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Abstract 

Tight junction (TJ) is a “zippering up” junction structure located at the uppermost portion of adjacent 
epithelial/endothelial cells in organs and tissues. TJs maintain the relative stability of intracellular substances and 
functions by closing or opening intercellular pathways, coordinating the entry and exit of molecules of different 
sizes and charges, and regulating the permeability of paracellular barrier. TJs also prevent microbial invasion, 
maintain epithelial/endothelial cell polarity, and regulate cell proliferation. TJs are widely present in the skin and 
mucosal epithelial barriers, intestinal epithelial barrier, glomerular filtration barrier, bladder epithelial barrier, 
blood-brain barrier, brain-blood tumor barrier, and blood-testis barrier. TJ dysfunction in different organs can 
lead to a variety of diseases. In addition to signal pathways, transcription factors, DNA methylation, histone 
modification, TJ proteins can also be regulated by a variety of non-coding RNAs, such as micro-RNAs, 
long-noncoding RNAs, and circular RNAs, directly or indirectly. This review summarizes the structure of TJs 
and introduces the functions and regulatory mechanisms of TJs in different organs and tissues. The roles and 
mechanisms of non-coding RNAs in the regulation of TJs are also highlighted in this review. 
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Introduction 
Mammals have four types of cell-cell junction 

that called tight junctions (TJs), adherens junctions 
(AJs), gap junctions (GJs), and desmosomes/ 
hemidesmosomes [1]. According to functions, 
they can be divided into occluding junctions (TJs), 
anchoring junctions (AJs, desmosome/ 
hemidesmosome), and communicating junctions (GJs) 
[2-4]. These junctions jointly regulate the paracellular 
or intra-/extracellular exchanges of material and 
information [5]. Among them, TJs are paracellular 
barriers that are essential for maintaining homeostasis 
in multicellular organisms and can quickly respond to 
stimuli, especially in the skin, visceral organs, and 
blood-brain barrier (BBB) [6]. As selective gates, TJs 
control the paracellular diffusion of ions and 
solutes, allow the passage of small soluble 
substances, restrict the exudation of macromolecular 
substances, such as proteins, and inhibit the entry of 
viruses and other microorganisms [5, 7, 8]. 

TJ structure 
TJs are located in the topmost region of the 

lateral membrane [9]. A TJ is a reticular structure 
formed by the binding of transmembrane proteins 
(claudins, occludin, junctional adhesion molecule 
[JAM], etc.), cytoplasmic proteins (zonula occludens 
[ZOs], cingulin, etc.) and cytoskeletal proteins (actin, 
myosin, etc.). These transmembrane proteins 
polymerize on the cell membrane to form a “strand” 
structure, which calls TJ strand. Each TJ strand binds 
transversely to another one, which connects adjacent 
cells and forms a “zippering up” structure in the 
lateral to apical direction [6]. Besides, cytoplasmic 
proteins act as scaffold proteins that connect TJ 
strands and cytoskeletal proteins to maintain TJ 
functions [9] (Figure 1). Cytoplasmic protein 
components, such as afadin and atypical protein 
kinase C (aPKC), also reportedly assist in the TJ 
structure maintenance [10, 11]. 
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Figure 1. TJ structure. Claudins, occludin, JAM, and etc. constitute the core components of TJ strand. Among them, claudins aggregate to form the backbone of the TJ strand. 
ZO protein family, cingulin, and etc. act as scaffold proteins to connect TJ strand and actin in TJ. TJ shows a reticular structure formed by the orderly binding of different functional 
proteins. 

 

Claudins 
Claudins constitute a protein family with at least 

27 subtypes [12], their molecular weight is around 
20-25 kDa [13]. Claudins are polymerized on the cell 
membrane into the backbone structure of the TJ 
strand. Claudins have four transmembrane 
fragments, two extracellular loops (the first 
extracellular segment [ECS1] and the second 
extracellular segment [ECS2]), two cytoplasmic 
termini (the COOH-terminus and the NH2-terminus). 
Among the claudins subtypes, ECS1 and ECS2 
contain different amino acid sequences, respectively. 
However, ECS1 contains the claudins consensus 
motif, also called the “claudins signature sequence”, 
which performs its functions on stabilizing the 
structure of claudins and providing an interface for 
TJ[14]. About two cytoplasmic terminal fragments, 
the COOH-terminal fragment is almost 5 to 15 times 
longer than the NH2-terminal fragment. The number 
of residues of the COOH-terminal fragment is 
different among the claudins subtypes with residues 
between 21 and 63, except claudin-23 (106 residues). 
In claudins, the PSD-95/Dlg/ZO-1 (PDZ)-domain- 
binding motif at the COOH-terminal fragment can 
directly connects with TJ-related cytoplasmic 
molecules, such as ZOs and cingulin [14, 15]. The PDZ 
domain is a motif involved in protein binding and 
mediates protein-protein interactions, it maintains the 

connection between transmembrane and cytoplasmic 
parts to form a complete structure and ensures TJ's 
function. Furthermore, it participates in various 
processes, such as paracellular transport and signal 
transduction [13]. 

Occludin 
Occludin is another important TJ strand 

component with a molecular weight around 65 kDa 
[16]. Also, occludin has four transmembrane 
fragments, two extracellular loops, and two 
cytoplasmic termini. But they share no similarity in 
structure and sequence [9]. In occludin, the 
COOH-terminal fragment has 254 residues and is 
about 3.88 times longer than the NH2-terminal 
fragment [17]. The PDZ domain at the 
COOH-terminal fragment binds to ZOs to perform its 
functions [18]. 

JAMs 
JAM proteins have three main subtypes (JAM-A, 

JAM-B, and JAM-C), they show similar sequences and 
structures. JAM consists of a short NH2-terminal 
fragment, two extracellular immunoglobulin-like 
loops, a single transmembrane module, and a short 
COOH-terminal fragment in the cytoplasm with 
phosphorylation sites, and a COOH-terminal PDZ 
domain [19, 20]. They molecular weight is 36-41 kDa 
[21]. The extracellular domain functions as an 
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adhesion structural component between cells. The 
phosphorylation sites are critical for JAMs to target 
TJs. Besides, the PDZ domain recruits TJ scaffold 
proteins, such as ZO-1, thus, it involves in the 
function of TJ through protein-protein interactions 
[13, 20, 22]. 

ZOs 
The ZOs family, including ZO-1, ZO-2, and 

ZO-3, are TJ scaffold proteins. They localize to the 
cytoplasm and the molecular weight is 220 kDa, 160 
kDa, and 130 kDa, respectively [9]. ZO-1, ZO-2, and 
ZO-3 have similar sequences. They have three 
PDZ domains, a Src homology 3 (SH3) domain and a 
guanylate kinase-like (GUK) domain. These domains 
are arranged in turn from NH2-terminus to 
COOH-terminus: PDZ1, PDZ2, PDZ3, SH3, and GUK 
[23]. Among them, PDZ1 and GUK directly 
connect with other TJ proteins. PDZ1 binds 
directly to claudins COOH-terminus [9], while GUK 
domain binds directly to occludin NH2-terminus [23]. 
Furthermore, COOH-terminal domain interacts with 
actin directly. But other domains do not directly 
connect with TJ proteins. For example, JAMs connect 
with the PDZ2 and PDZ3 of ZO-1 via ALL-1 fusion 
partner from chromosome 6 (AF-6) protein [23, 24]. 
The ZOs are very important for maintaining the TJ 
structural stability. As reported, a simultaneous 
absence of ZO-1 and ZO-2 can cause TJ 
transmembrane proteins to disperse along the 
cytoplasm and affect TJ functions [9]. 

