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Abstract 

HSPA5 (BiP, GRP78) has been reported as a potential host-cell receptor for SARS-Cov-2, but its 
expression profiles on different tissues including tumors, its susceptibility to SARS-Cov-2 virus and 
severity of its adverse effects on malignant patients are unclear. In the current study, HSPA5 has 
been found to be expressed ubiquitously in normal tissues and significantly increased in 14 of 31 
types of cancer tissues. In lung cancer, mRNA levels of HSPA5 were 253-fold increase than that of 
ACE2. Meanwhile, in both malignant tumors and matched normal samples across almost all cancer 
types, mRNA levels of HSPA5 were much higher than those of ACE2. Higher expression of HSPA5 
significantly decreased patient overall survival (OS) in 7 types of cancers. Moreover, systematic 
analyses found that 7.15% of 5,068 COVID-19 cases have malignant cancer coincidental situations, 
and the rate of severe events of COVID-19 patients with cancers present a higher trend than that 
for all COVID-19 patients, showing a significant difference (33.33% vs 16.09%, p<0.01). Collectively, 
these data imply that the tissues with high HSPA5 expression, not low ACE2 expression, are 
susceptible to be invaded by SARS-CoV-2. Taken together, this study not only indicates the clinical 
significance of HSPA5 in COVID-19 disease and cancers, but also provides potential clues for further 
medical treatments and managements of COVID-19 patients. 
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1. Introduction 
Heat shock protein family A (Hsp70) member 5 

(HSPA5) (OMIM: 138120), also called binding 
immunoglobulin protein (BiP) or glucose regulating 
protein 78 (GRP78), is a protein, that in humans, is 
encoded by the HSPA5 gene. HSPA5 is commonly 
positioned in the endoplasmic reticulum (ER). When 
the ER is stressed, HSPA5 can translocate to the 
nucleus, the mitochondria and cell surface 

complexing with other proteins. On the cell surface, 
HSPA5 plays a multi-functional role in cell 
proliferation, cell viability, apoptosis, and regulation 
of innate and adaptive immunity [1]. HSPA5 is the 
master chaperone protein for unfolded protein 
response for ER function when unfolded or misfolded 
proteins accumulated [2]. HSPA5 involves in the 
correct folding and degradation of misfolded proteins 
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through interacting with DNAJC10/ERdj5, 
facilitating DNAJC10/ERdj5 release from substrates. 
Dysregulations of these stress proteins including 
HSPA5 are associated with many human diseases 
including cancers, immunological diseases, 
cardiovascular diseases, neurodegenerative diseases, 
obesity, stroke and infectious diseases [3-6]. Targeting 
HSPA5 may be potential in therapy for human 
diseases [7, 8] as well as COVID-19 (Coronavirus 
Disease 2019) [9-11]. 

SARS-Cov-2 (severe acute respiratory syndrome 
coronavirus 2), which causes the disease of 
COVID-19, is a member of beta coronaviruses like the 
previous coronaviruses SARS (severe acute 
respiratory syndrome) and MERS (middle east 
respiratory syndrome). COVID-19 virus causes global 
pandemic events since the first outbreak in Wuhan of 
Hubei, China in late December 2019. As of the January 
11, 2021, the total confirmed cases are 90,833,894, and 
deaths are 1,942,974 worldwide based on the report 
from the Center for Systems Science and Engineering 
(CSSE) at Johns Hopkins University 
(https://coronavirus.jhu.edu/). The host cell entry of 
coronavirus was regulated by the viral spike protein 
( ̴1300 amino acids), originate in homotrimeric state 
over the virion particle and characterize 
coronaviruses [12, 13]. Various host cell receptors or 
entry related-proteins are identified for different 
coronaviruses such as heparan sulfate proteoglycans, 
angiotensin-converting enzyme 2 (ACE2), 
transmembrane protease serine 2 (TMPRSS2), 
aminopeptidase N, HSPA5, furin, and O-acetylated 
sialic acid [14-17]. Molecular chaperones are involved 
in multiple pathophysiological processes including 
viral infection by spike protein attacks [18]. The 
cell-surface receptor HSPA5 is susceptible to viral 
recognition through the substrate-binding domain 
(SBD), thereby mediating the virus entry into the cells 
[10, 19, 20]. The spike binding site to HSPA5 is 
predicted by molecular model docking and structural 
bioinformatics, and revealed that the binding is more 
favorable at the regions III (C391-C525) and IV 
(C480-C488) in the spike protein [15], and region IV is 
the major driving force for HSPA5 binding which may 
be useful for developing therapeutics specific against 
COVID-19. Indeed, recently virtual screening studies 
revealed that known HSPA5 inhibitors interfere with 
SARS-Cov-2 infection [21]. Thus HSPA5 may be a 
receptor for SARS-CoV-2 attachment and entry [10, 
15, 22, 23]. The expression levels of HSPA5 were 
found to be higher in the SARS-COV-2-positive group 
compared to the other groups [24]. Pep42, a cyclic 
peptide, binds to HSPA5 at the surface of cancer cells 
[25, 26]. 

