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Abstract 

Background: Cancer stem cells (CSCs) are biologically characterized by self-renewal, multi-directional 
differentiation and infinite proliferation, inducing anti-tumor drug resistance and metastasis. In the 
present study, we attempted to depict the baseline landscape of CSC-mediated biological properties, 
knowing that it is vital for tumor evolution, anti-tumor drug selection and drug resistance against fatal 
malignancy. 
Methods: We performed single-cell RNA sequencing (scRNA-seq) analysis in 15208 cells from a pair of 
primary and metastatic sites of collecting duct renal cell carcinoma (CDRCC). Cell subpopulations were 
identified and characterized by t-SNE, RNA velocity, monocle and other computational methods. 
Statistical analysis of all single-cell sequencing data was performed in R and Python. 
Results: A CSC population of 1068 cells was identified and characterized, showing excellent 
differentiation and self-renewal properties. These CSCs positioned as a center of the differentiation 
process and transformed into CDRCC primary and metastatic cells in spatial and temporal order, and 
played a pivotal role in promoting the bone destruction process with a positive feedback loop in the bone 
metastasis microenvironment. In addition, CSC-specific marker genes BIRC5, PTTG1, CENPF and 
CDKN3 were observed to be correlated with poor prognosis of CDRCC. Finally, we pinpointed that 
PARP, PIGF, HDAC2, and FGFR inhibitors for effectively targeting CSCs may be the potential therapeutic 
strategies for CDRCC.  
Conclusion: The results of the present study may shed new light on the identification of CSCs, and help 
further understand the mechanism underlying drug resistance, differentiation and metastasis in human 
CDRCC. 

Key words: Collecting duct renal cell carcinoma; Single-cell RNA sequencing; Cancer stem cell; Cellular 
heterogeneity; Therapeutic strategy 

Introduction 
Fatal malignancy is the most daunting challenge 

for clinicians due to lack of profound understanding 
and effective treatment of the disease [1, 2]. Rapid 
progression of this malignant disease is the leading 
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cause of devastating consequences including 
metastasis, recurrence and drug resistance. In the 
heterogeneous composition of tumor tissues, cancer 
stem cells (CSCs) are rare tumor cells with unique 
properties, playing a crucial role in functional assays 
of self-renewal, differentiation and tumor initiation 
[3-5]. Therefore, questing on the separation, 
identification and properties of CSCs could provide 
very important information clues for anti-tumor drug 
selection and drug resistance [5, 6]. 

Collecting duct renal cell carcinoma (CDRCC) 
originating from the epithelium of the distal collecting 
duct is a subtype of renal cell carcinoma (RCC), 
accounting for about 2% of all RCCs [7, 8]. Clinically, 
CDRCC is characterized as a highly aggressive 
disease with approximately 80% patients developing 
metastasis to the lymph nodes (LN), bone, lung and 
liver [7, 9]. According to the Surveillance, 
Epidemiology and End Results (SEER) database 
analysis from 98 CDRCC patients, the 3-year 
CDRCC-related survival rate for localized, regional 
and distant disease was 93%, 45%, and 6% 
respectively, as a result of an extremely poor 
prognosis for metastatic CDRCC patients with 
median overall survival (OS) at less than 12 months 
[10]. Except for exceptional cases, the response of 
most CDRCC patients to molecular targeted therapy, 
immunotherapy, chemotherapy or even their 
combination is usually poor [11, 12].  

Cellular heterogeneity across primary and 
metastatic RCC dramatically affects the sensitivity of 
anti-tumor therapy owing to incomplete response to 
all tumor cell subpopulations [13, 14]. To reveal the 
intercellular heterogeneity leading to CDRCC 
progression in an unbiased manner, we used 
scRNA-seq to explore the relationship between the 
complex tumor cellular ecosystem and clinical 
biological evolution using detailed computational 
analysis. 

Results 
Identification of human CDRCC cell 
populations 

In order to understand intercellular 
heterogeneity of human CDRCC, we collected tumor 
tissues simultaneously from the same patient who 
underwent cytoreductive nephrectomy and spinal 
biopsy (Supplementary Fig. S1), and performed 
tumor tissue digestion into single cells, quality 
filtering and sequencing (Fig. 1A). Finally, we 
acquired 15,208 malignant, immune and stromal cells 
isolated from CDRCC primary and metastatic tumor 
tissues, including 4984 primary tumor cells, 3568 LN 
metastatic tumor cells, and 6656 bone metastatic 

tumor cells.  
We next used nonlinear dimensionality 

reduction (t-distributed stochastic neighbour 
embedding, t-SNE) [15] and graph_based Louvain 
clustering algorithm [16] to investigate cell 
distribution and heterogeneity of CDRCC in 
accordance with tumor tissue origins (Supplementary 
Fig. S2A). All the tumor cells were annotated as 16 
clusters through unsupervised clustering with 4052 
signature genes (Supplementary Table 1). Cell clusters 
were annotated as four cancer clusters (cancer 1 
mainly derived from primary tumor, cancer 2 and 3 
mainly derived from LN metastasis and cancer 4 
mainly derived from bone metastasis), one cancer 
stem cell cluster (CSC), two epithelial cell clusters 
(Kidney epithelial cells and Lymphatic epithelial 
cells), five immune cell clusters (B cells, T cells, 
Kidney-natural killer T cells (k-NKT), Monocyte and 
Macrophage), one vascular endothelial cell(VEC) 
cluster, one osteoclast (OC) cluster, one vascular 
smooth muscle cell (VSMC) cluster, and one 
progenitor red blood cell (pRBC) cluster (Fig. 1B and 
Supplementary Fig. S2B,C). Among the four cancer 
clusters, cancer 1 mainly derived from the primary 
tumor, cancer 2 and 3 mainly derived from LN 
metastasis and cancer 4 mainly derived from bone 
metastasis (Fig. 1C). Significant differences in 
transcriptional activity and signature gene expression 
were revealed between the different clusters (Fig. 
1C,D). 