Cingulin 
Cingulin localizes in the cytoplasm. Cingulin is a 

parallel dimer of two subunits with a molecular 
weight of 140-160 kDa. Each subunit has a globular 
head, a coiled-coil rod, and a globular tail. Both 
myosin and ZO-3 can bind to the NH2-terminus and 
COOH-terminus of cingulin, while ZO-1 and ZO-2 
can bind to the NH2-terminus [21]. In general, 
cingulin acts as a scaffold protein that connects and 
stabilizes the TJ structure through ZOs family and 
cytoskeletal proteins. Cingulin also takes part in 
signal transduction, such as regulating RhoA 
signaling to control epithelial cell proliferation [13, 
25]. 

Actin 
The cytoskeleton is composed of microtubules, 

microfilaments, and intermediate filaments. The 
cytoskeleton maintains cell morphology and bears 
external forces, it also helps maintain cell’s internal 
structure. Microfilaments are cytoskeletal 
components that enable the opening and closing of 
TJs and are mainly composed of actin [26-28]. Actin 

binds to the cytoplasmic scaffold proteins to form a 
power system that controls the opening and closing of 
TJ strands composed channels [29]. 

TJ proteins can also participate in other 
physiological and pathological functions 
independently of TJ structure. Such as, the claudins 
family and ZO-2 act as markers of 
epithelial-mesenchymal transformation (EMT) and 
are related to organogenesis and differentiation (EMT 
type 1); claudin-1, occludin, and JAM-A are related to 
inflammation and fibrosis (EMT type 2); the claudins 
family are related to cancer metastasis/invasion (EMT 
type 3). Claudin-1 and occludin can serve as receptors 
for hepatitis C virus (HCV) entry into cells [30], and 
ZO-1 is a biomarker of multiple myeloma to identify 
patients who are most likely to benefit from 
proteasome inhibitors [31]. 

TJ functions 
TJs are widely found in the skin and mucosal 

epithelial barriers [32], intestinal epithelial barrier 
[33], glomerular filtration barrier[34], bladder 
epithelial barrier [35], blood-brain barrier (BBB) [36, 
37], brain-blood tumor barrier (BBTB) [38], and 
blood-testis barrier (BTB) [39, 40] (Figure 2). TJs can 
coordinate the entry and exit of molecules with 
different sizes and charges in an orderly manner, 
which plays an important role in paracellular barrier 
functions [41]. TJs also help prevent the invasion of 
viruses and other microorganisms [42], maintain the 
polarity of epithelial cells [43], and regulate cell 
proliferation [44]. Additionally, TJ proteins can also be 
expressed independently of TJ structure and play an 
essential role in signal transduction and regulating 
gene expression [31]. The TJ strands of adjacent cells 
interact to form two types of pathways that regulate 
the entry and exit of molecules. The first is a pore 
pathway consisting of five or more TJ strands that 
allow ions and uncharged small molecules with a 
radius of approximately 4 Å or less to pass through 
the epithelial barrier in large numbers 
simultaneously. The second is the leak pathway 
displayed only a single strand of adjacent cells, which 
allows larger ions and molecules to pass through 
regardless of their charges, but only a small number of 
large ions and macromolecules can pass through at 
one time [41, 45]. ZOs act as scaffold proteins to 
regulate the number of molecules passing through the 
two pathways [33]. The claudins family regulates the 
charge selectivity of the two pathways, with specific 
residues in the ECS1 region to determine the charge 
selection of the pathways. The claudins family can be 
divided into two types: sealing claudins (claudins-1, 
-3, -4, -5, -8, -11, and ect), and pore-forming claudins 
(claudins-2, -10, -14, -16, and ect). Sealing claudins 
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inhibit molecules passing through the TJ barrier. 
Furthermore, JAM-A participates in coordinating 
regulating TJ barrier permeability with claudins. If 
JAM-A alters in distribution and/or expression alone, 
it does not influence TJ barrier permeability. 
However, when JAM-A and claudins alter in 
distribution and/or expression together, it 
strengthens the influences of claudins on TJ barrier 
permeability [46]. In contrast with sealing claudins, 
pore-forming claudins enable molecules passing 
through the TJ barrier easier [47-51]. Occludin is a 
critical structural and functional component of TJ [18]. 
Studies have shown that occludin constitutes a barrier 
function, and knockdown of occludin increases the 
paracellular pathway permeability [16, 52]. However, 
some findings are opposite to this. They suggest that 
occludin plays a key role in maintaining the normal 
function of the leak pathway. The overexpression of 
occludin enhances leak pathway function, while the 
molecular flux of the leak pathway without occludin 
is significantly lower [53, 54]. Cell polarity refers to 
the asymmetry of cell structure and function, and the 
subcellular structures are believed to be 
asymmetrically distributed along an axis, causing 
different regions inside the cell to perform different 
functions [55]. Epithelial cells polarize along the 
apical-basal axis, which is crucial for the epithelial 
cells to function as barriers [56]. In this manner, 
different cell-cell junctions are formed in different cell 
locations. TJs are located at the top of the epithelial 
cells, which is critical for maintaining cell polarity. For 
example, the absence of ZO-1 and ZO-2 induces 
JAM-A and claudins to be distributed widely along 
the apical and basolateral cell membranes, and ZO-3 

and occludin are also displaced, destroying epithelial 
cell polarity [43]. Occludin regulates the polarity of 
epithelial cells by controlling the Par-3/Par-6/aPKC 
complex [57]. TJs can also regulate 
epithelial/endothelial cell proliferation through the 
Yes-associated protein 1 (YAP1) /HIPPO signaling 
pathway, ZO-1/zonula occludens 1-associated 
nucleic acid binding protein (ZONAB) signaling 
pathway, and interact with integrin β1 signaling 
[58-62]. TJ proteins can also regulate the levels of 
immune proteasome subunits Low-molecular mass 
protein 7 (LMP7) and Low-molecular mass protein 2 
(LMP2) via EGFR/JAK1/signal transducer and 
activator of transcription 3 (STAT3) signaling 
independent of TJ structure [31]. 

TJ functions and characteristics vary between 
organs. TJ barrier permeability is more highly 
selective in the skin and bladder epithelial barriers 
than in the intestinal epithelial barrier and glomerular 
filtration barrier. This is because a strong epidermal 
barrier is essential for homeostasis, and the bladder 
must stabilize urine concentration in the normal range 
and prevent the loss of ion gradients [35, 63]. In 
contrast to the skin and bladder epithelial barriers, 
intestinal epithelial barrier and glomerular filtration 
barrier drive paracellular absorption and secretion 
through selective TJ barrier penetration [33]. 