The expression levels of HSPA5 in different 

tissues might closely related to the susceptibility and 
severity of the viral infection. Organ dysfunctions, 
such as shock, acute cardiac injury, acute respiratory 
distress syndrome (ARDS), acute kidney injury (AKI), 
and death can occur in severe events of COVID-19 
disease [27, 28]. Older people with comorbidities, 
such as high blood pressure, diabetes, cardiovascular 
disease and cerebrovascular disease have been 
reported to affect the COVID-19 severity [29, 30].  

Patients with malignant cancers affected survival 
status and gene expression in tumor tissues. The 
incidence of malignant cancers is getting higher and 
higher, and recently was found to be the common 
comorbidity of COVID-19. Although one study 
showed that there was no significant difference in the 
severity of COVID-19 in cancer patients, as a receptor 
of SARS-Cov-2 [31], dysregulation of HSPA5 
expression in cancer patients’ tissues, particularly in 
the lungs, should affect the susceptibility and severity 
of this virus infection. Targeting HSPA5 may help to 
develop and design novel therapeutic strategies 
against virus infections [32] including SARS-Cov-2, 
which might also associate with human carcinoma 
between endoplasmic reticulum stress and anti-viral 
activities [23, 33]. Hence understanding of the HSPA5 
expression profiles on different normal tissues and 
malignant tumors is important. But the tumor patients 
with its receptor expression files for HSPA5 in this 
outbreak have not been reported. In this study, the 
differences in HSPA5 expression in various types of 
normal and cancer tissues were evaluated. The 
influences of these differences on the impacts of 
SARS-CoV-2 infections were dissected. The cancer 
patients with COVID-19 were also estimated to assess 
the susceptibility and severity. 

2. Materials and methods 
2.1. Sources for data analysis and ethical 

concerns 
The mRNA and protein expressions for HSPA5 

from different normal tissues were obtained in the 
database of the Human Protein Atlas (HPA) 
(https://www.proteinatlas.org/ENSG00000044574-H
SPA5) [34, 35]. The immunohistochemistry (IHC) or 
immunofluorescence (IF) images of HSPA5 (Ensembl 
ID: ENSG00000044574.7) were also gained from the 
HPA database (https://www.proteinatlas.org/ENSG 
00000044574-HSPA5/cell), (https://www.protein 
atlas.org/ENSG00000044574-HSPA5/pathology), or 
(https://www.proteinatlas.org/ENSG00000044574-H
SPA5/cell#human), respectively [36, 37]. The 
expressions of HSPA5 were verified using Genotype 
Tissue Expression (GTEx) projects. The Gene 
Expression Profiling Interactive Analysis (GEPIA) 
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dataset (http://gepia.cancer-pku.cn) or GEPIA 2 
(http://gepia2.cancer-pku.cn/#index), an updated 
and enhanced version of GEPIA, which were 
developed recently [38], and ONCOMINE 
(https://www.oncomine.org), were used to compare 
the expressions between tumors and normal tissues. 
FANTOM5 database come from https://fantom. 
gsc.riken.jp/5/. The NCBI database (https://www. 
nih.gov/) was used. All datasets and clinical data for 
COVID-19 patients infected with SARS-CoV-2 were 
retrieved from the published literatures with 
statements of written informed consent. Thus no local 
ethics committee was required to approve this study. 

2.2. Homology analysis 
Homologs for HSPA5 were conducted by the 

NCBI program (https://www.ncbi.nlm.nih.gov/ 
homologene/?term=Homo+sapiens+HSPA5) [39]. 