Differentiation of intercellular heterogeneity 
in malignant and nonmalignant subpopulations 

To investigate genetic heterogeneity between 
malignant and nonmalignant cells, we chose four 
cancer clusters (cancer 1-4) and CSC cluster as 
malignant cell subpopulations and four normal cell 
clusters (three epithelial cell clusters and a VSMC 
cluster) as the control to infer the large-scale copy 
number variations (inferCNVs). The inferCNVs in 
malignant cells showed extensive chromosomal losses 
in 1p, 3p, 4q, 9 and 11. In addition, extensive 
chromosomal gains were observed in 1q, 12 and 20 
(Supplementary Fig. S3A,B; the gene list of inferring 
contingent negative variation (interCNV) is shown in 
Supplementary Plot 1), which is highly consistent 
with the previous reports [17]. Interestingly, 
significant CNV loss on chromosome 6 was observed 
in Cancer 2 and 3 (LN metastasis cells), and significant 
CNV gain was observed on chromosome 17 in Cancer 
1 (primary cells). Several studies have demonstrated 
that chromosomal losses in 9p and gains in 20p are 
closely associated with poor survival of RCC patients 
[18, 19]. 
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Figure 1. Brief description of 15208 single cells from primary tumor and metastatic lesions of CDRCC. A, Overview of the sample source: Three samples of the 
primary tumor, LN metastasis, and bone metastasis of CDRCC were collected from the same patient simultaneously, followed by single-cell RNA sequencing protocol. B, The 
t-SNE plot shows that 15208 cells were divided into 16 cell clusters, including four cancer clusters, one cancer stem cell cluster (CSC), two epithelial cell clusters (Kidney 
epithelial cells and Lymphatic epithelial cells), five immune cell clusters (B cells, T cells, kidney-natural killer T cells (k-NKT), monocyte and macrophage), one Vascular endothelial 
cells (VEC), one osteoclast (OC) cluster, one vascular smooth muscle cell (VSMC) cluster, and one progenitor red blood cell (pRBC) cluster. We labeled them in different colors 
and one dot represents one single cell. C, Three graphs (from top to bottom) show the fraction of cells (blue bar: primary tumor, red bar: bone metastasis, yellow bar: LN 
metastasis) , the cell number, and the number of transcripts in 16 cell clusters. D, Cluster heat map display: the cells are subdivided into 16 clusters (represented by colored bars 
at the top) and defined by the marker genes. The classification of clusters is displayed on the y-axis (left) and the corresponding marker genes are displayed on the y-axis (right). 
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Identification and characterization of CSC 
population 

To further reveal the relationship between cancer 
cells and CSCs, we subdivided malignant cells into 
subclusters and identified each subcluster by 
cell-specific marker genes (Fig. 2A, Supplementary 
Fig. S4A-C). The well-known clear cell renal cell 
carcinoma (CCRCC) CSC markers (ALDH1A1, CD44, 
CXCR4, DCLK1, CD105, ITGB1, NT5E, PIK3R1, 
PROM1 and THY1)[20-27] were displayed in the 
featurePlot to verify the expression in the identified 
CDRCCCSC cluster (Supplementary Fig S5A, B). It 
was found that ALDH1A1, DCLK1, ITGB1 and 
PIK3R1 were also expressed in the identified CDRCC 
CSC cluster. However, these CCRCC CSC marker 
genes were not specifically expressed genes. We 
attributed the differences to the different origination 
from kidney epithelial cells between CCRCC and 
CDRCC. 

To investigate the potential evolution among 
CDRCC cell populations, we used the Monocle 
method to reveal a pseudotemporal ordering for the 
similarity of tumor subclusters with developmental 
lineages. We applied the improved pseudotime 
trajectory axis with a tree-like structure, and found 
that CSCs positioned as a center of the differentiation 
process sequentially transformed into cancer 1-4 
clusters. Therefore, we acquired three trajectory axes 
in an unbiased manner, including CSC to Cancer 1/3, 
Cancer 2 and Cancer 4, and specific representative 
genes that marked the differentiation process (Fig. 
2B,C and Supplementary Fig. S6A,B). In addition, we 
used t-SNE with RNA velocity analysis as a visual 
and intuitive way to observe the extent and direction 
of tumor cell differentiation through the direction of 
the arrows in the figure (Fig. 2D and Supplementary 
Fig. S6C). Cells in the CSC cluster showed the highest 
degree of malignancy and were regarded as a starting 
point to each direction of differentiation. These results 
suggest that CSCs have the capacity of 
multi-directional differentiation to maintain the 
vitality of each malignant cell cluster. 

