferroptosis-related genes 
(81.7%) were differentially expressed between tumor 
and adjacent nontumorous tissues, and more than half 
of them were correlated with OS in the univariate Cox 
regression analysis. These results significantly 
indicated the potential role of ferroptosis in HCC and 
the possibility of building a prognostic model with 
these ferroptosis-related genes. 

 The prognostic model proposed in the present 
study was composed of 10 ferroptosis-related genes 
(ACACA, ACSL3, CISD1, CARS, G6PD, GPX4, 
NQO1, NFS1, SLC7A11, SLC1A5). These genes could 
be roughly classified into four categories, including 
iron metabolism (NFS1, CISD1), lipid metabolism 
(ACACA, ACSL3, GPX4), (anti)oxidant metabolism 
(CARS, NQO1, SLC7A11) and energy metabolism 
(G6PD, SLC1A5) [9]. NFS1, an enzyme involved in 
synthesizing iron-sulfur clusters using sulfur from 
cysteine, protects cells from ferroptosis in lung cancer 
[23]. The genetic inhibition of CISD1 results in iron 
accumulation and subsequent oxidative injury in the 
mitochondria and thus contributes to erastin-induced 
ferroptosis in HCC cells [11]. In terms of lipid 
metabolism, ACACA impacts the rate-limiting step in 
fatty acid synthesis and is a key regulator of tumor 
cell survival. Knockout of ACACA suppresses 
pharmacological agent-induced ferroptosis [24]. 
ACSL3, which converts exogenous monounsaturated 
fatty acids (MUFAs) into fatty acyl-CoAs, is required 
for MUFA activation and promotes a 
ferroptosis-resistant cell status [25]. GPX4 has been 
considered to be the primary enzyme that prevents 
ferroptosis for a long time due to its role in converting 
lipid hydroperoxides into nontoxic lipid alcohols [26]. 
For (anti)oxidant metabolism, knockdown of CARS 
inhibits erastin-induced ferroptosis by preventing the 
induction of lipid reactive oxygen in fibrosarcoma 

cells [27]. In contrast, knockdown of NQO1 enhances 
erastin and sorafenib-induced ferroptosis in HCC 
cells [14]. Similarly, knockdown of SLC7A11, a 
subunit of system Xc to import cystine in the cell, 
sensitized fibrosarcoma cells to erastin-induced death 
[7]. G6PD and SLC1A5 are two ferroptosis regulators 
involved in energy metabolism. G6PD, which is 
involved in the pentose phosphate pathway, has been 
reported to prevent erastin-induced ferroptosis when 
it was knocked down in non-small cell lung cancer 
cells [7]. Inhibition or knockdown of SLC1A5 also 
suppresses ferroptosis [28]. In summary, six of the 
genes (NFS1, CISD1, ACSL3, NQO1, SLC7A11, GPX4) 
in the prognostic model have been reported to protect 
cells from ferroptosis, while the remaining four genes 
(ACACA, CARS, G6PD, SLC1A5) are the opposite. 
However, these genes were all upregulated in HCC 
tumor tissue and were associated with poor prognosis 
in the current study. Whether these genes play a role 
in HCC patients' prognosis by influencing the process 
of ferroptosis remains to be elucidated, since few 
related studies on these genes except for CISD1 and 
NQO1 have been reported.  

Although the mechanisms underlying tumor 
susceptibility to ferroptosis have been an intense area 
of research in the past few years, the potential 
modulation between tumor immunity and ferroptosis 
remains elusive. Based on the DEGs between different 
risk groups, we performed GO analyses and 
unexpectedly discovered that many immune-related 
biological processes and pathways were enriched. It is 
reasonable to assume that ferroptosis may have a 
close connection with tumor immunity. Interestingly, 
the contents of the antigen presentation process were 
significantly different between the low risk and high 
risk group in this study. One possible speculation is 
that ferroptotic cells release distinct signals, such as 
lipid mediators, to attract antigen-presenting cells 
(APCs) to the site of ferroptotically dying cells [29]. 
Besides, the high risk groups in both the TCGA and 
the ICGC cohort have higher fractions of 
macrophages and Treg cells. Previous studies have 
demonstrated that increased tumor-associated 
macrophages [30, 31]or Treg cells [31, 32]are related to 
poor prognosis in HCC patients due to their role in 
immune invasion. Moreover, higher risk scores 
correlated with impaired antitumor immunity, 
including the activity of the type II IFN response and 
type I IFN response as well as the fractions of NK 
cells. Therefore, attenuated antitumor immunity in 
patients with high risk may be an explanation for their 
poor prognosis. 

There are several limitations of this study. First, 
our prognostic model was both constructed and 
validated with retrospective data from public 
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databases. More prospective real-world data are 
warranted to verify its clinical utility. Second, the 
intrinsic weakness of merely considering a single 
hallmark to build a prognostic model was inevitable, 
as many prominent prognostic genes in HCC might 
have been excluded. In addition, it should be 
emphasized that the links between the risk score and 
immune activity have not yet been experimentally 
addressed. 

In summary, our study defined a novel 
prognostic model of 10 ferroptosis-related genes. This 
model proved to be independently associated with OS 
in both the derivation and validation cohorts, 
providing insight into the prediction of HCC 
prognosis. The underlying mechanisms between 
ferroptosis-related genes and tumor immunity in 
HCC remain poorly understood and warrant further 
investigation. 
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