2.3. HPA analysis for HSPA5 
The HSPA5 expressions in mRNA and protein 

were analyzed differentially in human normal and 
tumor tissues from the HPA database, which includes 
IHC-based expression for approximately 20 different 
types of common cancers in 216 cancer patients 
(maximum 12 patients in a group) [37]. The mRNA 
levels for HSPA5 in different normal tissues were 
obtained from the consensus datasets of three sources 
(HPA, GTEx and FANTOM5). Consensus normalized 
expression levels for 54 tissue types and 7 blood cell 
types were created from the above three datasets with 
the normalization pipeline (https://www. 
proteinatlas.org/about/assays+annotation#normaliz
ation_rna). Protein expression data were shown for 
each of the 44 normal tissues. Two antibodies for 
HSPA5 (cat #: CAB005221, sc-1050, Santa Cruz 
Biotechnology; or cat #: HPA038845, Sigma-Aldrich) 
were used for IHC staining in these data [40]. 

2.4. GEPIA analysis for HSPA5 and 
verification 

The mRNA expressions of HSPA5 in tumors and 
normal tissues were analyzed in the GEPIA dataset, 
for analyzing the RNA sequencing (RNA-seq) 
expression data of 9,736 tumors and 8,587 normal 
samples from the Cancer Genome Atlas and GTEx 
projects, using a standard processing pipeline [38]. 
The gene expressions of HSPA5 in cancers and those 
in normal samples were verified by using 
ONCOMINE databases. HSPA5 expressions for 
samples in overall survival (OS) analysis were 
divided into high and low of two groups using a 
median expression, and analyzed by a Kaplan–Meier 
survival plot using the log-rank test. Logrank p < 0.01 
was considered as significant differences. 

2.5. Systematic reviews of malignant tumors 
in COVID-19 patients infected with SARS- 
CoV-2 

We searched PubMed, Medline, and Google 
Scholar on November 25, 2020 from published studies 
describing the clinical characteristics of COVID-19 
due to SARS-CoV-2 and cancers. The search terms 
“cancer” and “2019-nCoV” or “COVID-19” with no 
time restrictions were performed. The related works 
of literature were screened and analyzed, clinical 
signs and symptoms caused by COVID-19 and 
cancers were collected, and studies describing 
patients’ malignant cancer status were conducted. The 
number of patients and the rate of severity combined 
with malignant cancers were calculated. Studies of 
incomplete symptom descriptions were excluded. The 
patient severe events were defined as the admission to 
ICU, requiring mechanical ventilation, or death of 
COVID-19. All the selected articles were analyzed by 
two independent investigators.  

3. Results 
3.1. HSPA5 is highly conserved 

Homologs of the HSPA5 protein showed that it 
is highly conserved in different species, including 
H.sapiens, chimpanzee, Rhesus monkey, mouse, dog, 
cow, rat, chicken, zebrafish, fruit fly, mosquito, 
C.elegans, S.cerevisiae, K.lactis, E.gossypii, S.pombe, 
M.oryzae, N.crassa, A.thaliana, rice, and frog 
(Supplementary figure 1A&B). This implied that 
HSPA5, similar to ACE2 in animals of different 
species [39, 41], have the potentials to bind to the 
receptor binding domain (RBD) of the spike 
glycoprotein, making it a probable natural host of 
SARS-CoV-2. 

3.2. Expression of HSPA5 in normal tissues 
Subcellular locations from HPA data revealed 

that HSPA5 is localized to the cytoplasm (Fig. 1A). 
Expression of HSPA5 in RNA level showed low tissue 
specificity, with highest in the thyroid gland (NX: 
219.3) and lowest in the olfactory region (NX: 14.3) 
(Fig. 1B&C), and in protein level showed cytoplasmic 
expression ubiquitously, highly abundant in immune, 
neuronal cells and thyroid follicular cells, specifically 
from 8 tissues of the cerebral cortex, cerebellum, 
hippocampus, caudate, thyroid gland, testis, 
endometrium, and placenta (Fig. 1B&D). The other 31 
tissues including the lungs showed medium levels of 
protein, and only 6 tissues showed low levels (Fig. 
1D).  
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Figure 1. Localizations and expressions of HSPA5 in normal tissues. A. Cellular localization of the HSPA5 protein. Green in color indicates HSPA5 detected in cytoplasm, 
whereas gray in color indicates the absence. B. The summary of mRNA and protein expressions of HSPA5. Color-coding columns are based on tissue groups, each consisting of 
tissues with functional features in common. The respective images for normal tissues with staining of HSPA5 protein in the HPA (scale bar 200 µm). C. The mRNA expressions 
of HSPA5 in normal tissues. Consensus dataset of mRNA level are derived from HPA dataset, GTEx dataset, and FANTOM5 dataset. A NX value of 1.0 is defined as a threshold 
for HSPA5 mRNA expression. D. The HSPA5 protein expressions in normal tissues from the HPA. Protein expression data are shown for each of the 44 tissues. Arrows indicate 
the lung tissue. HPA, Human Protein Atlas. 