To further define the distinguishing functions of 
these malignant subpopulations, we used Gene Set 
Variation Analysis (GSVA) and Gene Set enrichment 
analysis (GSEA) to compare signaling pathway 
activities and found significant phenotypic diversity 
between these malignant subpopulations. It was 
found that the CSC cluster showed a highly enriched 
signature in G1/S specific transcription, Ranms 
signaling pathway, E2F enabled inhibition of pre 
replication complex formation, DNA fragment 
pathway, cell cycle, DNA replication and 
spliceosome, which are closely associated with cell 

proliferation, DNA replication, DNA stability and 
transcriptional regulation, suggesting that CSCs 
possess a strong ability of active self-renewal (Fig. 
2E,F, Supplementary Fig. S7 and Supplementary 
Table 2-4). It is worth mentioning that the PD-1 
signaling pathway was also enriched in CSC cluster, 
indicating that immunological checkpoint inhibitor 
(anti-PD-1/PD-L1) may represent a potential 
therapeutic strategy for CDRCC (Fig. 2E,F).  

Compared with the cancer clusters, the CSC 
cluster was highly differentially expressed with genes 
HMGB1, H2AFZ, KIAA0101 at p-value <1e-10, which 
was verified by CSC-related specific genes in previous 
studies (Fig. 2G, Supplementary Fig. S8 and 
Supplementary Table 5). In addition, single-cell 
regulatory network inference and clustering 
(SCENIC) was applied to further assess potential 
expression differences in transcription factors 
between the CSC and cancer clusters [28]. Compared 
with the cancer clusters, HMGB3, EZH2 and 
ZNF76were identified as candidate transcription 
factors whose expressions were specifically regulated 
in the CSC cluster (Fig. 2H,I). It is noteworthy that 
EZH2 was found to be a histone methyltransferase 
that regulated self-renewal of CSCs to promote the 
metastasis of cancer cells by epigenetic silencing of 
target genes [29, 30]. 

Subsequently, we analyzed the key molecules for 
current targeted therapies to assess potential 
therapeutic responses for human CDRCC. Sunitinib, 
Pazopanib and Sorafenib are multi-target receptor 
tyrosine kinase inhibitors widely used for RCC. We 
found that target molecules of these inhibitors, 
including VEGFR1, VEGFR2, VEGFR3, VEGFA and 
PDGFRB, were markedly expressed only in cancer 1 
and 2 clusters (primary tumor and LN metastasis), 
while their expressions in cancer 4 (bone metastasis) 
and CSC clusters were relatively low (Supplementary 
Fig. S9A). These results imply that CDRCC bone 
metastatic cells may be associated with intrinsic 
resistance to multi-target receptor tyrosine kinase 
inhibitors, which may explain why this patient with 
bone metastasis was insensitive to pazopanib after 
cytoreductive nephrectomy. PARP1, PIGF, HDAC2, 
and FGFR3 were highly expressed in malignant cell 
clusters, especially in the CSC cluster, which was 
further verified by the immunofluorescence double 
labeling method (Supplementary Fig. S9A,B). 
Therefore, inhibitors currently available for these 
genes, including PAPR inhibitor (Niraparib), PIGF 
inhibitor (ziv-aflibercept), HDAC2 inhibitor 
(Belinostat, Romidepsin, Vorinostatt) and FGFR 
inhibitor (Derazantinib, AZD4547, BGJ398, Dovitinib), 
may be the potential therapeutic strategies for 
CDRCC. As previously reported, targeting CSCs 
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could effectively inhibit the source of differentiated 
progeny of malignancies and improve the sensitivity 

of anti-tumor treatment [31]. 

 

 
Figure 2. Identification and characterization of malignant cell populations. A, The t-SNE plot shows several clusters of malignant cell populations including CSC and 
Caner1-4, and the five types of cluster are respectively divided into several subclusters (CSC: CSC-1, CSC-2; Cancer1: C1-1, C1-2, C1-3; Cancer2: C2-1, C2-2, C2-3; Cancer3: 
C3-1, C3-2; Cancer4: C4-1, C4-2, C4-3). B, A pseudotemporal ordering for the similarity of cancer subpopulations with developmental lineages using an improved pseudotime 
trajectory axis with a branched structure. The arrows represent the differentiation directions and dots in the different circles with dotted line represent the cancer subclusters. 
C, The dynamic expression of the key regulator genes (RGS5, S100A8, TXNIP, ANXA4, ATP1B1, ATF3) according to (B) in tumor differentiation among five cell clusters 
(Cancer1-4,CSC). D, RNA Velocity analysis illustrates the extent and direction of malignant cell differentiation in the t-SNE plot between the CSC and cancer1-4 clusters. The 
direction of arrow represents the future state of the cells. E, The heat map demonstrates the enrichment of top 32 pathway activities in malignant clusters (CSC, Cancer1-4) via 
GSVA (P<0.01, see methods). F,t-SNE plot showscell enrichment in G1/S-specific transcription and pd-1 pathway. G,The volcano plot explains the differentially expressed genes 
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between the CSC and cancer cluster, where red dots represent the genes expressed strongly in the CSC cluster, and blue dots represent the genes expressed strongly in the 
cancer cluster(P<0.001). H, The heat map exhibits the average regulon activities of transcription factors between CSC cluster and cancer clusters(top 10 regulons in each cluster 
were selected ). The number in the parenthesis shows the downstream genes regulated by the corresponding transcription factors. I, The t-SNE plot(top) shows the top three 
highly expressed transcription factors in CSC, and the t-SNE plot(down) shows the corresponding downstream target genes. 