Role of TJ in the skin and mucosal 
epithelial barriers 

The TJ is an essential barrier structure in skin 
and is the main barrier in skin appendages lacking 
stratum corneum, such as hair follicles and sweat 

 

 
Figure 2. TJs are present in the skin and mucosal epithelial barriers, intestinal epithelial barrier, glomerular filtration barrier, bladder epithelial barrier, BBB, BTB, and BBTB. TJ 
dysfunction in these organs leads to a variety of diseases and morbid conditions. 
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glands [32]. The typical TJ structure is located in the 
granular layer of the skin [64]. TJ strands form 
channels between adjacent keratinocytes that regulate 
the entry and exit of water and solutes [32]. TJ 
deficiency leads to water and solutes losses in the skin 
and allows allergens entry, which in turn leads to dry 
skin and an overly active response to allergens. For 
example, atopic dermatitis is characterized by dry 
skin and highly active response to allergens, the two 
features are reported as the results of decreased 
claudin-1 and TJ deficiency [44, 65]. Down-regulation 
of occludin and ZO-1 in patients with allergic rhinitis 
leads to TJ deficiency in nasal mucosa, and the chance 
of allergens crossing the TJ barrier is increased [66, 
67]. Defects on TJs make the skin appendages 
especially vulnerable to entry of viruses, such as 
herpes-simplex virus and infectious-molluscum virus; 
therefore, patients with atopic dermatitis are more 
likely to suffer from viral skin diseases [32]. 
Abnormality of TJ proteins is closely related to 
psoriasis progression. Linkage analysis identifies nine 
psoriatic susceptibility loci, some of which are located 
in the region encoding claudins. Patients with 
psoriasis have been shown to lack claudin-1 
expression based on the detection of skin lesions [68]. 
In vitro experiments also show that the decreased 
expression of claudin-1 disturbs TJ functions and 
promotes keratinocyte proliferation [44]. 

Role of TJ in the intestinal epithelial 
barrier 

TJs perform a more complicated task in the 
intestinal epithelial barrier than in the skin and 
mucosal epithelial barriers. They support the 
paracellular transport of water, ions (e.g., Na+, Ca2+, 
Mg2+, and Cl-) and nutrients (e.g., glucose and 
protein), and prevent the translocation of 
microorganisms [33]. TJs also inhibit apoptosis of 
intestinal epithelial cells and protect the intestinal 
epithelial barrier [69]. Transport of Na+ is essential for 
nutrients absorption. For instance, Na+-glucose 
cotransport through TJs are vital in maintaining Na+ 
concentration inside and outside the intestinal 
epithelial barrier, thereby enabling nutrients 
recycling. In the case of TJ deficiency, the intracellular 
and extracellular Na+ concentration gradient of the 
intestinal epithelial barriers is insufficient to drive the 
absorption of transcellular Na+-nutrient cotransport, 
which then affects nutrients absorption [33]. Thus, TJ 
deficiency can lead to intestinal epithelial absorption 
disorders and abnormal secretory function. TJ 
deficiency can cause oxalate secretion disorders, 
leading to hyperoxaluric acidemia, hyperoxaluria, 
and calcium oxalate stones. A study showed that 
modulation of the charge selectivity of the claudin- 

based pore pathway did not affect oxalate 
permeability, but knockdown of ZO-1 enhanced 
permeability to oxalate and mannitol in parallel [54]. 
TJ deficiency is associated with inflammatory bowel 
disease (IBD). For example, the expressions of ZO-1 
and occludin are significantly down-regulated in the 
intestinal epithelial barrier of patients with irritable 
bowel syndrome (IBS) [70, 71]. Up-regulation of 
claudin-2, as well as down-regulation and 
redistribution of occludin, claudin-5, and claudin-8 
lead to TJ deficiency in Crohn’s disease [47]. IBD 
increases the risk of colorectal cancer, so protecting TJ 
integrity is significant for preventing colorectal cancer 
[72]. TJ defects also lead to the translocation of 
bacteria and bacterial products. When claudin-1 and 
occludin expression is down-regulated in the 
intestinal epithelial barrier, the barrier’s permeability 
increases. Intestinal bacteria and their metabolites are 
then translocated to the liver, which can result in liver 
disease [42]. Down-regulation of occludin expression 
can also cause intestinal bacteria to enter the systemic 
circulation, increasing cardiovascular events after 
myocardial infarction [73]. It is worth noting that 
upregulation of TJ proteins can also damage the 
intestinal epithelial barrier, so TJ homeostasis is 
critical for maintaining intestinal epithelial functions. 

Role of TJ in the glomerular filtration 
barrier 

The reabsorption by epithelial cells in the 
glomerular filtration barrier depends on the selection 
of molecular size and charge by the pathways formed 
by the TJ strands [34]. The expression of claudins is 
variable in different nephron segments, which 
determines what will be reabsorbed in each nephron 
segment: claudin-2 forms cationic reabsorption 
pathways of proximal renal tubules; claudins-14, -16, 
and -19 constitute calcium transport pathways 
regulating the thick ascending branch of the Helen’s 
loop; claudins-4, -7, and -8 form chloride pathways in 
the collecting duct; claudin-16 mediates Mg2+ 
transport protein [74], and claudins-8 and -15 mediate 
Na+-nutrient cotransport [30, 33]. TJ defects also lead 
to reabsorption disorders. The expressions of 
claudins-3, -4, and -8 are down-regulated in the renal 
collecting duct epithelial barrier, leading to urine 
dilution through water reabsorption [48]. Mutations 
in claudin-16 and claudin-19 lead to familial 
hypercalcemia and hypomagnesemia with renal 
calcinosis [74]. 

Role of TJ in the bladder epithelial 
barrier 

The selection of molecular size and charge by the 
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pathways formed by TJ strands between bladder 
epithelial cells stabilizes the composition and 
concentration of urine in the normal range [35]. 
Claudin-4 is a marker of bladder epithelial 
differentiation, and abnormal claudin-4 expression in 
bladder cancer is related to local invasion, lymph 
node metastasis, and distant metastasis [75]. A study 
howed that claudin-4 is abnormally expressed in the 
bladder epithelial barrier in many children with 
bladder valgus [76]. 

Role of TJ in the BBB 
The TJ prevents harmful substances from 

entering the brain from the bloodstream. Down- 
regulation of claudin-5, ZO-1, ZO-2, and occludin 
causes viruses to cross the BBB [36, 37]. Meanwhile, 
many therapeutic drugs cannot reach an effective 
concentration in the central nervous system due to the 
relative impermeability of TJs. TJ proteins disappear 
in the BBB from 24 hours to seven days after a stroke; 
only claudin-5 reappear in newly formed brain 
endothelial cells, whereas other components do not 
so. Furthermore, only claudin-5 absence does not 
affect TJ structure, but leads to selective opening of 
the BBB for molecules that smaller than 800 Da [49, 77, 
78]. 

Role of TJ in the BTB 
TJs can protect specific antigens of germ cells 

from being recognized by the autoimmune system 
and regulate nutrient entry and metabolic waste 
excretion [39, 40]. Unlike the BBB, TJs in the BTB can 
be disassembled and reassembled periodically. The 
BTB must be opened regularly to allow germ cells to 
pass. Polar proteins, for example cell division control 
protein 42 homolog (Cdc42), Dishevelled-1/2/ 
3 (Dvl1/2/3), and focal adhesion kinase (FAK), alter 
the connection between TJ strands and cytoskeletal 
proteins, leading to BTB remodeling to support germ 
cell passage during the epithelial cycle of 
spermatogenesis [79-82]. 