 

Table 1. HSPA5 RNA expression in different datasets 

Dataset Value Unit 
HPA 247.6 pTPM 
GTEx 275.1 pTPM 
FANTOM5 449.0 Scaled Tags Per Million 
Consensus 43.6 NX 

Note: pTPM: protein-transcripts per million; NX: normalized expression. 
 

3.3. Expression of HSPA5 in normal lungs of 
humans 

The main route of transmission of SARS-CoV-2 
is by droplets from the respiratory tract, thus causing 
the severe acute respiratory syndrome. The 
expression levels of receptors in the lungs are 
important. However, from our previous study and 
other studies, ACE2 expression was very low in 
human lungs, showing moderate expression in the 
alveolar macrophages, and a few in the type I alveolar 
epithelial cells and type Ⅱ alveolar epithelial cells, but 
most of the typeⅡalveolar epithelial cells were ACE2 
negative [39, 42]. Thus we then investigated HSPA5 
mRNA expression on normal human lungs and found 
that, in the lung tissues, the mRNA level shows the 
NX value 43.6 (Fig. 1C, arrow) and the protein level is 
medium (Fig. 1D, arrow). This consensus 43.6 NX 

(Table 1) was derived from databases of LUNG- HPA 
RNA-seq, LUNG - GTEx RNA-seq (Supplementary 
figure 2A), and LUNG - FANTOM5 CAGE 
(Supplementary figure 2B).  

The comparison of mRNA expressions of ACE2 
and HSPA5 were conducted through analyzing 
datasets from HPA, GTEx, and FANTOM5 in human 
normal lungs, and found that mRNA levels of HSPA5 
is 54.4-fold higher than that of ACE2 mRNA levels 
(Supplementary figure 2C), demonstrating that, in 
addition to ACE2, HSPA5 might play very important 
roles for SARS-CoV-2 entry. 

From the HPA RNA-seq data, we found that the 
mRNA expression of HSPA5 in pneumocytes 
accounts for 31.67%, endothelial cells 28.33%, 
macrophages 10%, bronchial epithelium 5%, and 
other cell types 25%. The results are shown in Table 2. 
Protein expression of HSPA5 by IHC in both 
macrophages and pneumocytes of lungs were 
medium. The representative IHC images of normal 
lung tissue are shown in Figure 2. From these results, 
we found that HSPA5 expressions using the HSPA5 
antibody (cat# CAB005221) in alveolar macrophages 
are high and are mainly located in the cytoplasm and 
a few in the nucleus (Fig. 2B&D, blue arrows). 
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Intensive positive staining of HSPA5 was localized at 
cytoplasm of type I alveolar epithelial cells (Fig. 
2B&D, red arrows) and type Ⅱ alveolar epithelial cells 
(Fig. 2B&D, black arrow); but some of the typeⅡ 
alveolar epithelial cells were HSPA5 negative stained 
(Fig. 2B&D, dashed black arrows). Interestingly, 
different antibodies from HPA project showed 
slightly different results and found that the HSPA5 
antibody (cat #: HPA038845) showed high expression 
in both macrophages and pneumocytes (Data not 
shown). Collectively, these IHC results for protein 

levels are consistent with those by RNA-seq for 
mRNA levels of HSPA5, showing much higher than 
that of ACE2 [39, 43, 44]. 

 

Table 2. HSPA5 RNA expression in different cells from lung tissue 

Cell types  Percentages (%) 
Pneumocytes  31.67 
Bronchial epithelium 5.00 
Endothelial cells 28.33 
Macrophages 10.00 
Other cell types 25.00 

Note: Data was normalized to nine samples by HPA RNA-sequencing. 
 