 

Identification of the potential evolution 
process in the bone metastasis 
microenvironment 

It is common knowledge that distant metastasis 
occurs at terminal stage during the clinical biological 
evolution of various cancers, and is intimately related 
to the survival of most cancer patients [32, 33]. To 
clarify the cell composition in the bone metastatic 
tissues, we validated these cells with the 
monocyte-related markers CD16 and RANK, the 
macrophage-related marker CD11b, and the 
osteoclast-related markers NFATC1, TRAP and CTSK 
as the monocyte cluster, macrophage cluster, and 
osteoclast cluster respectively by using t-SNE analysis 
(Fig. 3A, B). The evolution-based trajectory was 
supported by improved pseudotemporal analysis and 
RNA velocity analysis, showing that the neighboring 
clusters along developmental trajectory presented a 
monocyte-macrophage-osteoclast axis, which is fully 
consistent with the previous report [34] (Fig. 3C, D).  

Bone metastasis is a key prognostic factor 
affecting survival in RCC patients [35]. To 
characterize the microenvironment of bone metastasis 
in CDRCC, we applied CellPhoneDB to reveal the 
cell-cell communication between malignant and bone 
related cells with ligand-receptor complex (Fig. 3E-H). 
We found that cells of cancer 4 cluster had high-level 
expression of FZD1 which interacted with the 
receptor WNT5A of monocytes (Fig. 3I, J), and the 
ligand–receptor complex of FZD1/WNT5A played a 
key role in cancer cells by promoting the proliferation 
and differentiation of monocytes into osteoclasts [36] 
(Fig. 3I, J). TGFB2 and EFNA3 were highly expressed 
in malignant cells, and their receptors (TGFBR3 and 
EPHA4) were specifically expressed in bone 
mesenchymal stem cells (BMSCs) (Fig. 3I, J). The 
ligand–receptor complexes of TGFB2/TGFBR3 [37] 
and EFNA3/EPHA4 [38] inhibited the proliferation of 
BMSCs, thus reducing the inhibitory effect of BMSCs 
on osteoclasts and monocytes. FGF2, which was 
highly expressed in both cancer 4 cells and CSCs, 
interacted with the receptor FGFR1 in osteoclasts. 
Meanwhile, FGF7 secreted from osteoclasts affected 
the receptor FGFR3 in cancer 4 cells. FGF2/FGFR1 
[39] and FGF7/FGFR3 [40] ligand–receptor complexes 
formed a positive feedback loop (malignant cycle) 
between bone metastatic malignant cells and the 
monocyte-osteoclast system. These findings reveal the 
mechanism of bone destruction promoted by tumor 

cells in the bone microenvironment. Therefore, our 
results may provide a novel treatment strategy for 
advanced metastatic CDRCC with application of 
FGF/FGFR inhibitors, such as Derazantinib, 
AZD4547, BGJ398 and Dovitinib [41-44].  

Excellent clinical prognostic abilities of 
malignant subpopulations associated genes 
identified by scRNA-seq analysis for human 
CDRCC 

Our study showed that malignant 
subpopulations were relatively independent and 
connected to each other, especially for the CSC 
cluster, which played a key role in the differentiation 
of tumor cells and impacted the microenvironment of 
bone metastasis in human CDRCC. Therefore, we 
assumed that CSC-associated genes might be able to 
provide important prognostic information. To test 
this, we assessed the prognostic value of scRNA-seq 
derived gene signature from 17 tissue samples, which 
were identified as CDRCC by three experienced 
pathologists independently (Supplementary Table 6). 
It was found that CSCs specifically expressed BIRC5, 
PTTG1, CENPF and CDKN3 genes and presented a 
scattering distribution in the bulk tumor tissues, 
which further verified the relatively rare 
characteristics of CSCs (Fig. 4A). In addition, high 
expression of BIRC5, PTTG1, CENPF and CDKN3 
was significantly associated with poor prognosis, as 
represented by the fact that most patients died within 
12 months (P<0.01) (Fig. 4C). As expected, cancer 
cluster-related genes ATF3, PDZK1, VTN and CXCL8 
were highly expressed in CDRCC tissues, and 
patients with high expression of these genes had 
significantly poor prognosis (P<0.01) (Fig. 4B, C). 
These data suggest that the malignant 
subpopulation-associated genes that we identified by 
scRNA-seq in the present study possessed a superior 
clinical prognostic value.  