Regulatory mechanism of TJs 
Studies currently have confirmed that a variety 

of signaling pathways can affect TJ by regulating TJ 
protein expression: Ras-mitogen-activated protein 
kinase (MAPK), epidermal growth factor receptor 
(EGFR)-Src family kinases (SFK), Toll-like receptor 2 
(TLR2)-protein kinase C (PKC), Wnt- β-catenin, Nrf2, 
NF-κB, STAT5b, and other signaling pathways can 
regulate the expression of ZO-1[83-93]; 
mitogen-activated protein kinase (MAPK) kinase 
(MEK)-extracellular signal-regulated kinase (ERK), 
Nrf2, NF-κB, mediterranean fever gene (MEFV), and 
other signaling pathways can regulate occludin 

expression [72, 89-94]; the Nrf2 pathway regulates 
claudin-4 expression [90, 91]; the Wnt-β-catenin and 
c-myc pathways regulate claudin-5 expression [86-88, 
95]; the STAT5b pathway regulates the expressions of 
ZO-2 and ZO-3 [96]; the Siah-Pard3A pathway 
regulates JAM-A expression [97]; and the liver kinase 
B1 (LKB1)/adenosine monophosphate-activated 
protein kinase (AMPK) pathway regulates cingulin 
expression [98]. Epigenetic regulation, such as DNA 
methylation and histone modifications, also plays an 
important role in maintaining TJ function. DNA 
methylation in the promoter regions of TJ-related 
genes can inhibit their expressions. For instance, DNA 
methylation inhibits claudin-11 expression by 
interfering with transcription activator GATA1 
binding to its DNA promoter [99]. Histone 
modification in the promoter region of the TJ gene can 
also affect TJ gene transcription: both histone 3 lysine 
9 trimethylation (H3K9me3) and histone 3 lysine 27 
trimethylation (H3K27me3) in the ZO-1 DNA 
promoter inhibit ZO-1 transcriptional expression 
[100-102], while histone 3 lysine 4 trimethylation 
(H3K4me3) of the ZO-1 DNA promoter activates 
ZO-1 DNA transcription [101]; besides, H3K27me3 
and histone 4 lysine 20 trimethylation (H4K20me3) of 
claudin-3 and claudin-4 DNA promoters inhibit their 
transcription [103]; and H3K27me3 of the occludin 
DNA promoter inhibits occludin transcriptional 
expression [101, 102]. Non-coding RNAs, including 
micro-RNAs (miRNAs), long noncoding RNAs 
(lncRNAs), and circular RNAs (circRNAs) are also 
vital aspects of epigenetic regulation, they play an 
important role in the physiological and pathological 
regulation of various genes. In recent years, it has 
been reported that non-coding RNAs are also 
involved in TJ function regulation (Figure 3). 

Non-coding RNAs 
MiRNAs are small single-stranded RNAs with 

lengths of 21-23 nucleotides that can bind to the 3' 
UTR of mRNAs and result in mRNAs silencing or 
degradation [104, 105]. For example, miR-29 can 
participate in the pathogenesis of recessive dystrophic 
epidermolysis bullae by specifically silencing 
COL7A1 mRNA [106]. LncRNAs are long-stranded 
non-coding RNAs with lengths of 200-100,000 
nucleotides that participate in the regulation of a 
variety of physiological and pathological processes 
[107, 108]. The regulation mechanisms of lncRNAs are 
highly complex, but they mainly work in the 
following ways [109-123]: (1) regulating gene 
transcription by affecting DNA promoter regions; (2) 
inhibiting RNA polymerase II or regulating chromatin 
remodeling and histone modification to affect 
downstream gene expression; (3) forming a 
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complementary double strand with gene transcripts 
to interfere with mRNA splicing; (4) forming 
complementary double strands with the transcript of 
genes to produce endogenous siRNAs dependent on 
Dicer enzyme activity; (5) binding to a specific protein 
to regulate its activity; (6) binding to a specific protein 
to change its cellular location; (7) acting as a structural 
component, forming a nucleic acid-protein complex 
with protein; (8) a precursor of small RNAs such as 
miRNAs and piRNAs; (9) sponge-like absorbing of 
miRNAs to indirectly regulate gene expression that 
targeted by miRNA. CircRNA is a 
single-stranded RNA with a closed loop structure that 
is more stable than linear RNA. CircRNA exerts its 
biological functions mainly through sponging 
miRNAs, binding proteins, regulating gene 
transcription, or being translated into short 
polypeptide as templates [124-129]. For example, 
circ_0015756 can sponge miR-1250-3p to regulate the 
proliferation and invasiveness of hepatoblastoma 
[130]. Circ-human antigen R (HuR) has been shown to 
be down-regulated in gastric cancer and bound to the 
CCHC zinc-finger nucleic acid-binding protein 
(CNBP), which promotes HuR mRNA expression by 
interacting with the HuR DNA promoter. However, 
once bound to CNBP, circ-HuR competitively inhibits 
CNBP binding with the HuR DNA promoter. 
Thereby, it down-regulates HuR to inhibit the 
progression of gastric cancer [127]. Previous studies 

have shown that DNA methyltransferase 1 (DNMT1) 
contributes to the DNA methylation in CD4+ T cells, 
which leads to the production of autoantibodies. 
Down-regulation of circ_0012919 expression increases 
methyltransferase DNMT1 expression, which 
contributes to DNA methylation of CD11a and CD70 
in CD4+T cells. Therefore, circ_0012919 can be 
regarded as a biomarker of systemic lupus 
erythematosus [131]. There are also small nuclear 
RNAs (snRNAs), transfer RNAs (tRNAs), small 
interfering RNAs (siRNAs), and other undiscovered 
non-coding RNAs in cells that regulate a variety of 
cellular processes. 

MiRNAs and TJs 
The gene locations and sequences of miRNAs are 

highly conserved and are found throughout animals, 
plants, bacteria, fungi, and viruses [105, 132]. It has 
been reported that miRNAs participate in different 
kinds of physiological functions such as post- 
transcriptional gene-expression [133], cardiovascular 
biomarkers [134], angiogenesis, and inflammatory 
response [135]. Disordered miRNAs expressions also 
participate in the regulation of pathological processes 
such as tumor pathogenesis [136], drug resistance 
[137]. It has been found that miRNAs can regulate 
physiological and pathological processes by 
regulating TJs in the BBB, BBTB, intestinal epithelial 
barrier, skin epithelial barrier, glomerular filtration 

 

 
Figure 3. TJ proteins are regulated by miRNAs, lncRNAs, and circRNAs. 
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barrier, bladder epithelial barrier, and EMT via 
regulating TJ proteins (Table 1). The BBB is the barrier 
between plasma and brain cells formed by the 
cerebral capillary wall and glial cells, as well as the 
barrier between plasma and cerebrospinal fluid 
formed by the choroid plexus. The BBB protects brain 
tissue from harmful substances circulating in the 
blood and maintains the stability of the environment 
in the brain tissue [138]. The BBTB is the barrier 
between brain tumor tissue and plasma formed by the 
capillary wall in brain tumor tissue [138]. The 
intestinal epithelial barrier prevents bacteria and 
toxins from passing through the intestinal mucosa 
into other tissues, organs, and blood circulation in the 
human body. It can also promote the absorption of 
nutrients, such as proteins, into the bloodstream [139]. 
The skin and mucosal epithelial barriers are 

composed of the physical barrier and the chemical 
barrier. They both protect the internal organs/tissues 
from external damage, irritation, and sunlight entry, 
and they function in skin moisturization and 
immunomodulation. TJs are mainly important in the 
physical barrier of the skin and mucosal epithelial 
barriers [140-142]. Glomerular filtration barrier is the 
structure in which blood in the glomerular capillaries 
is filtered into Bowman space [143, 144]. The bladder 
epithelial barrier is the mucous membrane that lines 
the inner surface of the bladder [145]. EMT is the 
transformation from epithelial cells to mesenchymal 
cells, which gives cells the ability to migrate and 
invade other tissues. The EMT has a key role in tissue 
healing, organ fibrosis, carcinogenesis, and other 
processes [146]. 