 

 
Figure 2. The representative images by IHC in normal tissues of the lungs of HSPA5. The protein expressions for HSPA5 from normal tissues were obtained in the database of 
the Human Protein Atlas (HPA) (https://www.proteinatlas.org/ENSG00000044574-HSPA5). A. IHC images from the tissue of normal lungs from a female of age 49 (Patient id: 
2268). B. Enlarged picture from A. C. IHC images from the tissue of normal lungs from a male of age 21 (Patient id: 2101). D. Enlarged picture from C. Arrows in blue indicate 
the representative positive results for macrophages, arrows in red indicate the representative positive results for type I alveolar epithelial cells, arrows in black indicate the 
representative positive results for type Ⅱ alveolar epithelial cells (Fig.2C, black arrow), and arrows in dashed black indicate the representative negative staining for type Ⅱ 
alveolar epithelial cells. The scale bars for 200 µm and 50 µm are indicated. 
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Figure 3. Expression value of HSPA5 in malignant tumor tissues and cancer cells. A. HSPA5 RNA expression in malignant tumor tissues of different types of cancers. B. 
Comparison for HSPA5 and ACE2 mRNA levels in lung cancer by analysis of TCGA dataset. C. The protein expression of HSPA5. D. HSPA5 RNA expression in the cancer cell 
lines. For each cancer type, color-coded bars indicate the percentage of patients (≤12 patients) with high and medium expressed of protein level. The cancer types are 
color-coded according to which type of normal organ the cancer originates from. The cell lines we analyzed are divided into 12 color-coded groups according to the organ from. 

 

3.4. Expression values of HSPA5 in malignant 
tumors and cancer cell lines 

By analyzing patient malignant tissues of 
different types of cancers, we found that low tissue 
specificity for the HSPA5 mRNA level is detected in 
all by RNA-seq (Fig. 3A). In order to test which genes 
changes more in lung cancer, we analyzed HSPA5 
mRNA and ACE2 mRNA in TCGA dataset from 994 
samples and found that HSPA5 mRNA levels was 
253-fold than that of ACE2 (Fig. 3B), indicating that 
HSPA5 might play important roles for SARS-Cov-2 
entry in cancer patients through lungs. This was 
supported partially by a systematic review of 
malignant cancers in COVID-19 patients that men and 
lung cancer patients were more likely to have 
COVID-19 when studied for ACE2 expression [31]. 

The protein expression of HSPA5 was found to 
be ubiquitously cytoplasmic high expressed, highly 
abundant in immune, neuronal cells, and thyroid 
follicular cells (Fig. 3C, Supplementary figure 3A~E). 
Malignant cells showed moderate to strong 
cytoplasmic staining (Supplementary figure 3F~I). 
Membranous staining was observed in a few cases of 

ovarian and pancreatic cancers (Data not shown). In 
the cancer cell lines, HSPA5 RNA expressions were 
enhanced, compared to the matched normal tissues 
(Fig. 3D, data not shown). 

3.5. The expression of HSPA5 is higher in 
malignant tumors than that in matched 
normal samples. 

Then, we compared to the HSPA5 mRNA 
expression profile across all tumor samples and their 
paired normal tissues in 31 types of cancers using the 
GEPIA dataset. The results showed that all cancer 
tissues can express HSPA5, and the highest expression 
levels were noticed in thyroid carcinoma (Fig. 4A&B). 
The expressions of HSPA5 were significantly 
increased in 14 types of cancers, including cholangio 
carcinoma (CHOL), colon adenocarcinoma (COAD), 
lymphoid neoplasm diffuse large B-cell lymphoma 
(DLBC), esophageal carcinoma (ESCA), glioblastoma 
multiforme (GBM), brain lower grade glioma (LGG), 
pancreatic adenocarcinoma (PAAD), prostate 
adenocarcinoma(PRAD), rectum adenocarcinoma 
(READ), skin cutaneous melanoma (SKCM), stomach 
adenocarcinoma (STAD), thymoma, uterine corpus 
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endometrial carcinoma (UCEC), and uterine 
carcinosarcoma (UCS) (Fig. 4C, p<0.01). The 
expressions of HSPA5 were significantly decreased 
only in acute myeloid leukemia (LAML) (Fig. 4D, 
p<0.01). But the levels of HSPA5 in LAML of paired 
normal tissue are much higher than that of the highest 
one in the thyroid carcinoma tissue. The gene 
expressions of HSPA5 in tumors and those in normal 
samples were verified using the database of 
ONCOMINE (Data not shown). Other cancer types of 
tissues, except kidney chromophobe (KICH) and 

thyroid carcinoma (THCA), the expressions of HSPA5 
were increased but not significantly (Fig. 4, A&B). In 
addition, HSPA5 expressions in lung cancers were 
upregulated compared to normal tissues from TCGA 
dataset (Data not shown). Altogether, those results 
indicated that the HSPA5 might play more important 
roles for SARS-Cov-2 entry in most of the cancer 
patients through different malignant tissues, or be 
prone to attack in most of the different types of cancer 
patients. 