Discussion 
Intercellular heterogeneity of tumors in different 

lesions of the same patient includes intertumoral 
heterogeneity (different lesions, such as primary and 
metastatic sites) and intratumoral heterogeneity 
(difference within the same lesion), which are 
composed of a variety of different tumor cell 
subpopulations.  
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Figure 3. Cell potential evolution and cell-cell communication in the bone metastasis microenvironment. A, t-SNE plot shows the monocyte, macrophage and 
osteoclast clusters which labeled with relevant colors and the transcripts(UMI) detected in all cells in the bone metastasis. B, t-SNE plot shows the Monocyte-associated marker 
genes (CD16, and RANK), macrophage-associated marker gene(CD11b), and osteoclast-associated marker genes (NFATC1, TRAP, CTSK and RANKL) respectively. C, RNA 
velocity analysis demonstrates the differentiation direction of the neighboring clusters among the bone metastasis related cell clusters. The arrows represent the direction of the 
differentiation inferred by the average velocity. D, Analysis of the improved pseudotime trajectory axis shows that adjacent clusters along the developmental trajectory exhibit 
a monocyte-macrophage-osteoclast axis. E, The network diagram (drawn by cytoscape version 3.7.1) shows the communication between the 11 cell clusters, each circle 
representing one cell cluster. The thickness of the line represents the strength of the interaction between the two cell clusters and the size of circle represents the strength of 
the interaction between the corresponding cell cluster and the other cell clusters. The lines across itself represent the autocrine and the thicker lines and bigger circles indicate 
the stronger interactions. The sc-RNA seq data were analyzed by CellPhoneDB(see methods). F,G, Communication between Cancer4 cluster and other cell types(F) and 
communication between CSC cluster and other cell types(G). H, t-SNE plot shows the 11 cell clusters from the bone metastasis sample. I, The circular diagram shows the cluster 
of malignant cells (including CSC cluster and Cancer4) interacting with the bone related cells (including monocyte, BMSC and OC) and their communication with each other in 
the bone metastasis microenvironment. The solid lines with arrow represent the promotion and the dotted lines with arrow represent the inhibition. J, The violin plot reveals 
the expression of important ligand-receptor-pairs of the circular diagram (i) among the bone metastasis cell clusters. 
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Figure 4. Immunohistochemistry and survival analysis of CDRCC. A, t-NSE plot shows the expression distribution of BIRC5, PTTG1, CENPF and CDKN3 in 15208 
cells and the corresponding immunohistochemical images using the 10× and 40× objective. B, IHC images show the expression of Cancer cluster-associated genes ATF3, PDZK1, 
VTN, and CXCL8 in CDRCC tissues. C, Kaplan-Meier survival curves for CDRCC patients show the relationship between gene expression level in (A) and (B) and survival 
prognosis (n=17 ,p<0.01). 
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Different tumor cell subpopulations present 
different biological phenotypes, such as immune 
response, malignant proliferation, invasion and 
metastasis, which ultimately lead to differences in 
sensitivity to antitumor agents, radiotherapy and 
chemotherapy [45]. As a new technology, 
scRNA-seqmakes it possible to uncover genetic and 
transcriptional features of thousands of single tumor 
cells to identify the cellular components, endogenous 
heterogeneity and biological evolution of tumors, 
which provides a reliable manner to predict tumor 
response to anticancer agents for refractory cancers 
[46]. How to eliminate inter-individual heterogeneity 
is especially critical during demystifying biological 
properties of CSC population in scRNA-seq study. 
However, most of these studies lacked homologous 
specimens, because of difficulties in obtaining a pair 
of primary and metastatic samples from the same 
patient during the same period. Our study provides 
the accuracy of bioinformatics analysis by effectively 
evading the inter-individual heterogeneity. 

We used scRNA-seq and immunohistochemical 
analysis to identify the CSC population of CDRCC 
and characterize the properties of CSC subpopulation. 
Compared with other cell subpopulations, CSCs were 
relatively smaller in quantity, but possess an active 
self-renewal capacity through upregulation of cell 
mitosis-related signaling pathways, suggesting that 
these cells have a high proliferating ability. 
Meanwhile, SCENIC analysis showed that EZH2 was 
an important candidate transcription factor that was 
highly expressed in CSC subpopulation to specifically 
regulate CSC-related gene expression and promoting 
self-renewal of CSCs, finally leading to cancer cell 
metastasis [29, 30]. In addition, through a visual and 
intuitive way including Monocle and t-SNE + RNA 
velocity analysis, we showed three unsupervised 
differentiation trajectories of CSCs to primary tumor 
cells (CSC to Cancer 1/3), LN metastasis tumor cells 
(CSC to Cancer 2) and bone metastasis tumor cells 
(CSC to Cancer 4), suggesting a superior ability of 
multi-directional differentiation. The tumor 
metastasis ability is an inherent characteristic of the 
CSC subpopulation, known as metastatic CSCs 
(mCSCs) [47]. mCSCs as cell origin can not only 
differentiate into metastatic tumor cells, but regulate 
the local microenvironment to promote 
metastasis[47]. Our study showed that the proportion 
of mCSCs accounts for most of all CSCs, especially for 
bone mCSCs. Bone mCSCs of CDRCC had the active 
features of self-renewal and differentiate into cancer 
cells. In addition, bone mCSCs of CDRCC promoted 
the progress of bone metastasis by regulating the bone 
microenvironment. These findings reveal that CSCs of 
CDRCC have a superior metastatic activity. 