 

Table 1. Function and mechanism of miRNAs in TJs 

Name Level Function Mechanism Position Reference 
miR-150 - Increasing BBB permeability  Down-regulating claudin-5 by target inhibiting Tie-2 BBB [149] 
miR-212 and 
miR-132 

Increased in hypoxic brain 
tissue 

Destroying the integrity of BBB Target inhibiting claudin-1, ZO-1, and JAM-C  BBB [150] 

miR-501-3p - Destructing the integrity of BBB  Target inhibiting ZO-1  BBB [151] 
miR-96  Increased in HBMEC of 

Alzheimer’s disease 
Increasing BBB permeability  Down-regulating ZO-1 by target inhibiting ERG  BBB [148] 

miR-424-5p - Increasing BBB permeability  Down-regulating ZO-1 and occludin by target promoting 
Endophilin-1 

BBB [152] 

miR-101 - Increasing BBB permeability  Down-regulating claudin-5 by target inhibiting 
VE-cadherin  

BBB [154] 

miR-181a Increased in Glioma Increasing BBTB permeability  Down-regulating ZO-1, occludin, and claudin-5 by target 
inhibiting KLF6 

BBTB [38] 

miR-577 - Increasing BBTB permeability  Target inhibiting claudin-1, ZO-1, and occludin  BBTB [155] 
miR-429 Decreased in Glioma Increasing BBTB permeability  Target inhibiting ZO-1 and occludin. Also, down- 

regulating ZO-1, occludin, and claudin-5 by target 
inhibiting p70S6K-S6 

BBTB [156] 

miR-181d-5p  - Increasing BBTB permeability  Down-regulating ZO-1, occludin, and claudin-5 by target 
inhibiting SOX5  

BBTB [157] 

miR-29b - Destroying the integrity of 
intestinal epithelial barrier  

Target inhibiting claudin-1 Intestinal 
epithelial barrier 

[158] 

miR-21-5p Decreased in dysfunctional 
intestinal epithelial barrier 

Protecting the integrity of intestinal 
epithelial barrier 

Up-regulating occludin and claudin-4 by target inhibiting 
PTEN, PDCD4, SPRY1, and SPRY2 

Intestinal 
epithelial barrier 

[159] 

miR-125b-5p 
and miR-16 

Decreased in irritable bowel 
syndrome 

Protecting the integrity of intestinal 
epithelial barrier 

Target inhibiting cingulin and claudin-2  Intestinal 
epithelial barrier 

[160] 

miR-223 - Destroying the integrity of 
intestinal epithelial barrier 

Target inhibiting claudin-8 Intestinal 
epithelial barrier 

[161] 

miR-155-5p - Increasing skin barrier permeability  Down-regulating occludin and claudin-1 by target 
inhibiting PKIα  

Skin epithelial 
barrier 

[162] 

miR-146a and 
miR-106b 

- Increasing skin barrier permeability 
and TEWL  

Target inhibiting ZO-1 and ZO-2  Skin epithelial 
barrier 

[163] 

miR-9 and 
miR-374 

- Increasing glomerular filtration 
barrier permeability leading to an 
increase in calcium reabsorption 
and a decrease in urinary calcium 

Target inhibiting claudin-14  Glomerular 
filtration barrier 

[50, 164] 

miR-205 - Regulating urinary tract epithelial 
cell differentiation 

Target inhibiting cingulin and ZO-1  Urinary tract 
epithelium 

[166] 

miR-199a-5p Increased in the bladder 
pain syndrome 

Increasing bladder epithelial 
permeability  

Target inhibiting ZO-1, JAM-A, occludin, and actin  Bladder 
epithelium 

[165] 

miR-199a-5p Increased in the bladder 
pain syndrome 

Increasing bladder epithelial 
permeability  

Target inhibiting claudin-1, JAM-A, and occludin Bladder 
epithelium 

[167] 

miR-143 and 
miR-145 

- Promoting EMT Down-regulating occluding, ZO-1, and ZO-3 by target 
inhibiting CREB1 

Breast cancer cells [168] 

miR-24-3p - Promoting EMT Target inhibiting cingulin Malignant 
mesothelioma 

[169] 

Abbreviation: BBB: blood-brain barrier; BBTB: brain blood-tumor barrier; CREB1: cAMP-response element binding protein 1; EMT: epithelial to mesenchymal transition; 
ERG: ETS-Related Gene; JAM-A: junctional adhesion molecule A; JAM-C: junctional adhesion molecule C; KLF6: Kruppel-like factor 6; p70S6K-S6: p70 S6 kinase-S6; PDCD4: 
programmed cell death factor 4; PKIα: protein kinase inhibitor α; PTEN: phosphatase and tensin homolog; SOX5: sex-determining region Y-box protein 5; SPRY1: sprouty 1; 
SPRY2: sprouty 2; TEWL: trans-epidermal water loss; VE-cadherin: vascular endothelial cell cadherin; ZO-1: zonula occludens-1; ZO-2: zonula occludens-2; ZO-3: zonula 
occludens-3. 
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MiRNAs and TJs in the BBB 
The BBB damage will lead to stroke, vascular 

cognitive impairment-related dementia, Alzheimer’s 
disease, cerebral hypoxia, and other conditions 
[147-152]. The most important TJ proteins in the BBB 
are claudin-5, ZO-1, and occludin. MiR-150 directly 
binds to angiopoietin receptor Tie-2 mRNA, resulting 
in the down-regulation of Tie-2 protein, which leads 
to the inhibition of claudin-5 protein, and an increase 
in the BBB permeability after ischemic stroke [149]. 
Hypoxia induces high miR-212 and miR-132 in the 
central nervous system. Both miR-212 and miR-132 
can bind to the 3' UTR of claudin-1, ZO-1, and JAM-C 
mRNAs and inhibit their expressions, thereby 
damage the integrity of the BBB [150]. MiR-501-3p 
binds to the 3' UTR of ZO-1 mRNA to inhibit ZO-1 
protein expression; this leads to damage of the BBB 
and promotes development of vascular cognitive 
impairment-related dementia [151]. Current studies 
have shown that Alzheimer’s disease is closely related 
to an increase in monocyte migration across the BBB. 
High level of granulocyte-macrophage colony- 
stimulating factor (GM-CSF) in brain parenchyma 
promotes monocyte migration across the BBB. 
GM-CSF up-regulates the miR-96 level of human 
brain microvascular endothelial cells (HBMEC) via 
the phosphatidylinositol 3-kinase (PI3K)/serine- 
threonine protein kinase (AKT) signal pathway. 
MiR-96 targets the mRNA of the erythrocyte 
transformation specificity (ETS) transcription factor, 
ETS-related gene (ERG), to inhibit ERG protein 
expression. The interaction of ERG protein with the 
ZO-1 DNA promoter region enables ZO-1 mRNA 
expression. Therefore, miR-96 indirectly suppresses 
ZO-1 mRNA expression, which leads to an increase in 
monocyte migration across the BBB [148]. MiR-424-5p 
binds to the 3' UTR of endophilin-1 mRNA and 
up-regulates endophilin-1 mRNA. Endophilin-1 
overexpression leads to inhibition of the EGFR-ERK 
and EGFR-Jun-N-terminal kinase (JNK) signaling 
pathways, then down-regulates ZO-1 and occludin 
protein in vascular endothelial cells. This increases the 
BBB permeability and induces development of 
Alzheimer’s disease [152]. It is worth noted that the 
combination of miR-424-5p with the endophilin-1 
mRNA 3' UTR does not decrease endophilin-1 
mRNA. This may be due to a competitive interaction 
between miR-424-5p and multiple miRNAs, which 
reduce the inhibition of other miRNAs on 
endophilin-1 expression and indirectly increase 
endophilin-1 [153]. MiR-101 binds to the 3’ UTR of 
vascular endothelial cadherin (VE-cadherin) mRNA 
to down-regulate it. VE-cadherin has been reported to 
promote claudin-5 expression. Therefore, miR-101 