 

 
Figure 4. Expression values of HSPA5 in malignant tumors and paired normal samples. A. The HSPA5 expression profiles across all cancer samples and paired normal tissues by 
dot plots. B. The HSPA5 expression profiles across all cancer samples and paired normal tissues by bar plots. The height of bar represents the median expression of certain cancer 
type or matched normal tissue. C. HSPA5 was overexpressed in fourteen cancer types by box plots. D. HSPA5 was decreased in one cancer of LAML by box plots. HSPA5 mRNA 
expressions in caners and matched normal tissues were gained from the dataset of GEPIA. GEPIA, Gene Expression Profiling Interactive Analysis. *, p<0.01. 
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Figure 5. Expression comparisons between HSPA5 and ACE2 in both malignant tumors and matched normal samples in TCGA normal datasets. The cancer types are indicated 
on the top, and full names are shown in the figure 4. The gene for HSPA5 with/without tumor are indicated as HSPA5 (T)/HSPA5(N), and for ACE2 with/without tumor are 
indicated as ACE2 (T)/ACE2(N) on the left, respectively. The density of color in each block represents the median expression value of a gene in a given tissue, normalized by the 
maximum median expression value across all blocks. Different genes in same tumors or normal tissues can be compared in one plot, and the values can be obtained through online 
(http://gepia.cancer-pku.cn/detail.php?gene=HSPA5###). 

 

3.6. The expressions of HSPA5 are much 
higher than those of ACE2 in both malignant 
tumors and matched normal samples. 

Then, we compared the mRNA expressions 
between HSPA5 and ACE2 in both malignant tumors 
and matched normal tissues, and the results are 
shown in Figure 5. From these results, we found that, 
unlike HSPA5, the mRNA expressions of ACE2 were 
significantly overexpressed in some types of cancers, 
including colon adenocarcinoma (COAD), kidney 
renal papillary cell carcinoma (KIRC), pancreatic 
adenocarcinoma (PAAD), rectum adenocarcinoma 
(READ) and stomach adenocarcinoma (STAD), but 
significantly lower expressions in other types of 
cancers including kidney chromophobe (KICH), 
sarcoma, testicular germ cell tumors (TGCT) and 
thyroid carcinoma (THCA), than those in normal 
tissues (Figure 5, and data not shown), which has 
been reported recently for ACE2 [31]. Surprisingly, the 
mRNA expressions of HSPA5 are much higher than 
those of ACE2 in both malignant tumors and normal 
samples across almost kinds of cancer types (Figure 
5). 

3.7. Prognostic values of HSPA5 in malignant 
tumors 

After that, we further investigated the prognostic 
values of HSPA5 in a pan-cancer. Cancer patients in 
survival analysis were divided into high expressed 
and low expressed groups using median HSPA5 
expression and analyzed by overall survival (OS) 
Kaplan–Meier plots. The results are shown in Figure 
6, and we found that the over-expressions of HSPA5 
significantly decreased patient OS in the indicated 
seven types of cancers, including adrenocortical 
carcinoma (ACC), breast invasive carcinoma (BLCA), 
glioblastoma multiforme (GBM), head and neck 
squamous cell carcinoma (HNSC), kidney renal 

papillary cell carcinoma (KIRP), liver hepatocellular 
carcinoma (LIHC), and uveal melanoma (UVM) (Fig. 
6, A~G); whereas low expressions of HSPA5 
significantly decreased patient OS only in acute 
myeloid leukemia (LAML) (Fig. 6, H). These results 
indicate that overall survivals are reduced 
significantly in most types of malignant tumor 
patients when HSPA5 is overexpressed. 