Bone metastasis is a common complication of 
advanced RCC, and an important signal for poor 
prognosis and even death in patients with malignant 
tumors [48]. Like the “seed and soil” hypothesis, 
interplay between specific cancer cells and the 
suitable bone microenvironment promotes the 
unbridled growth of cancer cells. Osteolytic 
destruction is the main characterization of RCC bone 
metastasis, a process that is caused by osteoclast 
stimulation rather than by the direct effect of cancer 
cells on bones [48, 49]. Therefore, the active state of 
osteoclasts affects the fate of RCC bone metastasis. 
According to the cell-cell communication between 
malignant cells and bone related cells with 
ligand-receptor complex, we found that CDRCC 
cells+CSCs increased the osteoclast activity through 
multiple pathways (Fig. 3i): (1) the ligand–receptor 
complex of FZD1/WNT5A between cancer cells and 
monocytes promoted the proliferation and 
differentiation of monocytes into osteoclasts; (2) the 
ligand–receptor complexes of TGFB2/TGFBR3 and 
EFNA3/EPHA4 between cancer cells+CSCs and 
BMSCs inhibited the proliferation of BMSCs to reduce 
the inhibitory effect of BMSCs on osteoclasts and 
monocytes; (3) the ligand–receptor complexes of 
FGF2/FGFR1 and FGF7/FGFR3 formed a positive 
feedback loop (malignant cycle) between cancer 
cells+CSCs and osteoclasts. These findings provide a 
key compelling strategy for the treatment of CDRCC 
through inhibiting the interaction of cancer cells and 
the bone microenvironment. 

Surgery is a curative treatment option for early 
localized CDRCC [17]. However, most CDRCC 
patients had presented distant metastasis at an initial 
visit [7]. Patients with metastatic CDRCC show 
limited response to chemotherapy, radiotherapy and 
other conventional treatments. In the era of targeted 
therapy, some studies [12, 51] have demonstrated that 
targeted therapeutic agents (sunitinib or sorafenib) 
confer survival benefits in exceptional CDRCC 
patients. VEGFR-targeted therapy for CDRCC 
patients is inferior compared with that in patients 
with other non–clear cell RCC [51]. According to the 
molecular features of CDRCC in our study, PARP, 
PIGF, HDAC and FGFR inhibitors for effectively 
targeting CSCs may be the potential therapeutic 
strategies for human CDRCC. Among them, FGFR 
inhibitors in particular can block the cell-cell 
communication between cancer cells+CSCs and 
osteoclasts in the bone microenvironment, suggesting 
that FGFR inhibitors may inhibit the progress of 
CDRCC bone metastasis. These findings provide 
valuable clues for targeting CSCs to block the source 
of differentiated progeny of CDRCC tumor cells, 
which can overcome such highly fatal diseases from 
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the root cause. 
Although our research is based on the in-depth 

characterization of CDRCC molecular features by 
scRNA-seq analysis, it still has some limitations due 
to the single patient with a pair of primary and 
metastatic samples. In addition, it cannot eliminate 
the bias of analysis results from a single database. As 
CDRCC is a rare and fatal subtype of RCC, there is a 
low-probability to collect more fresh CDRCC tissues 
to carry out scRNA-seq analysis. To minimize this 
limitation, we collected 17 CDRCC tissue samples 
from previous surgeries to assess the prognostic value 
of novel genes identified by scRNA-seq analysis. In 
addition, it is for the first time that we explored the 
complex tumor cellular ecosystem and biological 
evolution of CDRCC using an unbiased scRNA-seq 
analysis, which may provide a basis for 
understanding the biological behavior of CDRCC, 
though more cases and pathological studies are 
needed to confirm our findings in the future. 

In summary, our study has identified a novel 
CSC subpopulation, which may signify important 
progress in understanding the spatial and temporal 
order in clinical biological evolution of human 
CDRCC. This groundbreaking discovery may provide 
a new treatment strategy through targeting CSC 
related genes and enrich our understanding about the 
interaction between the bone microenvironment and 
cancer cells. Our study also highlights that 
malignant-specific genes identified by scRNA-seq are 
closely related to clinical prognosis of CDRCC. This 
visual presenting method for multi-dimensional 
characterization of human CDRCC could also be 
applied to other fatal cancers. 

Methods 
Preparation of single-cell suspensions 

A female patient diagnosed with distant 
metastatic RCC (thoraco spin, lumbar spine and 
retroperitoneal lymph nodes) by CT, MRI and PET-CT 
scanning was enrolled in this study for single-cell 
RNA-seq analysis. Cytoreductive nephrectomy and 
spinal biopsy were carried out to collect fresh tissue 
specimens (primary tumor, LN metastasis and lumbar 
spine metastasis), which were pathologically 
confirmed as CDRCC. In addition, we collected 17 
CDRCC tissue samples which were previously 
obtained by surgical resection or tissue biopsy of renal 
lesions from February 2009 to February 2018. The 
histology of all patients were diagnosed with CDRCC 
by IHC analysis (AE1/AE3, Ki 67, CK19, CK 7, PAX 8, 
P504S, Ini, 34βE12, Vimentin, CK7, CD10, P63, 
GATA3 and EBER) of three experienced pathologists. 
The clinical features of these patients were 

summarized in Supplementary Table 6. This study 
was approved by the ethics committee of Gongli 
Hospital (Shanghai, China; No.2018-012). All patients 
in this study provided their informed consent. 