indirectly down-regulates claudin-5, resulting in the 
increase of BBB permeability [154]. 

MiRNAs and TJs in the BBTB 
Research has focused on drugs or treatments that 

increase the permeability of the BBTB to enable an 
effective drug concentration to penetrate the BBTB 
and treat brain tumors. Studies have found that 
miRNAs can increase the BBTB permeability by 
regulating TJs to achieve increased drug efficacy, 
which is significant for clinical advancement. The 
expression of miR-181a is increased in glioma, and 
miR-181a can inhibit Kruppel-like factor 6 (KLF6) 
mRNA expression by directly binding to the 3' UTR of 
KLF6 mRNA; KLF6 can promote the transcriptional 
expressions of ZO-1, occludin, and claudin-5 mRNAs. 
Thus, miR-181a indirectly down-regulates ZO-1, 
occludin, and claudin-5, which further increases the 
BBTB permeability. MiR-181a may be a key miRNA 
for opening the BBTB and is a potential target to 
increase the therapeutic success rate for glioma [38]. 
MiR-577 directly binds to occludin, ZO-1, and 
claudin-1 mRNA 3' UTRs, down-regulating they and 
increasing the BBTB permeability to improve the 
chemosensitivity of malignant glioma [155]. MiR-429 
expression in human glioma microvascular 
endothelial cells (GECs) is much lower than that in 
normal microvascular endothelial cells in human 
brain. MiR-429 regulates TJ proteins in GECs in two 
ways. First, miR-429 directly binds to ZO-1 and 
occludin mRNA 3' UTRs to inhibit the post- 
transcriptional processes. Second, miR-429 inhibits 
p70 S6 kinase-S6 (p70S6K-S6) expression by binding 
to the mRNA 3' UTR. The activation of the p70S6K-S6 
signaling pathway can up-regulate ZO-1, occludin, 
and claudin-5. Therefore, miR-429 can also indirectly 
down-regulate ZO-1, occludin, and claudin-5 by 
inhibiting the p70S6K-S6 signaling pathway [156]. The 
expressions of ZO-1, occludin, and claudin-5 are also 
promoted by binding of Sex-determining region 
Y-box protein 5 (SOX5), whose expressions are 
inhibited by miR-181d-5p. Thus, miR-181d-5p could 
suppress SOX5 expression to reduce ZO-1, occludin, 
and claudin-5 expressions, thereby enhancing the 
BBTB permeability in glioma [157]. 

MiRNAs and TJs in the intestinal 
epithelial barrier 

The destruction of the intestinal epithelial barrier 
leads to IBS, IBD, and other conditions. The function 
of the intestinal epithelial barrier is complex, and the 
TJ proteins, which predominate in the barrier 
structure, have intricate functions [158-161]. It has 
been found that miR-29b combines with the 3' UTR of 
claudin-1 mRNA to inhibit claudin-1 expression, 
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resulting in intestinal epithelial barrier dysfunction 
[158]. Intestinal symbiotic floras induce the expression 
of miR-21-5p in intestinal epithelial cells. MiR-21-5p 
binds to phosphatase and tensin homolog (PTEN), 
programmed cell death factor 4 (PDCD4), sprouty 1 
(SPRY1), and sprouty 2 (SPRY2) mRNAs to inhibit 
their expressions. These target genes are negative 
regulators of the phosphatidylinositol 3-kinase 
(PI3K)-Akt, JNK-activator protein 1 (AP-1), and ERK 
pathways, respectively. Therefore, miR-21-5p 
activates these pathways to up-regulate ADP 
ribosylation factor 4 (ARF4), promoting the 
expressions of claudin-4 and occludin and protecting 
the intestinal epithelial integrity [159]. MiR-125b-5p 
and miR-16 bind to cingulin and claudin-2 mRNAs 
and inhibit their expressions, respectively. In IBS, 
however, miR-125b-5p and miR-16 are down- 
regulated, which increase cingulin and claudin-2 in 
the intestinal epithelial barrier and leads to intestinal 
epithelial barrier dysfunction [160]. MiR-223 directly 
binds to the 3' UTR of claudin-8 mRNA and down- 
regulate it, increasing the permeability of intestinal 
epithelial barrier and inducing IBD occurrence [161]. 

MiRNAs and TJs in the skin and mucosal 
epithelial barriers 

TJ destruction caused by abnormal miRNA 
expression induces allergic dermatosis, skin 
dehydration, and other diseases [162, 163]. For 
example, miR-155-5p binds to the protein kinase 
inhibitor α (PKI α) mRNA 3'UTR to inhibit PKI α 
expression. PKI α can promote claudin-1 and occludin 
expressions, while miR-155-5p can increase skin 
barrier permeability and induce atopic dermatitis by 
indirectly down-regulating claudin-1 and occluding 
[162]. Both miR-146a and miR-106b bind to the ZO-1 
and ZO-2 mRNA 3'UTRs to inhibit their expressions, 
increasing skin barrier permeability, and increasing 
trans-epidermal water loss (TEWL) [163]. 

MiRNAs and TJs in the glomerular 
filtration barrier 

The epithelium of the glomerular filtration 
barrier reabsorbs water, electrolytes, and nutrients in 
urine mainly through TJs. TJ destruction decreases 
urinary calcium abnormally increases urine volume 
and causes other morbid conditions [50, 164]. Both 
miR-9 and miR-374 recognize complementary binding 
sites in the claudin-14 mRNA 3' UTR. The miR-9/ 
miR-374-claudin-14 pathway is directly regulated by 
Ca2+ sensor receptor (CaSR) and the pathway also 
constitutes an important part of the renal CaSR signal 

cascade system. CaSR activation decreases miR-9 and 
miR-374 expressions, then increases claudin-14, which 
increases calcium reabsorption and decreases urinary 
calcium by increasing TJ barrier permeability [50, 
164]. 

MiRNAs and TJs in the bladder epithelial 
barrier 

Damage to the TJs between adjacent bladder 
epithelial cells leads to abnormal differentiation of the 
bladder epithelial barrier, bladder pain, and other 
morbid conditions [165-167]. It was reported that 
miR-199a-5p increases bladder epithelial permeability 
in bladder pain syndrome by targeting the 3' UTRs of 
ZO-1, JAM-A, occludin, and actin mRNA [165]. 
Similarly, miR-199a-5p up-regulation in bladder pain 
syndrome leads to occludin, claudin-1, and JAM-A 
down-regulation, which is not conducive to the 
establishment of a tight bladder epithelial barrier and 
results in bladder chronic pain [167]. MiR-205 directly 
binds to ZO-1 and cingulin mRNAs to inhibit their 
expressions and participates in urothelial cell 
differentiation regulation [166]. 