3.8. Characteristics of malignant cancer 
patients infected with SARS-CoV-2 

The recently published studies describing the 
clinical characteristics of COVID-19 and malignant 
cancers were screened and analyzed by systematic 
review. Overall, sixty-five published studies that 
evaluated patients’ malignant cancer statuses were 
included from 2023 potentially relevant studies in our 
systematic review. A schematic flow diagram for the 
selection of the included studies with eligible trials 
and exclusion criteria is shown in Fig. 7. A total of 
70,874 COVID-19 cases in China, USA, Belgium, 
Spain, Italy, España, Korea, Iran, Poland, Turkey, 
Germany, France, Turkey, UK, Switzerland, and 
Israel, or international multicenter were included. 
Among them, 5,068 COVID-19 cases (7.15%, 
5068/708744) had comorbidities of malignant cancer 
(Table 3). Among these cancer patients, men and lung 
cancers were more likely to have COVID-19 (Data not 
shown). The rate of severe events for COVID-19 with 
malignant cancer patients was 33.33% (1689/5068), 
while the rate of severe events for all patients of 
COVID-19 was 16.09% (11404/70874) (Table 3), which 
is significantly higher for malignant patients with 
COVID-19 disease (33.33% vs 16.09%, p<0.01), 
suggesting overexpression of HSPA5 might 
contribute to the severity of COVID-19 patients. These 
data are consistent with higher expression of HSPA5 
in tumor tissues from different types of cancer 
patients, but likely through different mechanisms. 
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Table 3. Summary of number and severity of malignant cancer patients with COVID-19 

Total cases Malignant cancers (%) Severe events of cancer patients Total severe events (%) Resources References 
Yes (%) No (%) 

138 10 (7.25) 4 (40) 6 (60) 36 (26.09) China PMID: 32031570[29] 
41 1 (2.44) 0 1 13 (31.71) China PMID: 31986264[27] 
1590 18 (1.13) 9 (50) 9 (50) 131 (8.24) China PMID: 32066541[47] 
641 105 (16.38) 20 (19.05) 85 (80.95) 43 (6.71) China PMID: 32345594[48] 
1276 28 (2.19) 15 (53.57) 13 (46.43) 56 (4.39) China PMID: 32224151[49] 
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210 5 (2.38) 5 (100) 0 87 (41.43 ) China PMID: 32641174[68] 
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Note: a: 5068/70874; b: 1689/5068; c: 3379/5068; d: 11404/70874; Severe events include ICU and died cases; Intl mctr: International multicentre. 
 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

906 

 
Figure 6. Prognostic values of HSPA5 in pan-cancer. The prognostic value of HSPA5 in eight cancer types from the GEPIA dataset. A~H. ACC, BLCA, GBM, HNSC, KIRP, LAML, 
LIHC, UVM, respectively. *, P < 0.01. The cancer types of full names are shown in Figure 4. GEPIA, Gene Expression Profiling Interactive Analysis. HR, Hazards Ratio. 

 

 
Figure 7. Schematic flow diagram for the selection of the included studies in the 
systematic review. 

 

4. Discussions 
The COVID-19 pandemic became a global public 

health issue. Understanding the expression levels and 
localizations of candidate SARS-CoV-2 receptors in 
host tissues may provide insights into therapeutics 
that reduce disease spread, viral replication, disease 
severity or disease pathology. ACE2 has been 
implicated in SARS-CoV-2 viral infection [42, 45, 46]. 
Additional host molecules including HSPA5 may also 
function as receptors for SARS-CoV-2 recognition [15, 

43]. Thus, the same as ACE2, HSPA5 protein would be 
closely related to this COVID-19 virus entry, and the 
distributions and expression levels of this receptor 
might reflect the susceptibility to the virus and viral 
replication. However, the impacts of HSPA5 on 
SARS-CoV-2 susceptibility and the characterization of 
malignant cancer patients in the COVID-19 outbreaks 
are unknown. Understanding of the HSPA5 
expressions in different normal tissues and malignant 
tumors is important. In the current study, HSPA5 has 
been found to be highly expressed in almost all the 
normal tissues and increased in most tumor tissues, 
indicating that all the organs will be potentially 
infected, higher susceptible to SARS-CoV-2 in those 
with tumors. More importantly, HSPA5 mRNA levels 
increase 54.4 fold than that of ACE2 in normal lung, 
and 253 fold in lung cancer, indicating that HSPA5 
should play important roles for SARS-Cov-2 entry in 
cancer patients through the lungs. This was supported 
partially by a systematic review of malignant cancers 
in COVID-19 patients that men and lung cancer were 
more likely to have the risk of COVID-19, when 
studied the ACE2 expression [31]. Surprisingly, the 
mRNA expressions of HSPA5 are much higher than 
those of ACE2 in both malignant tumors and normal 
individuals across almost all kinds of cancer types. 
Thus, these data implied that, comparing the 
SARS-CoV-2 that invaded tissues with low expressed 
ACE2, this virus may more likely invade the highly 
HSPA5 expressed tissues. 