Three samples removed from the patient in the 
operating room were separately rinsed with normal 
saline to eliminate the influence of RBC and preserved 
in 4℃ liquid medium, then transported immediately 
to the laboratory. Upon arrival, the samples were 
rinsed with phosphate buffer saline (PBS) solution 
again and minced on ice into tiny cell clumps < 1mm3 
in volume. Each sample was then transferred into a 
15ml centrifuge tube with 10ml digestion medium 
with 0.75 mg/ml collagenase I (Sigma), 2mg/ml 
collagenase Ⅳ (Sigma), 0.0025 mg/ml DNase Ⅳ 
(Sigma), and 0.2mg/ml hyaluronidase I-S (Sigma) in 
0.25% Trypsin (ThermoFisher Scientific). The 
specimens were incubated in a 37 °C thermostatic 
shaker with manual mix every 10 min until the cell 
clumps were digested to single cells. Next, the 
samples were filtered using 40-μm nylon meshes 
(Corning) to remove cell debris and clusters. After 
centrifugation at 300×g and 4°C for 5 min, the cell 
pellet was re-suspended in 2mL red blood lysis buffer 
and incubated for 5min at room temperature. Cell 
suspension was centrifugated under the same 
condition and the pellet was re-suspended in 1mL 
PBS solution. Automatic cytometry (Luna) was used 
to determine the cell concentration and the sample 
volume was calculated based on the optimal cell 
sampling concentration supplied by 10x Genomics 
official website (https://www.10xgenomics.com/) 
and the target capture number. If the calculated 
concentration was too high, the liquid volume would 
be adjusted to the appropriate concentration and 
counting was performed again. Once the desired cell 
suspension was obtained, the sample was 
immediately placed on ice for subsequent GEMs 
preparation and reverse transcription. 

Droplet-based scRNA-seq  
The prepared single-cell suspensions were 

barcoded to scRNA-seq libraries with the Chromium 
Single Cell 3’ Library, Gel Bead & Multiplex Kit and 
Chip Kit (10x Genomics). About 16516 cells were 
totally captured at last in all the samples. The V2 
barcoding chemistry of 10x Genomics was applied to 
treat the cell RNA. Each sample was plated in the 
same cell in the special 10x plate, ensuring that each 
cell was treated with the same mixture in the same 
cellular channel. All samples were processed 
synchronously in the same thermal circulator. 
Libraries were sequenced on an Illumina Hiseq X, and 
labeled in the human genome (build Grch38) under 
the operation of CellRanger (10x Genomics). The gene 
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location was annotated with Ensembl build 95. 

Quantification of single-cell gene expression 
and classification of principal cell types  

Single-cell expression matrices for CCRCC CSCs 
were obtained from the Gene Expression Omnibus 
(GEO; https://www.ncbi.nlm.nih.gov/, GSE110680) 
[52]. The data were processed in the same way as 
CDRCC. Original sequencing data matrices from 
CellRanger (version 3.0.2) were imported to R 
(version 3.5.2-Eggshell Igloo), and integrated with 
Seurat R package (version 2.3.4) [53]. To guarantee the 
quality of sequencing, the cells with <200 or > 5000 
genes were depleted from the original data. 
Dimensionality reduction was performed in the 
remaining 15208 cells for a subset of highly variable 
genes in the gene expression matrices. With the help 
of FindVariableGenes function of Seurat package, we 
selected the highly variable genes by calculating 
variance to mean expression ratios in evenly sized 
groups. Genes with a mean expression between 0.05 
and 10, and dispersion > 0.5 were selected. Cellular 
read count, sample source and mitochondrial mRNA 
percentage were linearly regressed against all genes 
under the guideline of Seurat’s ScaleData function. 
Principal component analysis (PCA) was then 
conducted and top 30 principal components were 
used for clustering with the Louvain graph-clustering 
method [16]. The clusters were projected on the t-SNE 
plot [15]. As to subclusters, the same methods were 
used for recognizing the variable genes, reducing 
dimensions and clustering. 

Identification of marker genes 
To identify marker genes of these 16 clusters, we 

contrasted cells from one cluster to all other cells 
using the Seurat FindAllMarkers function. The marker 
genes had to express in more than 10% cells in its 
cluster and the average expression in corresponding 
cluster was required 0.25 log2 fold changes higher 
than that in other clusters. Among the 16 clusters, 5 
clusters (Cancer 1-4 and CSC clusters) were further 
divided into 13 subclusters. The marker genes of 13 
subclusters were recalculated. 

Correlation to clinical data  
To validate the results of scRNA-seq analysis, we 

selected totally 8 highly expressed genes in CSC 
cluster (n=4) and Cancer cell clusters (n=4). By 
immunohistochemistry (IHC), we stained sections of 
5-µM thickness from the paraffin blocks of 17 CDRCC 
patients (Supplementary Table 6). According to the 
immunohistochemical scores, Kaplan-Meier curve 
was drawn to present the relationship between the 
expression level and survival time. Second, to verify 
the possible therapy drugs to CDRCC, we selected 1 

CSC-related gene and 4 targeted therapy genes to 
carry out double immunofluorescence labeling 
staining to detect the gene expression level in CSC 
cluster. The following antibodies were used to 
represent the expression of the selected genes: 
anti-PARP1 (rabbit, 1:500, Abcam, ab32138), anti-PIGF 
(rabbit, 1:300, Proteintech, 10642-1-AP), anti-HDAC2 
(rabbit, 1:500, Abcam, 32117), anti-FGFR3 (rabbit, 
1:200, Abcam, ab137084), anti-BIRC5 (rabbit, 1:500, 
Abcam, ab76424), anti-PTTG1 (rabbit, 1:1000, Abcam, 
ab79546), anti-CENPF (rabbit, 1:500, Abcam, 
ab223847), anti-CDKN3 (rabbit, 1:500, Abcam, 
ab206314), anti-ATF3 (rabbit, 1:1000, Novusbio, 
nbp1-85816), anti-PDZK1 (mouse, 1:200, R&Dsystems, 
af4997), anti-VTN (rabbit, 1:300, Abcam, ab45139), 
anti-CXCL8 (mouse, 1:500, R&Dsystems, 
af-208-na)(Figure 4, Supplementary Figure 8). 