MiRNAs regulate EMT via TJs 
EMT leads to TJ destruction and the loss of cell 

adhesion and polarity. Damage to TJ structural 
integrity can also promote EMT [168, 169]. MiR-143 
and miR-145 inhibit cAMP-response element binding 
protein 1 (CREB1) expression, which is the 
transcriptional activator of ZO-1, ZO-3, and occludin. 
So miR-143 and miR-145 down-regulate these TJ 
proteins, promoting breast cancer invasion and 
metastasis induced by EMT [168]. MiR-24-3p inhibits 
cingulin mRNA translation, which leads to invasion 
and metastasis of malignant mesothelioma induced 
by EMT [169]. 

LncRNAs and TJs 
It has been reported that lncRNAs regulate the 

physiological functions of cell directional 
differentiation, biological growth and evolution [170]. 
Disordered lncRNAs expressions also participate in 
the regulation of pathological processes such as tumor 
progression, cardiovascular and cerebrovascular 
diseases, neurological diseases, autoimmune diseases, 
and congenital malformations [104, 105, 107, 108]. In 
recent years, it has been found that lncRNAs can 
regulate physiological and pathological processes by 
regulating TJs in the intestinal epithelial barrier, 
BBTB, and EMT (Table 2). 

 
 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

722 

Table 2. Function and mechanism of lncRNAs in TJs 

Name Level Function Mechanism Position Reference 
CCAT1 - Destroying intestinal epithelial barrier 

function and promoting the patho-
genesis of inflammatory bowel disease. 

Disturbing ZO-1 and occludin expressions by 
sponging miR-185-3p 

Intestinal epithelial 
barrier 

[171] 

H19 Increased in ulcerative 
colitis 

Destroying the intestinal epithelial 
barrier 

Down-regulating ZO-1 by releasing miR-675-5p Intestinal epithelial 
barrier 

[172,173] 

PlncRNA1 - Protecting intestinal epithelial barrier 
function 

Up-regulating ZO-1 and occludin by sponging 
miR-34c 

Intestinal epithelial 
barrier 

[174] 

SPRY4-IT1  - Protecting intestinal epithelial barrier 
function 

Target promoting occludin, claudin-1, claudin-3, 
and JAM-A translation 

Intestinal epithelial 
barrier 

[175] 

HOTAIR Increased in glioma Decreasing BBTB permeability Target  up-regulating occludin, ZO-1, and 
claudin-5  

BBTB [176] 

XIST - Decreasing BBTB permeability Up-regulating ZO-1, ZO-2, and occludin by 
sponging miR-137 

BBTB [177] 

CRNDE Increased in osteosarcoma 
and hepatoma cells 

Promoting EMT Down-regulating ZO-1 by target activating 
Wnt/β-catenin signal pathway 

Osteosarcoma and 
hepatoma 

[178,179] 

FEZF1-AS1 Increased in NSCLC Promoting EMT Down-regulating ZO-1 by target activating 
Wnt/β-catenin signal pathway 

NSCLC [180] 

CTD903 Increased in colorectal 
cancer 

Inhibiting EMT Up-regulating ZO-1 by target inhibiting 
Wnt/β-catenin signal pathway 

Colorectal cancer [181] 

SPRY4-IT1 - Promoting EMT Down-regulating ZO-1 by target activating Snail 
transcription, expression, and nuclear localization 

Esophageal squamous 
cell carcinoma 

[182] 

Abbreviation: BBTB: brain blood-tumor barrier; CCAT1: colon cancer-associated transcript-1; CRNDE: colorectal neoplasia differentially expressed; EMT: epithelial to 
mesenchymal transition; FEZF1-AS1: FEZF1 antisense RNA 1; HOTAIR: HOX transcript antisense intergenic RNA; JAM-A: junctional adhesion molecule A; NSCLC: 
non-small cell lung cancer; SPRY4-IT1: SPRY4 intronic transcript 1; XIST: X inactivate-specific transcript; ZO-1: zonula occludens-1; ZO-2: zonula occludens-2. 

 
 

LncRNAs and TJs in the intestinal 
epithelial barrier 

Colon cancer-associated transcript-1 (CCAT1) 
performs an important role in tumorigenesis and 
progression. CCAT1 can also induce IBD by 
regulating the intestinal epithelial barrier. For 
example, inflammation-related genes are significantly 
enriched in colorectal cancer patients with high 
CCAT1 expression. Myosin light chain kinase 
(MLCK) can induce the disordered distribution of 
occludin and ZO-1 and can transform the intestine 
from a smooth arc shape into many irregular 
undulations. CCAT1 can adsorb miR-185-3p to 
promote MLCK expression, leading to disordered 
distribution of occludin and ZO-1 and destruction of 
the barrier function, which promotes IBD 
pathogenesis [171]. H19 expression increases in 
patients with ulcerative colitis. H19, as a precursor of 
miR-675-5p, inhibits ZO-1 mRNA expression and 
induces intestinal epithelial barrier function 
destruction in patients with ulcerative colitis [172, 
173]. PlncRNA1 sponges miR-34c to remove the 
targeted inhibition of miR-34c on myc-associated 
zinc-finger protein (MAZ). MAZ promotes ZO-1 and 
occludin expressions by binding to ZO-1 and occludin 
promoter regions. Therefore, PlncRNA1 can 
up-regulate occludin and ZO-1 through the 
“miR-34c-MAZ” regulatory axis and enhance the 
intestinal epithelial barrier function [174]. SPRY4 
intronic transcript 1 (SPRY4-IT1) directly interacts 
with occludin, claudin-1, claudin-3, and JAM-A 
mRNAs to promote their translation by binding to the 
RNA-binding protein HuR, and then enhances 

intestinal epithelial barrier function [175]. 

LncRNAs and TJs in the BBTB 
HOX transcript antisense intergenic RNA 

(HOTAIR) is up-regulated in gliomas, and HOTAIR 
combines with the promoter regions of occludin, 
ZO-1, and claudin-5 to promote their expressions, 
which decreases BBTB permeability [176]. The 
adsorption of miR-137 by X inactivate-specific 
transcript (XIST) can antagonize the targeted 
inhibition of miR-137 on ZO-2. So XIST promotes 
ZO-2 expression. In addition, XIST can also promote 
forkhead box C1 (FOXC1) expression by adsorbing 
miR-137. FOXC1 is a gene transcription factor of ZO-1 
and occludin. Therefore, XIST can up-regulate ZO-1, 
ZO-2, and occludin from multiple angles, which 
decreases BBTB permeability [177]. 