Moreover, patients with malignant tumors are 
usually weaker and may be more severely affected by 
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SARS-Cov-2. Higher expression of HSPA5 
significantly decreased patient survival in OS in 7 
types of cancers, including ACC, BLCA, GBM, HNSC, 
KIRP, LIHC, UVM. Furthermore, our systematic 
review results indicate that 7.15% of 5,068 COVID-19 
cases have malignant cancer coincidental situations, 
and the rate of more severe events of COVID-19 
patients with malignant cancers (33.33%) presented a 
higher trend than that for all COVID-19 patients 
(16.09%) with a significant difference (33.33% vs. 
16.09%, p<0.01). Since almost all cancer tissues had 
highly expressed HSPA5, this indicated that all tumor 
patients are susceptible to the SARS-CoV-2 infection, 
implying the clinical significance of the role of HSPA5 
expression. Hence, the susceptibility of malignant 
cancer patients and the differences of intensity degree 
could be estimated by exploring HSAP5 expression. 
Of course, we should point out, in these studies, the 
number of tumor patients and the sources from 
different countries were not sufficient and further 
studies are needed to confirm our findings. The 
relationship between HSPA5 expression levels of 
different specific tumor types and the disease severity 
should further be explored. 

Changes in HSPA5 expression levels may affect 
the susceptibility for virus infection and the severity 
of COVID-19 disease. For example, decreasing HSPA5 
expression would be the potentials to prevent 
COVID-19, especially those with malignant tumors. 
Indeed, HSPA5 has been recently implied as an 
anticancer drug target [8, 110, 111]. We might consider 
the treatment potentials such as using HSPA5 
inhibitors [112]. Recently virtual screening studies 
revealed that known HSPA5 inhibitors interferes with 
the infection by SARS-Cov-2[21]. Two of these drugs, 
Bosutinib and Ponatinib, are inhibitors of SRC and 
were patented as also being capable of blocking cell 
surface HSPA5 expression (http://www.freepatent 
sonline.com/y2019/0076431.html). Natural products 
may also interfere with SARS-CoV-2 attachment to 
stressed cells, which is worth of further investigation 
[23, 113].  

5. Conclusions 
In summary, our analyses showed that HSPA5 is 

expressed in almost all the normal tissues and 
elevated expression in tumor tissues. HSPA5 mRNA 
levels increase 253-fold than that of ACE2 in lung 
cancer, indicating that HSPA5 migh play more 
important roles for SARS-Cov-2 entry in cancer 
patients through the lungs. The rate of more severe 
events for COVID-19 patients with malignant cancers 
(33.33%) presented a higher trend than that for all 
COVID-19 patients (16.09%) with a significant 
difference. Malignant cancer patients are usually 

weaker and might be more severely affected by 
COVID-19. Thus, this virus seems more likely to 
invade tissues with highly expressed HSPA5. 
Decreasing HSPA5 expression will provide a strategy 
potentially to prevent COVID-19, especially those 
with malignant tumors. Collectively, this study may 
not only imply the clinical significance of the role of 
HSPA5 in COVID-19 disease and cancers, but also 
provide a potential clue for further medical 
treatments and managements of COVID-19 patients. 

HSPA5: heat shock protein family A (Hsp70) 
member 5; BiP: binding immunoglobulin protein; 
GRP78: glucose regulating protein 78; SARS-CoV-2: 
severe acute respiratory syndrome coronavirus 2; 
COVID-19: coronavirus disease 2019; SARS: severe 
acute respiratory syndrome; MERS: middle east 
respiratory syndrome; ARDS: acute respiratory 
distress syndrome; ACE2: angiotensin-converting 
enzyme 2; IHC: immunohistochemistry; HPA: 
Human Protein Atlas; GEPIA: The Gene Expression 
Profiling Interactive Analysis; GTEx: Genotype Tissue 
Expression; OS: overall survival. 
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