Gene set variation analysis (GSVA) and gene 
set enrichment analysis (GSEA)  

Altogether 1329 canonical pathways in the 
website of molecular signature database (MSigDB, 
version 6.2) were provided by GSEABase package 
(version 1.44.0). Next, we applied GSVA method with 
default settings to assign pathway activity estimates 
for individual cells, as implemented in the GSVA 
package (version 1.30.0) [54]. To quantify the 
differences in pathway activity between 16 clusters, 
we used a generalized linear model to contrast the 
enrichment scores for each cell. In addition, we 
applied the GSEA method [55] to demonstrate the 
significant differences of KEGG pathways between 
CSC and cancer 1-4 clusters. 

SCENIC analysis 
The normalized expression matrix processed by 

Seurat package(version 2.3.4) was previously 
analyzed with SCENIC package based on 
20-thousand motifs database for RcisTarget and 
GRNboost2 (SCENIC version 1.1.2.1, which 
corresponds to RcisTarget version 1.2.1 and AUCell 
version 1.4.1) [28, 56]. Altogether 8774 genes passed 
the filtering (sum of expression >3 × 0.01× 10551 and 
detected in at least 1% of the cells). Next, GRNBoost2 
from arboreto was used to infer co-expression 
modules and obtain potential regulons. RcisTarget 
and AUCell were employed to trim modules for 
targets and evaluate the activity of the regulatory 
network on all the cells respectively. 

Monocle analysis 
The Monocle package (version 2.99.0) was used 

to plot trajectories to illustrate the behavioral 
similarity and transitions [57, 58]. We used an 
expression matrix derived from Seurat to build a 
CellDataSet for Monocle pipeline, and partition the 
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cells into supergroups after dimensionality reduction. 
SimplePPT method was applied in organizing 
supergroups into a tree-like trajectory. Plot cell 
trajectory module was used to plot the trajectory and 
color the cells by subcluster type. 

scRNA-seq and copy number estimation 
Genome-wide relative copy number estimation 

of cancer cell and CSC was performed using 
InferCNV (version 0.8.2) [59]. The count data matrix 
was delivered from Seurat. Gene symbols 
determining gene coordinates were obtained by 
querying Ensemble via BioMart and the 
corresponding genes were located on the 
chromosomes. The basic parameters of InferCNV 
were set by default (cutoff value = 0.1). The ngchm 
function of inferCNV package was used to generate 
an interactive heat maps for visualization of CNV 
data, which allows exploration of the detail variation 
of the copy number through all the chromosomes [60] 
on the website http://www.ngchm.net/Downloads/ 
ngChmApp.html with Supplementary Plot 1. 

Cell–cell communication analysis 
To analyze cell-to-cell interactions in the 

scRNA-seq data, we used CellPhoneDB method 
(cellphonedb.org) [61] to deduce the ligand-receptor 
interaction between two cell types. To determine the 
most relevant interactions between various cell types, 
we considered only the ligand-receptor complexes 
expressed in more than 10% cells. Then, we compared 
each cell cluster in pairs according to the default 
setting of CellPhoneDB, and calculated the number of 
important ligand-receptor complexes between each 
cluster (p<0.05), so as to estimate the communication 
between each cell cluster. 

RNA velocity  
According to the previous reports [62], we used 

the spliced and unspliced transcript reads to calculate 
the RNA velocity. The spliced and unspliced reads 
were processed by R script velocyto.R with the Cell 
Ranger output. All the cells belonging to CSC and 
cancer cells were analyzed (n=10551). Velocity fields 
were projected onto the t-SNE plot generated by 
Seurat. Parameter n sight was 30 which determines 
the projection size of the velocity. 

Survival analysis  
The IHC score and Kaplan-Meier survival curve 

were used to evaluate the relationship between gene 
(BIRC5, PTGG1, CENPF, CDKN3, ATF, PDZK1, VTN, 
CXCL8) expression and prognosis. First, ROC curve 
was used to distinguish the high and low expression 
cut off values of IHC scores (SPSS 24). Then, the 
survival status and time of patients were used to draw 

Kaplan-Meier curve (P < 0.01 indicated statistical 
difference). 

Statistical analysis  
All single-cell sequencing data statistical analysis 

was performed in R (version 3.5.2) and Python 
(version 3.7.1). Wilcoxon Rank Sum test and 
Kruskal-Wallis rank sum test were applied for 
comparisons in two or more groups. Statistical 
significance was accepted for P < 0.05. In single cell 
RNA-seq data, we used Limma package to fit a 
generalized linear model, and Bayes moderated 
F-statistic to determine statistical significance. 
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