LncRNAs regulate tumor EMT through 
TJs 

LncRNAs can participate in tumor EMT 
regulation by regulating TJ proteins. For example, 
colorectal neoplasia differentially expressed (CRNDE) 
is highly expressed in osteosarcoma and 
hepatocellular carcinoma cells. CRNDE activates the 
Wnt/β-catenin signaling pathway and 
down-regulates ZO-1, inducing EMT to promote 
osteosarcoma and hepatocellular carcinoma cell 
metastasis [178, 179]. FEZF1 antisense RNA 1 (FEZF1- 
AS1) expression is significantly up-regulated in 
non-small cell lung cancer (NSCLC) tissues. 
FEZF1-AS1 also down-regulates ZO-1, inducing EMT 
by activating the Wnt/β-catenin signal pathway [180]. 
CTD903 expression is significantly up-regulated in 
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colorectal cancer tissue. CTD903 inhibits the 
Wnt/β-catenin signaling pathway to up-regulate 
ZO-1, inhibiting EMT in colorectal cancer [181]. 
SPRY4-IT1 down-regulates ZO-1 by promoting Snail 
transcription, expression, and nuclear localization, 
inducing EMT and metastasis of esophageal 
squamous cell carcinoma [182]. 

CircRNAs and TJs 
There have been found a few studies of TJ 

regulation by circRNAs (Table 3). However, studies 
have introduced the role of circRNAs in the BBB and 
BBTB. For example, circ-DLGAP4 is highly expressed 
in the normal central nervous system, but 
significantly decreased after stroke, resulting in 
down-regulation of TJ protein and BBB destruction. 
The combination of miR-143 and HECT domain E3 
ubiquitin protein ligase 1 (HECTD1) mRNA 3' UTR 
inhibits HECTD1 expression. HECTD1 can promote 
the expressions of occludin, ZO-1, and claudin-5. 
Circ-DLGAP4 can promote HECTD1 expression by 
sponging miR-143 and enhance BBB function [183]. As 
a miR-194-5p sponge, circ-ubiquitin specific peptidase 
1 (USP1) relieves the inhibitory effect of miR-194-5p 
on occludin, ZO-1, and claudin-5 mRNAs and 
decreases the BBTB permeability [184]. CircRNAs are 
stable and have potential as molecular markers and 
drug targets, and their relationships with TJs deserve 
more extensive and in-depth researches. 

 

Table 3. Function and mechanism of circRNAs in TJs 

Name Level Function Mechanism Position Reference 
circ- 
DLGAP4 

Decreased in 
ischemic 
brain tissue 

Protecting 
BBB 

Up-regulating ZO-1, 
claudin-5 and occludin 
by sponging miR-143 

BBB [183] 

circ-USP1 - Decreasing 
BBTB 
permeabili
ty  

Up-regulating ZO-1, 
claudin-5, and occludin 
by sponging 
miR-194-5p 

BBTB [184] 

Abbreviation: BBB: blood-brain barrier; BBTB: brain blood-tumor barrier; USP1: 
ubiquitin specific peptidase 1; ZO-1: zonula occludens-1. 

 

Conclusion 
A TJ is a “zippering up” junction structure. TJs 

maintain the relative stability of intracellular 
substances and functions by closing or opening 
paracellular pathways, coordinating the entry and 
exit of molecules of different sizes and charges, and 
regulating the permeability of paracellular barrier. TJs 
also prevent microbial invasion, maintain 
epithelial/endothelial cell polarity, and regulate cell 
proliferation. TJs are widely present in the skin and 
mucosal epithelial barriers, intestinal epithelial 
barrier, glomerular filtration barrier, bladder 
epithelial barrier, BBB, BBTB, and BTB. Because of TJ’s 
critical role in organs and tissues, it is not surprising 

that diseases, such as IBD, gliomas, allergic 
dermatosis, and skin dehydration, are associated with 
disruption of TJs. A variety of non-coding RNAs, such 
as miRNAs, lncRNAs, and circRNAs, can directly or 
indirectly regulate TJ proteins, affecting the function 
of various organs or leading to diseases. 

Prospect 
Non-coding RNAs are important parts of 

epigenetic regulation. Current studies have confirmed 
that many miRNAs can affect the TJs by directly 
regulating TJ proteins or indirectly regulating 
upstream signal pathways or transcription factors of 
TJ proteins, thereby affecting the skin and mucosal 
epithelial barriers, intestinal epithelial barrier, BBB, 
EMT and others. However, the research on the roles of 
lncRNAs, circRNAs, and other non-coding RNAs in 
TJs is still in its infancy. Because of the diversity of 
mechanisms and functions of lncRNAs and circRNAs, 
more in-depth studies are needed to reveal their roles 
and specific mechanisms. The role of snRNAs, tRNAs 
and other non-coding RNAs in TJs also needs to be 
confirmed by follow-up research. Because the 
disorder of TJs can lead to a variety of diseases, such 
as skin barrier dysfunction, which will lead to the 
progression of atopic dermatitis, psoriasis, ichthyosis, 
melanoma and so on. TJ proteins and non-coding 
RNAs that regulate TJs are expected to become new 
therapeutic targets. Some drugs targeted at TJs may 
also promote the drugs to enter the lesion and 
increase the sensitivity of the drugs. 
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granulocyte-macrophage colony-stimulating factor; 
GUK: guanylate kinase-like; HCV: hepatitis C virus; 
HBMEC: human brain microvascular endothelial 
cells; HECTD1: HECT domain E3 ubiquitin protein 
ligase 1; HOTAIR: HOX transcript antisense 
intergenic RNA; H3K4me3: histone 3 lysine 4 
trimethylation; H3K9me3: histone 3 lysine 9 
trimethylation; H3K20me3: histone 3 lysine 20 
trimethylation; H3K27me3: histone 3 lysine 27 
trimethylation; HuR: human antigen R; IBD: 
inflammatory bowel disease; IBS: irritable bowel 
syndrome; JAM-A: junctional adhesion molecule A; 
JAM-C: junctional adhesion molecule C; JNK: 
Jun-N-terminal kinase; KLF6: Kruppel-like factor 6; 
LKB1: liver kinase B1; LMP2: Low-molecular mass 
protein 2; LMP7: Low-molecular mass protein 7; 
MAPK: mitogen-activated protein kinase; MAZ: 
myc-associated zinc-finger protein; MEK: 
mitogen-activated protein kinase (MAPK) kinase; 
MLCK: myosin light chain kinase; NF-κB: nuclear 
factor-kappa B; NSCLC: non-small cell lung cancer; 
p70S6K-S6: p70 S6 kinase-S6; PDCD4: programmed 
cell death factor 4; PDZ: PSD-95/Dlg/ZO-1; PI3K: 
phosphatidylinositol 3-kinase; PKIα : protein kinase 
inhibitor α; PKC: protein kinase C; PTEN: 
phosphatase and tensin homolog; SH3: Src homology 
3; snRNAs: small nuclear RNAs; siRNAs: small 
interfering RNA; SOX5: sex-determining region Y-box 
protein 5; SFK: Src family kinases; SPRY1: sprouty 1; 
SPRY2: sprouty 2; SPRY4-IT1: SPRY4 intronic 
transcript 1; STAT5b: signal transducer and activator 
of transcription 5b; TEWL: trans-epidermal water loss; 
TJ: tight junction; TLR2: Toll-like receptor 2; tRNAs: 
transfer RNAs; USP1: ubiquitin specific peptidase 1; 
VE-cadherin: vascular endothelial cell cadherin; XIST: 
X inactivate-specific transcript; YAP1: Yes-associated 
protein 1; ZO-1: zonula occludens-1; ZO-2: zonula 
occludens-2; ZO-3: zonula occludens-3; ZONAB: 
zonula occludens 1-associated nucleic acid binding 
protein. 
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